Transcription factor Nrf2 as a potential therapeutic target for COVID-19
Yifan Wang, Jing Ma, Yongfang Jiang
Cell Stress and Chaperones, doi:10.1007/s12192-022-01296-8
The coronavirus disease 2019 (COVID-19) is caused by a novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2). Critically ill patients with SARS-COV-2 infection frequently exhibit signs of high oxidative stress and systemic inflammation, which accounts for most of the mortality. Antiviral strategies to inhibit the pathogenic consequences of COVID-19 are urgently required. The nuclear factor erythroid 2-related transcription factor (Nrf2) is a transcription factor that is involved in antioxidant and anti-inflammatory defense in several tissues and cells. This review tries to present an overview of the role of Nrf2 in the treatment of COVID-19.
Declarations Conflict of interest The authors declare no competing interests. Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
References
Ashino, Yamamoto, Numazawa, Nrf2 antioxidative system is involved in cytochrome P450 gene expression and activity: a delay in pentobarbital metabolism in Nrf2-deficient mice, Drug Metab Dispos
Baird, Yamamoto, The molecular mechanisms regulating the KEAP1-NRF2 pathway, Mol Cell Biol
Balla, Jacob, Balla, Nath, Eaton, Endothelialcell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage
Bastard, Rosen, Zhang, Michailidis, Hoffmann et al., Autoantibodies against type I IFNs in patients with life-threatening COVID-19, Science
Baumel-Alterzon, Katz, Brill, Garcia-Ocana, Scott, Nrf2: the master and captain of beta cell fate, Trends Endocrinol Metab
Bhandari, Khanna, Kaushik, Kuhad, Divulging the intricacies of crosstalk between NF-Kb and Nrf2-Keap1 pathway in neurological complications of COVID-19, Mol Neurobiol
Bime, Casanova, Nikolich-Zugich, Knox, Camp et al., Strategies to DAMPen COVID-19-mediated lung and systemic inflammation and vascular injury, Transl Res
Bousquet, Cristol, Czarlewski, Anto, Martineau et al., Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies, Clin Transl Allergy
Calabrese, Kozumbo, Kapoor, Dhawan, Lara et al., Nrf2 activation putatively mediates clinical benefits of low-dose radiotherapy in COVID-19 pneumonia and acute respiratory distress syndrome (ARDS): novel mechanistic considerations, Radiother Oncol
Cecchini, Cecchini, SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression, Med Hypotheses
Checconi, Angelis, Marcocci, Fraternale, Magnani et al., Redox-modulating agents in the treatment of viral infections, Int J Mol Sci
Chen, Klein, Garibaldi, Li, Wu et al., Aging in COVID-19: vulnerability, immunity and intervention, Ageing Res Rev
Chernyak, Popova, Prikhodko, Grebenchikov, Zinovkina et al., COVID-19 and oxidative stress, Biochem Biokhim
Costa, Amaral, Andrade, Sher, Modulation of inflammation and immune responses by heme oxygenase-1: implications for infection with intracellular pathogens, Antioxidants
Cuadrado, Pajares, Benito, Jimenez-Villegas, Escoll et al., Can activation of NRF2 be a strategy against COVID-19?, Trends Pharmacol Sci
Cuadrado, Rojo, Wells, Hayes, Cousin et al., Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases, Nat Rev Drug Discovery
Davidson, Wysocki, Batlle, Interaction of SARS-CoV-2 and other coronavirus with ACE (angiotensin-converting enzyme)-2 as their main receptor: therapeutic implications, Hypertension
Davuljigari, Ekuban, Zong, Fergany, Morikawa et al., Nrf2 activation attenuates acrylamide-induced neuropathy in mice, Int J Mol Sci
Delgado-Roche, Mesta, Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection, Arch Med Res
Dong, Zhang, Ma, Tan, Chen et al., ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19, Biomed Pharmacother
Donnelly, Jiang, Andriessen, Wang, Wang et al., STING controls nociception via type I interferon signalling in sensory neurons, Nature
Espinoza, González, Kalergis, Modulation of antiviral immunity by heme oxygenase-1, Am J Pathol
Fan, Wirth, Chen, Wruck, Rauh et al., Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis, Oncogenesis
Fernandes, De Brito, Reis, Sato, Pereira, SARS-CoV-2 and other respiratory viruses: what does oxidative stress have to do with it?, Oxid Med Cell Longev
Gasparello, Aversa, Papi, Gambari, Grigolo et al., Sulforaphane inhibits the expression of interleukin-6 and interleukin-8 induced in bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 spike protein, Phytomedicine
Gozzelino, Jeney, Soares, Mechanisms of cell protection by heme oxygenase-1, Annu Rev Pharmacol Toxicol
Gumus, Erat, Ozturk, Demir, Koyuncu, Oxidative stress and decreased Nrf2 level in pediatric patients with COVID-19, J Med Virol
Gunderstofte, Iversen, Peri, Thielke, Balachandran et al., Nrf2 negatively regulates type I interferon responses and increases susceptibility to herpes genital infection in mice, Front Immunol
Guven, Erturk, Kompe, Ersoy, Serious complications in COVID-19 ARDS cases: pneumothorax, pneumomediastinum, subcutaneous emphysema and haemothorax, Epidemiol Infect
Haagmans, Kuiken, Be, Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques Lokugamage KG, J Virol
Habib, Ibrahim, Zaim, Ibrahim, The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators, Biomed Pharmacother
Hassan, Jawad, Ahjel, Singh, Singh et al., The Nrf2 activator (DMF) and COVID-19: is there a possible role?, Medical Archives
Herengt, Thyrsted, Holm, NRF2 in viral infection, Antioxidants
Hoffmann, Kleine-Weber, Schroeder, Kruger, Herrler et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell
Hooper, COVID-19 and heme oxygenase: novel insight into the disease and potential therapies, Cell Stress Chaperones
Horowitz, Freeman, Three novel prevention, diagnostic, and treatment options for COVID-19 urgently necessitating controlled randomized trials, Med Hypotheses
Huang, Li, Su, Kong, The complexity of the Nrf2 pathway: beyond the antioxidant response, J Nutr Biochem
Hybertson, Gao, Bose, Mccord, Phytochemical combination PB125 activates the Nrf2 pathway and induces cellular protection against oxidative injury, Antioxidants
Jaganjac, Milkovic, Sunjic, Zarkovic, The NRF2, thioredoxin, and glutathione system in tumorigenesis and anticancer therapies, Antioxidants
Jang, Park, Park, Cha, Yamamoto et al., EGCG, a green tea polyphenol, inhibits human coronavirus replication in vitro, Biochem Biophys Res Commun
Jayawardena, Sanjeewa, Lee, Nagahawatta, Yang et al., Particulate matter-induced inflammation/ oxidative stress in macrophages: fucosterol from Padina boryana as a potent protector, activated via NF-kappaB/MAPK pathways and Nrf2/HO-1 involvement, Marine Drugs
Jeong, Cha, Choi, Kim, Kim et al., Activation of the Nrf2/HO-1 signaling pathway contributes to the protective effects of baicalein against oxidative stress-induced DNA damage and apoptosis in HEI193 Schwann cells, Int J Med Sci
Jfmd, Chehter, COVID-19 and the gastrointestinal tract: what do we already know?
Jothimani, Venugopal, Abedin, Kaliamoorthy, Rela, COVID-19 and the liver, J Hepatol
Kamal, Omirah, Hussein, Saeed, Assessment and characterisation of post-COVID-19 manifestations, Int J Clin Pract
Karki, Sharma, Tuladhar, Williams, Zalduondo et al., Synergism of TNF-alpha and IFN-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes, Cell
Kesic, Simmons, Bauer, Jaspers, Nrf2 expression modifies influenza A entry and replication in nasal epithelial cells, Free Radical Biol Med
Khomich, Kochetkov, Bartosch, Ivanov, Redox biology of respiratory viral infections, Viruses
Kobayashi, Suzuki, Funayama, Nagashima, Hayashi et al., Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription, Nat Commun
Lechuga, Souza-Silva, Sacramento, Trugilho, Valente et al., SARS-CoV-2 proteins bind to hemoglobin and its metabolites, Int J Mol Sci
Lee, Therapeutic modulation of virus-induced oxidative stress via the Nrf2-dependent antioxidative pathway, Oxid Med Cell Longev
Li, Liao, Wang, Tan, Luo et al., The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway, Virus Res
Liskova, Samec, Koklesova, Samuel, Zhai et al., Flavonoids against the SARS-CoV-2 induced inflammatory storm, Biomed Pharmacother
Liu, Cui, Lu, Corton, Klaassen, Sex-, age-, and race/ ethnicity-dependent variations in drug-processing and NRF2-regulated genes in human livers, Drug Metab Dispos
Mantlo, Bukreyeva, Maruyama, Paessler, Huang, Antiviral activities of type I interferons to SARS-CoV-2 infection, Antiviral Res
Maruyama, Mimura, Harada, Itoh, Nrf2 activation is associated with Z-DNA formation in the human HO-1 promoter, Nucleic Acids Res
Mccord, Hybertson, Cota-Gomez, Gao, Nrf2 activator PB125(R) as a carnosic acid-based therapeutic agent against respiratory viral diseases, including COVID-19, Free Radical Biol Med
Mccord, Hybertson, Cota-Gomez, Geraci, Gao, Nrf2 activator PB125((R)) as a potential therapeutic agent against COVID-19, Antioxidants
Mendonca, Soliman, Flavonoids activation of the transcription factor Nrf2 as a hypothesis approach for the prevention and modulation of SARS-CoV-2 infection severity, Antioxidants
Merad, Martin, Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages, Nat Rev Immunol
Mhatre, Naik, Patravale, A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS-CoV-2, Comput Biol Med
Muhoberac, What can cellular redox, iron, and reactive oxygen species suggest about the mechanisms and potential therapy of COVID-19?, Front Cell Infect Microbiol
Narayanan, Amaya, Voss, Chung, Benedict et al., Reactive oxygen species activate NFkappaB (p65) and p53 and induce apoptosis in RVFV infected liver cells, Virology
Ngwa, Kumar, Thompson, Lyerly, Moore et al., Potential of flavonoid-inspired phytomedicines against COVID-19, Molecules
Olagnier, Brandtoft, Gunderstofte, Villadsen, Krapp et al., Nrf2 negatively regulates STING indicating a link between antiviral sensing and metabolic reprogramming, Nat Commun
Olagnier, Farahani, Thyrsted, Blay-Cadanet, Herengt et al., SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octylitaconate and dimethyl fumarate, Nat Commun
Ombrello, Schulert, COVID-19 and cytokine storm syndrome: are there lessons from macrophage activation syndrome?, Transl Res
Ordonez, Bullen, Villabona-Rueda, Thompson, Turner et al., Sulforaphane exhibits antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses in vitro and in mice, Commun Biol
Park, Lee, Kwon, Loganin inhibits lipopolysaccharide-induced inflammation and oxidative response through the activation of the Nrf2/HO-1 signaling pathway in RAW264.7 Macrophages, Biol Pharm Bull
Paumgartten, Oliveira, Off label, compassionate and irrational use of medicines in COVID-19 pandemic, health consequences and ethical issues, Ciencia & Saude Coletiva
Pillai, Jeanpierre, Mariappan, Ranganadin, Rao, Neutralizing the free radicals could alleviate the disease severity following an infection by positive strand RNA viruses, Cell Stress Chaperones
Poss, None
Rapozzi, Juarranz, Habib, Ihan, Strgar, Is haem the real target of COVID-19?, Photodiagn Photodyn Ther
Ribero, Jouvenet, Dreux, Interplay between SARS-CoV-2 and the type I interferon response, PLos Pathog
Robledinos-Anton, Fernandez-Gines, Manda, Cuadrado, Activators and inhibitors of NRF2: a review of their potential for clinical development, Oxid Med Cell Longev
Rojas, Alejo, Martin, Sevilla, Viral pathogen-induced mechanisms to antagonize mammalian interferon (IFN) signaling pathway, Cell Mol Life Sci
Russo, Moccia, Spagnuolo, Tedesco, Russo, Roles of flavonoids against coronavirus infection, Chem Biol Interact
Saddawi-Konefka, Seelige, Gross, Levy, Searles, Nrf2 induces IL-17D to mediate tumor and virus surveillance, Cell Rep
Safari, Khodabandeh, Borhani-Haghighi, Dimethyl fumarate can enhance the potential therapeutic effects of epidermal neural crest stem cells in COVID-19 patients, Stem Cell Rev Rep
Saha, Buttari, Panieri, Profumo, Saso, An overview of Nrf2 signaling pathway and its role in inflammation, Molecules
Santoso, Pranata, Wibowo, Al-Farabi, Huang et al., Cardiac injury is associated with mortality and critically ill pneumonia in COVID-19: a meta-analysis, Am J Emerg Med
Sarker, Das, Sarker, Roy, Momen, A review on expression, pathological roles, and inhibition of TMPRSS2, the serine protease responsible for SARS-CoV-2 spike protein activation, Scientifica
Seo, Lee, Lee, Hwang, Kim et al., Kahweol activates the Nrf2/HO-1 pathway by decreasing Keap1 expression independently of p62 and autophagy pathways, PLoS ONE
Shao, Saredy, Xu, Sun, Saaoud et al., Endothelial immunity trained by coronavirus infections, DAMP stimulations and regulated by anti-oxidant NRF2 may contribute to inflammations, myelopoiesis, COVID-19 cytokine storms and thromboembolism, Front Immunol
Sies, Jones, Reactive oxygen species (ROS) as pleiotropic physiological signalling agents, Nat Rev Mol Cell Biol
Singh, Choudhari, Nema, Khan, ACE2 and TMPRSS2 polymorphisms in various diseases with special reference to its impact on COVID-19 disease, Microb Pathog
Singh, Matada, Abbas, Dhiwar, Ghara et al., Guggulsterone inhibits dengue virus replication by upregulating antiviral interferon responses through the induction of heme oxygenase-1 expression, Viruses
Singh, Wasan, Reeta, Heme oxygenase-1 modulation: a potential therapeutic target for COVID-19 and associated complications, Free Radical Biol Med
Suhail, Zajac, Fossum, Lowater, Mccracken et al., Role of oxidative stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) infection: a review, Protein J
Tang, Jiang, Ponnusamy, Diallo, Role of Nrf2 in chronic liver disease, World J Gastroenterol
Targosz-Korecka, Kubisiak, Kloska, Kopacz, Grochot-Przeczek et al., Endothelial glycocalyx shields the interaction of SARS-CoV-2 spike protein with ACE2 receptors, Sci Rep
Thanas, Ziros, Chartoumpekis, Renaud, Sykiotis, The Keap1/Nrf2 signaling pathway in the thyroid-2020 update, Antioxidants
Thoms, Buschauer, Ameismeier, Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2, Coronavirus
Timpani, Rybalka, Calming the (cytokine) storm: dimethyl fumarate as a therapeutic candidate for COVID-19, Pharmaceuticals
Tonegawa, Heme oxygenase 1 is required for mammalian iron reutilization, Proc Natl Acad Sci
Ullah, Munir, Badshah, Khan, Ghani et al., Important flavonoids and their role as a therapeutic agent, Molecules
Vasileva, Savova, Amirova, Dinkova-Kostova, Georgiev, Obesity and NRF2-mediated cytoprotection: where is the missing link?, Pharmacol Res
Wan, Shang, Graham, Baric, Li, Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus, J Virol
Wang, Hu, Hu, Zhu, Liu et al., Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China, Jama
Wang, Xiao, Deng, Gong, Li et al., The role of cytochrome P450 enzymes in COVID-19 pathogenesis and therapy, Front Pharmacol
Wegiel, Otterbein, Go green: the anti-inflammatory effects of biliverdin reductase, Front Pharmacol
Wu, Lu, Bai, Nrf2 in cancers: a double-edged sword, Cancer Med
Wu, Peng, Wilken, Geraghty, Li, Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus, Biol Chem
Wu, Wu, Tang, Heme catabolic pathway in inflammation and immune disorders, Front Pharmacol
Wyler, Franke, Menegatti, Kocks, Boltengagen et al., Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program, Nat Commun
Yamamoto, Kensler, Motohashi, The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis, Physiol Rev
Yan, Wang, Ju, Yu, Zhang et al., Structural basis for bivalent binding and inhibition of SARS-CoV-2 infection by human potent neutralizing antibodies, Cell Res
Yang, Petitjean, Koehler, Zhang, Dumitru, Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor, Nat Commun
Zhang, Davies, Forman, Oxidative stress response and Nrf2 signaling in aging, Free Radical Biol Med
Zhang, Penninger, Li, Zhong, Slutsky, a) Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target, Intensive Care Med
Zhang, Yu, Lei, Cai, Shen et al., The Nrf-2/ HO-1 signaling axis: a ray of hope in cardiovascular diseases, Cardiol Res Pract
Zhang, Zhang, Bi, He, Yang, Potential protective mechanisms of green tea polyphenol EGCG against COVID-19, Trends Food Sci Technol
Zhu, Zheng, Liu, Comparison of COVID-19 and lung cancer via reactive oxygen species signaling, Front Oncol
Zinovkin, Grebenchikov, Transcription factor Nrf2 as a potential therapeutic target for prevention of cytokine storm in COVID-19 patients, Biochem Biokhim
DOI record:
{
"DOI": "10.1007/s12192-022-01296-8",
"ISSN": [
"1355-8145"
],
"URL": "http://dx.doi.org/10.1007/s12192-022-01296-8",
"alternative-id": [
"S1355814523000779"
],
"assertion": [
{
"label": "This article is maintained by",
"name": "publisher",
"value": "Elsevier"
},
{
"label": "Article Title",
"name": "articletitle",
"value": "Transcription factor Nrf2 as a potential therapeutic target for COVID-19"
},
{
"label": "Journal Title",
"name": "journaltitle",
"value": "Cell Stress and Chaperones"
},
{
"label": "CrossRef DOI link to publisher maintained version",
"name": "articlelink",
"value": "https://doi.org/10.1007/s12192-022-01296-8"
},
{
"label": "Content Type",
"name": "content_type",
"value": "article"
},
{
"label": "Copyright",
"name": "copyright",
"value": "Copyright © 2022 THE AUTHOR(S). Published by Elsevier Inc on behalf of Cell Stress Society International"
}
],
"author": [
{
"affiliation": [],
"family": "Wang",
"given": "Yifan",
"sequence": "first"
},
{
"affiliation": [],
"family": "Ma",
"given": "Jing",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Jiang",
"given": "Yongfang",
"sequence": "additional"
}
],
"container-title": "Cell Stress and Chaperones",
"container-title-short": "Cell Stress and Chaperones",
"content-domain": {
"crossmark-restriction": true,
"domain": [
"elsevier.com",
"sciencedirect.com"
]
},
"created": {
"date-parts": [
[
2022,
11,
23
]
],
"date-time": "2022-11-23T10:18:39Z",
"timestamp": 1669198719000
},
"deposited": {
"date-parts": [
[
2024,
10,
9
]
],
"date-time": "2024-10-09T11:47:27Z",
"timestamp": 1728474447000
},
"funder": [
{
"DOI": "10.13039/501100001809",
"award": [
"81974079"
],
"doi-asserted-by": "publisher",
"id": [
{
"asserted-by": "publisher",
"id": "10.13039/501100001809",
"id-type": "DOI"
}
],
"name": "National Natural Science Foundation of China"
}
],
"indexed": {
"date-parts": [
[
2025,
3,
19
]
],
"date-time": "2025-03-19T16:59:42Z",
"timestamp": 1742403582839,
"version": "3.37.3"
},
"is-referenced-by-count": 11,
"issue": "1",
"issued": {
"date-parts": [
[
2023,
1
]
]
},
"journal-issue": {
"issue": "1",
"published-print": {
"date-parts": [
[
2023,
1
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://www.elsevier.com/tdm/userlicense/1.0/",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2023,
1,
1
]
],
"date-time": "2023-01-01T00:00:00Z",
"timestamp": 1672531200000
}
},
{
"URL": "https://www.elsevier.com/legal/tdmrep-license",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2023,
1,
1
]
],
"date-time": "2023-01-01T00:00:00Z",
"timestamp": 1672531200000
}
},
{
"URL": "http://creativecommons.org/licenses/by-nc-nd/4.0/",
"content-version": "vor",
"delay-in-days": 326,
"start": {
"date-parts": [
[
2023,
11,
23
]
],
"date-time": "2023-11-23T00:00:00Z",
"timestamp": 1700697600000
}
}
],
"link": [
{
"URL": "https://link.springer.com/content/pdf/10.1007/s12192-022-01296-8.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://link.springer.com/article/10.1007/s12192-022-01296-8/fulltext.html",
"content-type": "text/html",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://api.elsevier.com/content/article/PII:S1355814523000779?httpAccept=text/xml",
"content-type": "text/xml",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://api.elsevier.com/content/article/PII:S1355814523000779?httpAccept=text/plain",
"content-type": "text/plain",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://link.springer.com/content/pdf/10.1007/s12192-022-01296-8.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "78",
"original-title": [],
"page": "11-20",
"prefix": "10.1016",
"published": {
"date-parts": [
[
2023,
1
]
]
},
"published-print": {
"date-parts": [
[
2023,
1
]
]
},
"publisher": "Elsevier BV",
"reference": [
{
"DOI": "10.1124/dmd.120.000010",
"article-title": "Nrf2 antioxidative system is involved in cytochrome P450 gene expression and activity: a delay in pentobarbital metabolism in Nrf2-deficient mice",
"author": "Ashino",
"doi-asserted-by": "crossref",
"first-page": "673",
"issue": "8",
"journal-title": "Drug Metab Dispos",
"key": "10.1007/s12192-022-01296-8_bb0010",
"volume": "48",
"year": "2020"
},
{
"DOI": "10.1016/j.tem.2020.11.002",
"article-title": "Nrf2: the master and captain of beta cell fate",
"author": "Baumel-Alterzon",
"doi-asserted-by": "crossref",
"first-page": "7",
"issue": "1",
"journal-title": "Trends Endocrinol Metab",
"key": "10.1007/s12192-022-01296-8_bb0015",
"volume": "32",
"year": "2021"
},
{
"DOI": "10.1007/s12035-021-02344-7",
"article-title": "Divulging the intricacies of crosstalk between NF-Kb and Nrf2-Keap1 pathway in neurological complications of COVID-19",
"author": "Bhandari",
"doi-asserted-by": "crossref",
"first-page": "3347",
"issue": "7",
"journal-title": "Mol Neurobiol",
"key": "10.1007/s12192-022-01296-8_bb0020",
"volume": "58",
"year": "2021"
},
{
"DOI": "10.1016/j.trsl.2020.12.008",
"article-title": "Strategies to DAMPen COVID-19-mediated lung and systemic inflammation and vascular injury",
"author": "Bime",
"doi-asserted-by": "crossref",
"first-page": "37",
"journal-title": "Transl Res",
"key": "10.1007/s12192-022-01296-8_bb0025",
"volume": "232",
"year": "2021"
},
{
"DOI": "10.1186/s13601-020-00362-7",
"article-title": "Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies",
"author": "Bousquet",
"doi-asserted-by": "crossref",
"first-page": "58",
"issue": "1",
"journal-title": "Clin Transl Allergy",
"key": "10.1007/s12192-022-01296-8_bb0030",
"volume": "10",
"year": "2020"
},
{
"DOI": "10.1016/j.radonc.2021.04.015",
"article-title": "Nrf2 activation putatively mediates clinical benefits of low-dose radiotherapy in COVID-19 pneumonia and acute respiratory distress syndrome (ARDS): novel mechanistic considerations",
"author": "Calabrese",
"doi-asserted-by": "crossref",
"first-page": "125",
"journal-title": "Radiother Oncol",
"key": "10.1007/s12192-022-01296-8_bb0035",
"volume": "160",
"year": "2021"
},
{
"DOI": "10.1016/j.mehy.2020.110102",
"article-title": "SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression",
"author": "Cecchini",
"doi-asserted-by": "crossref",
"first-page": "110102",
"journal-title": "Med Hypotheses",
"key": "10.1007/s12192-022-01296-8_bb0040",
"volume": "143",
"year": "2020"
},
{
"DOI": "10.1016/j.arr.2020.101205",
"article-title": "Aging in COVID-19: vulnerability, immunity and intervention",
"author": "Chen",
"doi-asserted-by": "crossref",
"first-page": "101205",
"journal-title": "Ageing Res Rev",
"key": "10.1007/s12192-022-01296-8_bb0045",
"volume": "65",
"year": "2021"
},
{
"DOI": "10.1134/S0006297920120068",
"article-title": "COVID-19 and oxidative stress",
"author": "Chernyak",
"doi-asserted-by": "crossref",
"first-page": "1543",
"issue": "12",
"journal-title": "Biochem Biokhim",
"key": "10.1007/s12192-022-01296-8_bb0050",
"volume": "85",
"year": "2020"
},
{
"DOI": "10.1038/s41573-018-0008-x",
"article-title": "Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases",
"author": "Cuadrado",
"doi-asserted-by": "crossref",
"first-page": "295",
"issue": "4",
"journal-title": "Nat Rev Drug Discovery",
"key": "10.1007/s12192-022-01296-8_bb0055",
"volume": "18",
"year": "2019"
},
{
"DOI": "10.1016/j.tips.2020.07.003",
"article-title": "Can activation of NRF2 be a strategy against COVID-19?",
"author": "Cuadrado",
"doi-asserted-by": "crossref",
"first-page": "598",
"issue": "9",
"journal-title": "Trends Pharmacol Sci",
"key": "10.1007/s12192-022-01296-8_bb0060",
"volume": "41",
"year": "2020"
},
{
"DOI": "10.1161/HYPERTENSIONAHA.120.15256",
"article-title": "Interaction of SARS-CoV-2 and other coronavirus with ACE (angiotensin-converting enzyme)-2 as their main receptor: therapeutic implications",
"author": "Davidson",
"doi-asserted-by": "crossref",
"first-page": "1339",
"issue": "5",
"journal-title": "Hypertension",
"key": "10.1007/s12192-022-01296-8_bb0065",
"volume": "76",
"year": "2020"
},
{
"DOI": "10.1016/j.arcmed.2020.04.019",
"article-title": "Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection",
"author": "Delgado-Roche",
"doi-asserted-by": "crossref",
"first-page": "384",
"issue": "5",
"journal-title": "Arch Med Res",
"key": "10.1007/s12192-022-01296-8_bb0070",
"volume": "51",
"year": "2020"
},
{
"DOI": "10.1016/j.biopha.2020.110678",
"article-title": "ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19",
"author": "Dong",
"doi-asserted-by": "crossref",
"first-page": "110678",
"journal-title": "Biomed Pharmacother",
"key": "10.1007/s12192-022-01296-8_bb0075",
"volume": "131",
"year": "2020"
},
{
"DOI": "10.1038/s41586-020-03151-1",
"article-title": "STING controls nociception via type I interferon signalling in sensory neurons",
"author": "Donnelly",
"doi-asserted-by": "crossref",
"first-page": "275",
"issue": "7849",
"journal-title": "Nature",
"key": "10.1007/s12192-022-01296-8_bb0080",
"volume": "591",
"year": "2021"
},
{
"DOI": "10.1016/j.ajpath.2016.11.011",
"article-title": "Modulation of antiviral immunity by heme oxygenase-1",
"author": "Espinoza",
"doi-asserted-by": "crossref",
"first-page": "487",
"issue": "3",
"journal-title": "Am J Pathol",
"key": "10.1007/s12192-022-01296-8_bb0085",
"volume": "187",
"year": "2017"
},
{
"DOI": "10.1038/oncsis.2017.65",
"article-title": "Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis",
"author": "Fan",
"doi-asserted-by": "crossref",
"first-page": "e371",
"issue": "8",
"journal-title": "Oncogenesis",
"key": "10.1007/s12192-022-01296-8_bb0090",
"volume": "6",
"year": "2017"
},
{
"DOI": "10.1155/2020/8844280",
"article-title": "SARS-CoV-2 and other respiratory viruses: what does oxidative stress have to do with it?",
"author": "Fernandes",
"doi-asserted-by": "crossref",
"first-page": "8844280",
"journal-title": "Oxid Med Cell Longev",
"key": "10.1007/s12192-022-01296-8_bb0095",
"volume": "2020",
"year": "2020"
},
{
"DOI": "10.1016/j.phymed.2021.153583",
"article-title": "Sulforaphane inhibits the expression of interleukin-6 and interleukin-8 induced in bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 spike protein",
"author": "Gasparello",
"doi-asserted-by": "crossref",
"first-page": "153583",
"journal-title": "Phytomedicine",
"key": "10.1007/s12192-022-01296-8_bb0100",
"volume": "87",
"year": "2021"
},
{
"DOI": "10.1146/annurev.pharmtox.010909.105600",
"article-title": "Mechanisms of cell protection by heme oxygenase-1",
"author": "Gozzelino",
"doi-asserted-by": "crossref",
"first-page": "323",
"journal-title": "Annu Rev Pharmacol Toxicol",
"key": "10.1007/s12192-022-01296-8_bb0105",
"volume": "50",
"year": "2010"
},
{
"DOI": "10.1002/jmv.27640",
"article-title": "Oxidative stress and decreased Nrf2 level in pediatric patients with COVID-19",
"author": "Gumus",
"doi-asserted-by": "crossref",
"first-page": "2259",
"issue": "5",
"journal-title": "J Med Virol",
"key": "10.1007/s12192-022-01296-8_bb0110",
"volume": "94",
"year": "2022"
},
{
"DOI": "10.3389/fimmu.2019.02101",
"article-title": "Nrf2 negatively regulates type I interferon responses and increases susceptibility to herpes genital infection in mice",
"author": "Gunderstofte",
"doi-asserted-by": "crossref",
"first-page": "2101",
"journal-title": "Front Immunol",
"key": "10.1007/s12192-022-01296-8_bb0115",
"volume": "10",
"year": "2019"
},
{
"DOI": "10.1017/S0950268821001291",
"article-title": "Serious complications in COVID-19 ARDS cases: pneumothorax, pneumomediastinum, subcutaneous emphysema and haemothorax",
"author": "Guven",
"doi-asserted-by": "crossref",
"first-page": "e137",
"journal-title": "Epidemiol Infect",
"key": "10.1007/s12192-022-01296-8_bb0120",
"volume": "149",
"year": "2021"
},
{
"DOI": "10.1016/j.biopha.2021.111228",
"article-title": "The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators",
"author": "Habib",
"doi-asserted-by": "crossref",
"first-page": "111228",
"journal-title": "Biomed Pharmacother",
"key": "10.1007/s12192-022-01296-8_bb0125",
"volume": "136",
"year": "2021"
},
{
"DOI": "10.5455/medarh.2020.74.134-138",
"article-title": "The Nrf2 activator (DMF) and COVID-19: is there a possible role?",
"author": "Hassan",
"doi-asserted-by": "crossref",
"first-page": "134",
"issue": "2",
"journal-title": "Medical Archives",
"key": "10.1007/s12192-022-01296-8_bb0130",
"volume": "74",
"year": "2020"
},
{
"DOI": "10.1016/j.cell.2020.02.052",
"article-title": "SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor",
"author": "Hoffmann",
"doi-asserted-by": "crossref",
"first-page": "271",
"issue": "2",
"journal-title": "Cell",
"key": "10.1007/s12192-022-01296-8_bb0135",
"volume": "181",
"year": "2020"
},
{
"DOI": "10.1007/s12192-020-01126-9",
"article-title": "COVID-19 and heme oxygenase: novel insight into the disease and potential therapies",
"author": "Hooper",
"doi-asserted-by": "crossref",
"first-page": "707",
"issue": "5",
"journal-title": "Cell Stress Chaperones",
"key": "10.1007/s12192-022-01296-8_bb0140",
"volume": "25",
"year": "2020"
},
{
"DOI": "10.1016/j.mehy.2020.109851",
"article-title": "Three novel prevention, diagnostic, and treatment options for COVID-19 urgently necessitating controlled randomized trials",
"author": "Horowitz",
"doi-asserted-by": "crossref",
"first-page": "109851",
"journal-title": "Med Hypotheses",
"key": "10.1007/s12192-022-01296-8_bb0145",
"volume": "143",
"year": "2020"
},
{
"DOI": "10.1016/j.bbrc.2021.02.016",
"article-title": "EGCG, a green tea polyphenol, inhibits human coronavirus replication in vitro",
"author": "Jang",
"doi-asserted-by": "crossref",
"first-page": "23",
"journal-title": "Biochem Biophys Res Commun",
"key": "10.1007/s12192-022-01296-8_bb0150",
"volume": "547",
"year": "2021"
},
{
"DOI": "10.7150/ijms.27005",
"article-title": "Activation of the Nrf2/HO-1 signaling pathway contributes to the protective effects of baicalein against oxidative stress-induced DNA damage and apoptosis in HEI193 Schwann cells",
"author": "Jeong",
"doi-asserted-by": "crossref",
"first-page": "145",
"issue": "1",
"journal-title": "Int J Med Sci",
"key": "10.1007/s12192-022-01296-8_bb0155",
"volume": "16",
"year": "2019"
},
{
"DOI": "10.1016/j.jhep.2020.06.006",
"article-title": "COVID-19 and the liver",
"author": "Jothimani",
"doi-asserted-by": "crossref",
"first-page": "1231",
"journal-title": "J Hepatol",
"key": "10.1007/s12192-022-01296-8_bb0160",
"volume": "73",
"year": "2020"
},
{
"DOI": "10.1016/j.freeradbiomed.2011.04.027",
"article-title": "Nrf2 expression modifies influenza A entry and replication in nasal epithelial cells",
"author": "Kesic",
"doi-asserted-by": "crossref",
"first-page": "444",
"issue": "2",
"journal-title": "Free Radical Biol Med",
"key": "10.1007/s12192-022-01296-8_bb0165",
"volume": "51",
"year": "2011"
},
{
"DOI": "10.1038/ncomms11624",
"article-title": "Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription",
"author": "Kobayashi",
"doi-asserted-by": "crossref",
"first-page": "11624",
"journal-title": "Nat Commun",
"key": "10.1007/s12192-022-01296-8_bb0170",
"volume": "7",
"year": "2016"
},
{
"DOI": "10.1155/2018/6208067",
"article-title": "Therapeutic modulation of virus-induced oxidative stress via the Nrf2-dependent antioxidative pathway",
"author": "Lee",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Oxid Med Cell Longev",
"key": "10.1007/s12192-022-01296-8_bb0175",
"volume": "2018",
"year": "2018"
},
{
"DOI": "10.1016/j.virusres.2020.198074",
"article-title": "The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "198074",
"journal-title": "Virus Res",
"key": "10.1007/s12192-022-01296-8_bb0180",
"volume": "286",
"year": "2020"
},
{
"DOI": "10.1016/j.biopha.2021.111430",
"article-title": "Flavonoids against the SARS-CoV-2 induced inflammatory storm",
"author": "Liskova",
"doi-asserted-by": "crossref",
"first-page": "111430",
"journal-title": "Biomed Pharmacother",
"key": "10.1007/s12192-022-01296-8_bb0185",
"volume": "138",
"year": "2021"
},
{
"DOI": "10.1124/dmd.120.000181",
"article-title": "Sex-, age-, and race/ethnicity-dependent variations in drug-processing and NRF2-regulated genes in human livers",
"author": "Liu",
"doi-asserted-by": "crossref",
"first-page": "111",
"issue": "1",
"journal-title": "Drug Metab Dispos",
"key": "10.1007/s12192-022-01296-8_bb0190",
"volume": "49",
"year": "2021"
},
{
"DOI": "10.1016/j.antiviral.2020.104811",
"article-title": "Antiviral activities of type I interferons to SARS-CoV-2 infection",
"author": "Mantlo",
"doi-asserted-by": "crossref",
"first-page": "104811",
"journal-title": "Antiviral Res.",
"key": "10.1007/s12192-022-01296-8_bb0195",
"volume": "179",
"year": "2020"
},
{
"DOI": "10.1093/nar/gkt243",
"article-title": "Nrf2 activation is associated with Z-DNA formation in the human HO-1 promoter",
"author": "Maruyama",
"doi-asserted-by": "crossref",
"first-page": "5223",
"issue": "10",
"journal-title": "Nucleic Acids Res",
"key": "10.1007/s12192-022-01296-8_bb0200",
"volume": "41",
"year": "2013"
},
{
"DOI": "10.1016/j.freeradbiomed.2021.05.033",
"article-title": "Nrf2 activator PB125(R) as a carnosic acid-based therapeutic agent against respiratory viral diseases, including COVID-19",
"author": "McCord",
"doi-asserted-by": "crossref",
"first-page": "56",
"journal-title": "Free Radical Biol Med",
"key": "10.1007/s12192-022-01296-8_bb0205",
"volume": "175",
"year": "2021"
},
{
"DOI": "10.1038/s41577-020-0331-4",
"article-title": "Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages",
"author": "Merad",
"doi-asserted-by": "crossref",
"first-page": "355",
"issue": "6",
"journal-title": "Nat Rev Immunol",
"key": "10.1007/s12192-022-01296-8_bb0210",
"volume": "20",
"year": "2020"
},
{
"DOI": "10.1016/j.compbiomed.2020.104137",
"article-title": "A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS-CoV-2",
"author": "Mhatre",
"doi-asserted-by": "crossref",
"first-page": "104137",
"journal-title": "Comput Biol Med",
"key": "10.1007/s12192-022-01296-8_bb0215",
"volume": "129",
"year": "2021"
},
{
"DOI": "10.3389/fcimb.2020.569709",
"article-title": "What can cellular redox, iron, and reactive oxygen species suggest about the mechanisms and potential therapy of COVID-19?",
"author": "Muhoberac",
"doi-asserted-by": "crossref",
"first-page": "569709",
"journal-title": "Front Cell Infect Microbiol",
"key": "10.1007/s12192-022-01296-8_bb0220",
"volume": "10",
"year": "2020"
},
{
"DOI": "10.1016/j.virol.2013.11.023",
"article-title": "Reactive oxygen species activate NFkappaB (p65) and p53 and induce apoptosis in RVFV infected liver cells",
"author": "Narayanan",
"doi-asserted-by": "crossref",
"first-page": "270",
"journal-title": "Virology",
"key": "10.1007/s12192-022-01296-8_bb0225",
"volume": "449",
"year": "2014"
},
{
"DOI": "10.1038/s41467-018-05861-7",
"article-title": "Nrf2 negatively regulates STING indicating a link between antiviral sensing and metabolic reprogramming",
"author": "Olagnier",
"doi-asserted-by": "crossref",
"first-page": "3506",
"issue": "1",
"journal-title": "Nat Commun",
"key": "10.1007/s12192-022-01296-8_bb0230",
"volume": "9",
"year": "2018"
},
{
"DOI": "10.1038/s41467-020-18764-3",
"article-title": "SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate",
"author": "Olagnier",
"doi-asserted-by": "crossref",
"first-page": "4938",
"issue": "1",
"journal-title": "Nat Commun",
"key": "10.1007/s12192-022-01296-8_bb0235",
"volume": "11",
"year": "2020"
},
{
"DOI": "10.1016/j.trsl.2021.03.002",
"article-title": "COVID-19 and cytokine storm syndrome: are there lessons from macrophage activation syndrome?",
"author": "Ombrello",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Transl Res",
"key": "10.1007/s12192-022-01296-8_bb0240",
"volume": "232",
"year": "2021"
},
{
"DOI": "10.1248/bpb.b21-00176",
"article-title": "Loganin inhibits lipopolysaccharide-induced inflammation and oxidative response through the activation of the Nrf2/HO-1 signaling pathway in RAW264.7 Macrophages",
"author": "Park",
"doi-asserted-by": "crossref",
"first-page": "875",
"journal-title": "Biol Pharm Bull.",
"key": "10.1007/s12192-022-01296-8_bb0245",
"volume": "44",
"year": "2021"
},
{
"DOI": "10.1590/1413-81232020259.16792020",
"article-title": "Off label, compassionate and irrational use of medicines in COVID-19 pandemic, health consequences and ethical issues",
"author": "Paumgartten",
"doi-asserted-by": "crossref",
"first-page": "3413",
"issue": "9",
"journal-title": "Ciencia & Saude Coletiva",
"key": "10.1007/s12192-022-01296-8_bb0250",
"volume": "25",
"year": "2020"
},
{
"DOI": "10.1007/s12192-022-01269-x",
"article-title": "Neutralizing the free radicals could alleviate the disease severity following an infection by positive strand RNA viruses",
"author": "Pillai",
"doi-asserted-by": "crossref",
"first-page": "189",
"issue": "3",
"journal-title": "Cell Stress Chaperones",
"key": "10.1007/s12192-022-01296-8_bb0255",
"volume": "27",
"year": "2022"
},
{
"DOI": "10.1073/pnas.94.20.10919",
"article-title": "Tonegawa S (1997) Heme oxygenase 1 is required for mammalian iron reutilization",
"author": "Poss",
"doi-asserted-by": "crossref",
"first-page": "10919",
"journal-title": "Proc Natl Acad Sci USA",
"key": "10.1007/s12192-022-01296-8_bb0260",
"volume": "94",
"year": "1997"
},
{
"DOI": "10.1016/j.pdpdt.2021.102381",
"article-title": "Is haem the real target of COVID-19?",
"author": "Rapozzi",
"doi-asserted-by": "crossref",
"journal-title": "Photodiagn Photodyn Ther",
"key": "10.1007/s12192-022-01296-8_bb0265",
"volume": "35",
"year": "2021"
},
{
"DOI": "10.1371/journal.ppat.1008737",
"article-title": "Interplay between SARS-CoV-2 and the type I interferon response",
"author": "Ribero",
"doi-asserted-by": "crossref",
"first-page": "e1008737",
"issue": "7",
"journal-title": "PLos Pathog",
"key": "10.1007/s12192-022-01296-8_bb0270",
"volume": "16",
"year": "2020"
},
{
"DOI": "10.1155/2019/9372182",
"article-title": "Activators and inhibitors of NRF2: a review of their potential for clinical development",
"author": "Robledinos-Anton",
"doi-asserted-by": "crossref",
"first-page": "9372182",
"journal-title": "Oxid Med Cell Longev",
"key": "10.1007/s12192-022-01296-8_bb0275",
"volume": "2019",
"year": "2019"
},
{
"DOI": "10.1007/s00018-020-03671-z",
"article-title": "Viral pathogen-induced mechanisms to antagonize mammalian interferon (IFN) signaling pathway",
"author": "Rojas",
"doi-asserted-by": "crossref",
"first-page": "1423",
"issue": "4",
"journal-title": "Cell Mol Life Sci",
"key": "10.1007/s12192-022-01296-8_bb0280",
"volume": "78",
"year": "2021"
},
{
"DOI": "10.1016/j.cbi.2020.109211",
"article-title": "Roles of flavonoids against coronavirus infection",
"author": "Russo",
"doi-asserted-by": "crossref",
"first-page": "109211",
"journal-title": "Chem Biol Interact",
"key": "10.1007/s12192-022-01296-8_bb0285",
"volume": "328",
"year": "2020"
},
{
"DOI": "10.1016/j.celrep.2016.07.075",
"article-title": "Nrf2 induces IL-17D to mediate tumor and virus surveillance",
"author": "Saddawi-Konefka",
"doi-asserted-by": "crossref",
"first-page": "2348",
"issue": "9",
"journal-title": "Cell Rep",
"key": "10.1007/s12192-022-01296-8_bb0290",
"volume": "16",
"year": "2016"
},
{
"DOI": "10.1007/s12015-020-10094-7",
"article-title": "Dimethyl fumarate can enhance the potential therapeutic effects of epidermal neural crest stem cells in COVID-19 patients",
"author": "Safari",
"doi-asserted-by": "crossref",
"first-page": "300",
"issue": "1",
"journal-title": "Stem Cell Rev Rep",
"key": "10.1007/s12192-022-01296-8_bb0295",
"volume": "17",
"year": "2021"
},
{
"DOI": "10.1016/j.ajem.2020.04.052",
"article-title": "Cardiac injury is associated with mortality and critically ill pneumonia in COVID-19: a meta-analysis",
"author": "Santoso",
"doi-asserted-by": "crossref",
"first-page": "352",
"journal-title": "Am J Emerg Med",
"key": "10.1007/s12192-022-01296-8_bb0300",
"volume": "44",
"year": "2021"
},
{
"DOI": "10.1155/2021/2706789",
"article-title": "A review on expression, pathological roles, and inhibition of TMPRSS2, the serine protease responsible for SARS-CoV-2 spike protein activation",
"author": "Sarker",
"doi-asserted-by": "crossref",
"first-page": "2706789",
"journal-title": "Scientifica",
"key": "10.1007/s12192-022-01296-8_bb0305",
"volume": "2021",
"year": "2021"
},
{
"DOI": "10.1371/journal.pone.0240478",
"article-title": "Kahweol activates the Nrf2/HO-1 pathway by decreasing Keap1 expression independently of p62 and autophagy pathways",
"author": "Seo",
"doi-asserted-by": "crossref",
"first-page": "e0240478",
"issue": "10",
"journal-title": "PLoS ONE",
"key": "10.1007/s12192-022-01296-8_bb0310",
"volume": "15",
"year": "2020"
},
{
"DOI": "10.3389/fimmu.2021.653110",
"article-title": "Endothelial immunity trained by coronavirus infections, DAMP stimulations and regulated by anti-oxidant NRF2 may contribute to inflammations, myelopoiesis, COVID-19 cytokine storms and thromboembolism",
"author": "Shao",
"doi-asserted-by": "crossref",
"first-page": "653110",
"journal-title": "Front Immunol",
"key": "10.1007/s12192-022-01296-8_bb0315",
"volume": "12",
"year": "2021"
},
{
"DOI": "10.1038/s41580-020-0230-3",
"article-title": "Reactive oxygen species (ROS) as pleiotropic physiological signalling agents",
"author": "Sies",
"doi-asserted-by": "crossref",
"first-page": "363",
"issue": "7",
"journal-title": "Nat Rev Mol Cell Biol",
"key": "10.1007/s12192-022-01296-8_bb0320",
"volume": "21",
"year": "2020"
},
{
"DOI": "10.1016/j.freeradbiomed.2020.10.016",
"article-title": "Heme oxygenase-1 modulation: a potential therapeutic target for COVID-19 and associated complications",
"author": "Singh",
"doi-asserted-by": "crossref",
"first-page": "263",
"journal-title": "Free Radical Biol Med",
"key": "10.1007/s12192-022-01296-8_bb0325",
"volume": "161",
"year": "2020"
},
{
"DOI": "10.1016/j.micpath.2020.104621",
"article-title": "ACE2 and TMPRSS2 polymorphisms in various diseases with special reference to its impact on COVID-19 disease",
"author": "Singh",
"doi-asserted-by": "crossref",
"first-page": "104621",
"journal-title": "Microb Pathog",
"key": "10.1007/s12192-022-01296-8_bb0330",
"volume": "150",
"year": "2021"
},
{
"DOI": "10.1007/s10930-020-09935-8",
"article-title": "Role of oxidative stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) infection: a review",
"author": "Suhail",
"doi-asserted-by": "crossref",
"first-page": "644",
"issue": "6",
"journal-title": "Protein J",
"key": "10.1007/s12192-022-01296-8_bb0335",
"volume": "39",
"year": "2020"
},
{
"DOI": "10.3748/wjg.v20.i36.13079",
"article-title": "Role of Nrf2 in chronic liver disease",
"author": "Tang",
"doi-asserted-by": "crossref",
"first-page": "13079",
"issue": "36",
"journal-title": "World J Gastroenterol",
"key": "10.1007/s12192-022-01296-8_bb0340",
"volume": "20",
"year": "2014"
},
{
"DOI": "10.1038/s41598-021-91231-1",
"article-title": "Endothelial glycocalyx shields the interaction of SARS-CoV-2 spike protein with ACE2 receptors",
"author": "Targosz-Korecka",
"doi-asserted-by": "crossref",
"first-page": "12157",
"issue": "1",
"journal-title": "Sci Rep",
"key": "10.1007/s12192-022-01296-8_bb0345",
"volume": "11",
"year": "2021"
},
{
"article-title": "Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2",
"author": "Thoms",
"first-page": "1249",
"journal-title": "Coronavirus.",
"key": "10.1007/s12192-022-01296-8_bb0350",
"volume": "369",
"year": "2020"
},
{
"DOI": "10.1016/j.phrs.2020.104760",
"article-title": "Obesity and NRF2-mediated cytoprotection: where is the missing link?",
"author": "Vasileva",
"doi-asserted-by": "crossref",
"first-page": "104760",
"journal-title": "Pharmacol Res",
"key": "10.1007/s12192-022-01296-8_bb0355",
"volume": "156",
"year": "2020"
},
{
"DOI": "10.1001/jama.2020.1585",
"article-title": "Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China",
"author": "Wang",
"doi-asserted-by": "crossref",
"first-page": "1061",
"issue": "11",
"journal-title": "Jama",
"key": "10.1007/s12192-022-01296-8_bb0360",
"volume": "323",
"year": "2020"
},
{
"DOI": "10.3389/fphar.2022.791922",
"article-title": "The role of cytochrome P450 enzymes in COVID-19 pathogenesis and therapy",
"author": "Wang",
"doi-asserted-by": "crossref",
"first-page": "791922",
"journal-title": "Front Pharmacol",
"key": "10.1007/s12192-022-01296-8_bb0365",
"volume": "13",
"year": "2022"
},
{
"DOI": "10.3389/fphar.2012.00047",
"article-title": "Go green: the anti-inflammatory effects of biliverdin reductase",
"author": "Wegiel",
"doi-asserted-by": "crossref",
"first-page": "47",
"journal-title": "Front Pharmacol",
"key": "10.1007/s12192-022-01296-8_bb0370",
"volume": "3",
"year": "2012"
},
{
"DOI": "10.1074/jbc.M111.325803",
"article-title": "Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus",
"author": "Wu",
"doi-asserted-by": "crossref",
"first-page": "8904",
"journal-title": "Biol Chem",
"key": "10.1007/s12192-022-01296-8_bb0375",
"volume": "287",
"year": "2012"
},
{
"DOI": "10.3389/fphar.2019.00825",
"article-title": "Heme catabolic pathway in inflammation and immune disorders",
"author": "Wu",
"doi-asserted-by": "crossref",
"first-page": "825",
"journal-title": "Front Pharmacol",
"key": "10.1007/s12192-022-01296-8_bb0380",
"volume": "10",
"year": "2019"
},
{
"DOI": "10.1002/cam4.2101",
"article-title": "Nrf2 in cancers: a double-edged sword",
"author": "Wu",
"doi-asserted-by": "crossref",
"first-page": "2252",
"issue": "5",
"journal-title": "Cancer Med",
"key": "10.1007/s12192-022-01296-8_bb0385",
"volume": "8",
"year": "2019"
},
{
"DOI": "10.1038/s41467-019-12894-z",
"article-title": "Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program",
"author": "Wyler",
"doi-asserted-by": "crossref",
"first-page": "4878",
"issue": "1",
"journal-title": "Nat Commun",
"key": "10.1007/s12192-022-01296-8_bb0390",
"volume": "10",
"year": "2019"
},
{
"DOI": "10.1152/physrev.00023.2017",
"article-title": "The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis",
"author": "Yamamoto",
"doi-asserted-by": "crossref",
"first-page": "1169",
"issue": "3",
"journal-title": "Physiol Rev",
"key": "10.1007/s12192-022-01296-8_bb0395",
"volume": "98",
"year": "2018"
},
{
"DOI": "10.1038/s41422-021-00487-9",
"article-title": "Structural basis for bivalent binding and inhibition of SARS-CoV-2 infection by human potent neutralizing antibodies",
"author": "Yan",
"doi-asserted-by": "crossref",
"first-page": "517",
"issue": "5",
"journal-title": "Cell Res",
"key": "10.1007/s12192-022-01296-8_bb0400",
"volume": "31",
"year": "2021"
},
{
"DOI": "10.1038/s41467-020-18319-6",
"article-title": "Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor",
"author": "Yang",
"doi-asserted-by": "crossref",
"first-page": "4541",
"issue": "1",
"journal-title": "Nat Commun",
"key": "10.1007/s12192-022-01296-8_bb0405",
"volume": "11",
"year": "2020"
},
{
"DOI": "10.1016/j.freeradbiomed.2015.05.036",
"article-title": "Oxidative stress response and Nrf2 signaling in aging",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "314",
"issue": "Pt B",
"journal-title": "Free Radical Biol Med",
"key": "10.1007/s12192-022-01296-8_bb0410",
"volume": "88",
"year": "2015"
},
{
"DOI": "10.1007/s00134-020-05985-9",
"article-title": "Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "586",
"issue": "4",
"journal-title": "Intensive Care Med",
"key": "10.1007/s12192-022-01296-8_bb0415",
"volume": "46",
"year": "2020"
},
{
"DOI": "10.1155/2020/5695723",
"article-title": "The Nrf-2/HO-1 signaling axis: a ray of hope in cardiovascular diseases",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "5695723",
"journal-title": "Cardiol Res Pract",
"key": "10.1007/s12192-022-01296-8_bb0420",
"volume": "2020",
"year": "2020"
},
{
"DOI": "10.1016/j.tifs.2021.05.023",
"article-title": "Potential protective mechanisms of green tea polyphenol EGCG against COVID-19",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "11",
"journal-title": "Trends Food Sci Technol",
"key": "10.1007/s12192-022-01296-8_bb0425",
"volume": "114",
"year": "2021"
},
{
"DOI": "10.3389/fonc.2021.708263",
"article-title": "Comparison of COVID-19 and lung cancer via reactive oxygen species signaling",
"author": "Zhu",
"doi-asserted-by": "crossref",
"first-page": "708263",
"journal-title": "Front Oncol",
"key": "10.1007/s12192-022-01296-8_bb0430",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.1134/S0006297920070111",
"article-title": "Transcription factor Nrf2 as a potential therapeutic target for prevention of cytokine storm in COVID-19 patients",
"author": "Zinovkin",
"doi-asserted-by": "crossref",
"first-page": "833",
"issue": "7",
"journal-title": "Biochem Biokhim",
"key": "10.1007/s12192-022-01296-8_bb0435",
"volume": "85",
"year": "2020"
},
{
"DOI": "10.1111/ijcp.13746",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0440",
"unstructured": "Kamal M, Abo Omirah M, Hussein A, Saeed H (2020) Assessment and characterisation of post‐COVID‐19 manifestations. Int J Clin Pract 75(3)"
},
{
"DOI": "10.31744/einstein_journal/2020RW5909",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0445",
"unstructured": "Almeida JFMd, Chehter EZ (2020) COVID-19 and the gastrointestinal tract: what do we already know?"
},
{
"DOI": "10.3390/antiox10091491",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0450",
"unstructured": "Herengt A, Thyrsted J, Holm CK (2021) NRF2 in viral infection. Antioxidants 10(9)"
},
{
"DOI": "10.3390/v10080392",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0455",
"unstructured": "Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV (2018) Redox biology of respiratory viral infections. Viruses 10(8)"
},
{
"DOI": "10.1128/JVI.00127-20",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0460",
"unstructured": "Wan Y, Shang J, Graham R, Baric RS, Li F (2020) Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 94(7)"
},
{
"DOI": "10.3390/antiox9080659",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0465",
"unstructured": "Mendonca P, Soliman KFA (2020) Flavonoids activation of the transcription factor Nrf2 as a hypothesis approach for the prevention and modulation of SARS-CoV-2 infection severity. Antioxidants 9(8)"
},
{
"DOI": "10.3390/ijms21114084",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0470",
"unstructured": "Checconi P, De Angelis M, Marcocci ME, Fraternale A, Magnani M, Palamara AT, et al (2020) Redox-modulating agents in the treatment of viral infections. Int J Mol Sci 21(11)"
},
{
"DOI": "10.3390/antiox9060518",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0475",
"unstructured": "McCord JM, Hybertson BM, Cota-Gomez A, Geraci KP, Gao B (2020) Nrf2 activator PB125((R)) as a potential therapeutic agent against COVID-19. Antioxidants 9(6)"
},
{
"DOI": "10.1128/MCB.00099-20",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0480",
"unstructured": "Baird L, Yamamoto M (2020) The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol 40(13)"
},
{
"DOI": "10.3390/antiox9111082",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0485",
"unstructured": "Thanas C, Ziros PG, Chartoumpekis DV, Renaud CO, Sykiotis GP (2020) The Keap1/Nrf2 signaling pathway in the thyroid-2020 update. Antioxidants 9(11)"
},
{
"DOI": "10.3390/antiox9111151",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0490",
"unstructured": "Jaganjac M, Milkovic L, Sunjic SB, Zarkovic N (2020) The NRF2, thioredoxin, and glutathione system in tumorigenesis and anticancer therapies. Antioxidants 9(11)"
},
{
"DOI": "10.1073/pnas.90.20.9285",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0495",
"unstructured": "Balla J, Jacob HS, Balla G, Nath K, Eaton JW et al (1993) Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage. 90"
},
{
"DOI": "10.3390/md18120628",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0500",
"unstructured": "Jayawardena TU, Sanjeewa KKA, Lee HG, Nagahawatta DP, Yang HW, Kang MC et al (2020) Particulate matter-induced inflammation/oxidative stress in macrophages: fucosterol from Padina boryana as a potent protector, activated via NF-kappaB/MAPK pathways and Nrf2/HO-1 involvement. Marine Drugs 18(12)"
},
{
"DOI": "10.3390/ijms22115995",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0505",
"unstructured": "Davuljigari CB, Ekuban FA, Zong C, Fergany AAM, Morikawa K, Ichihara G (2021) Nrf2 activation attenuates acrylamide-induced neuropathy in mice. Int J Mol Sci 22(11)"
},
{
"DOI": "10.3390/molecules25225474",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0510",
"unstructured": "Saha S, Buttari B, Panieri E, Profumo E, Saso L (2020) An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 25(22)"
},
{
"DOI": "10.1016/j.cell.2020.11.025",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0515",
"unstructured": "Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, et al (2021) Synergism of TNF-alpha and IFN-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 184(1):149–68 e17"
},
{
"DOI": "10.3390/antiox9121205",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0520",
"unstructured": "Costa DL, Amaral EP, Andrade BB, Sher A (2020) Modulation of inflammation and immune responses by heme oxygenase-1: implications for infection with intracellular pathogens. Antioxidants 9(12)"
},
{
"DOI": "10.1038/nm1001",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0525",
"unstructured": "Haagmans BL, Kuiken T, Martina BE et al (2004) Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques"
},
{
"DOI": "10.1128/JVI.01410-20",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0530",
"unstructured": "Lokugamage KG, Hage A, de Vries M, Valero-Jimenez AM, Schindewolf C, Dittmann M et al (2020) Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV. J Virol 94(23)"
},
{
"key": "10.1007/s12192-022-01296-8_bb0535",
"unstructured": "Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y et al (2020) Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370(6515)"
},
{
"DOI": "10.1007/s10787-021-00860-5",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0540",
"unstructured": "Singh E, Matada GSP, Abbas N, Dhiwar PS, Ghara A, Das A (2021b) Management of COVID-19-induced cytokine storm by Keap1-Nrf2 system: a review. Inflammopharmacology"
},
{
"DOI": "10.3390/v13040712",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0545",
"unstructured": "Chen WC, Wei CK, Hossen M, Hsu YC, Lee JC (2021) (E)-Guggulsterone inhibits dengue virus replication by upregulating antiviral interferon responses through the induction of heme oxygenase-1 expression. Viruses 13(4)"
},
{
"DOI": "10.3390/ijms22169035",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0550",
"unstructured": "Lechuga GC, Souza-Silva F, Sacramento CQ, Trugilho MRO, Valente RH, Napoleao-Pego P et al (2021) SARS-CoV-2 proteins bind to hemoglobin and its metabolites. Int J Mol Sci 22(16)"
},
{
"DOI": "10.3390/antiox8050119",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0555",
"unstructured": "Hybertson BM, Gao B, Bose S, McCord JM (2019) Phytochemical combination PB125 activates the Nrf2 pathway and induces cellular protection against oxidative injury. Antioxidants 8(5)"
},
{
"DOI": "10.3390/ph14010015",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0560",
"unstructured": "Timpani CA, Rybalka E (2020) Calming the (cytokine) storm: dimethyl fumarate as a therapeutic candidate for COVID-19. Pharmaceuticals 14(1)"
},
{
"DOI": "10.3390/molecules25225243",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0565",
"unstructured": "Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG et al (2020) Important flavonoids and their role as a therapeutic agent. Molecules 25(22)"
},
{
"DOI": "10.3390/molecules25112707",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0570",
"unstructured": "Ngwa W, Kumar R, Thompson D, Lyerly W, Moore R, Reid TE et al (2020) Potential of flavonoid-inspired phytomedicines against COVID-19. Molecules 25(11)"
},
{
"DOI": "10.1038/s42003-022-03189-z",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0575",
"unstructured": "Ordonez AA, Bullen CK, Villabona-Rueda AF, Thompson EA, Turner ML, Merino VF, et al (2022) Sulforaphane exhibits antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses in vitro and in mice. Commun Biol 5(1)"
},
{
"DOI": "10.1016/j.jnutbio.2015.08.001",
"doi-asserted-by": "crossref",
"key": "10.1007/s12192-022-01296-8_bb0580",
"unstructured": "Huang Y, Li W, Su Z-y, Kong A-NT (2015) The complexity of the Nrf2 pathway: beyond the antioxidant response. J Nutr Biochem 26(12):1401–13"
}
],
"reference-count": 115,
"references-count": 115,
"relation": {},
"resource": {
"primary": {
"URL": "https://linkinghub.elsevier.com/retrieve/pii/S1355814523000779"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Transcription factor Nrf2 as a potential therapeutic target for COVID-19",
"type": "journal-article",
"update-policy": "https://doi.org/10.1016/elsevier_cm_policy",
"volume": "28"
}