Luteolin-Rich Extract from Harrisonia perforata (Blanco) Merr. Root Alleviates SARS-CoV-2 Spike Protein-Stimulated Lung Inflammation via Inhibition of MAPK/NLRP3 Inflammasome Signaling Pathways
Warathit Semmarath, Punnida Arjsri, Kamonwan Srisawad, Sonthaya Umsumarng, Pornngarm Dejkriengkraikul
Life, doi:10.3390/life15071077
The COVID-19-related long-standing effect or Post-Acute Sequelae of COVID-19 (PASC) is often associated with NLRP3 inflammasome activation in pulmonary inflammation elicited by SARS-CoV-2 spike proteins. Spike proteins engage toll-like receptors (TLRs) in respiratory epithelial cells, leading to excessive cytokine production. Given the need for effective therapeutic strategies to mitigate spike protein-stimulated lung inflammation, we examined the anti-inflammatory properties of luteolin and ethanolic extract from Harrisonia perforata (Blanco) Merr. root. The ethanolic extract of H. perforata root (HPEE) contained a high concentration of luteolin flavonoid (143.53 ± 1.58 mg/g extract). Both HPEE (25-100 µg/mL) and luteolin (4.5-36 µM) significantly inhibited inflammation stimulated by the Wuhan (W) and Omicron (O) spike protein S1, as evidenced by a dose-dependent significant decrease in IL-6, IL-1β, and IL-18 secretion in A549 lung epithelial cells (p < 0.05). Furthermore, pretreatment with HPEE or luteolin prior to spike protein exposure (100 ng/mL) significantly, in a dose-dependent manner, repressed the inflammatory mRNA expression (p < 0.05). Mechanistic study revealed that HPEE and luteolin suppressed NLRP3 inflammasome signaling activation by reducing their machinery protein expressions. Additionally, they inhibited the ERK/JNK/p38 MAPK signaling activation, resulting in decreased inflammatory mRNA expression and cytokine release. These findings suggest that H. perforata root extract and its major flavonoid luteolin exert potent anti-inflammatory effects and may offer therapeutic potential against spike protein-induced lung inflammation.
Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.
References
Al-Khayri, Sahana, Nagella, Joseph, Alessa et al., Flavonoids as Potential Anti-Inflammatory Molecules: A Review, Molecules,
doi:10.3390/molecules27092901
Al-Qahtani, Pantazi, Alhamlan, Alothaid, Matou-Nasri et al., SARS-CoV-2 modulates inflammatory responses of alveolar epithelial type II cells via PI3K/AKT pathway, Front. Immunol,
doi:10.3389/fimmu.2022.1020624
Arish, Qian, Narasimhan, Sun, COVID-19 immunopathology: From acute diseases to chronic sequelae, J. Med. Virol,
doi:10.1002/jmv.28122
Aziz, Kim, Cho, Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies, J. Ethnopharmacol,
doi:10.1016/j.jep.2018.05.019
Azkur, Akdis, Azkur, Sokolowska, Van De Veen et al., Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19, Allergy,
doi:10.1111/all.14364
Barilli, Visigalli, Ferrari, Bianchi, Dall'asta et al., Immune-mediated inflammatory responses of alveolar epithelial cells: Implications for COVID-19 lung pathology, Biomedicines
Bchetnia, Girard, Duchaine, Laprise, The outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): A review of the current global status, J. Infect. Public Health,
doi:10.1016/j.jiph.2020.07.011
Blevins, Xu, Biby, Zhang, The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases, Front. Aging Neurosci,
doi:10.3389/fnagi.2022.879021
Bourgonje, Abdulle, Timens, Hillebrands, Navis et al., Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19), J. Pathol,
doi:10.1002/path.5471
Cauchemez, Cossu, Delzenne, Elinav, Fassin et al., Standing the test of COVID-19: Charting the new frontiers of medicine, Front. Sci,
doi:10.3389/fsci.2024.1236919
Chavda, Vuppu, Mishra, Kamaraj, Patel et al., Recent review of COVID-19 management: Diagnosis, treatment and vaccination, Pharmacol. Rep,
doi:10.1007/s43440-022-00425-5
Cheenpracha, Chokchaisiri, Ganranoo, Maneerat, Rujanapun et al., Isoprenylated chromones from the stems of Harrisonia perforata, Phytochem. Lett,
doi:10.1016/j.phytol.2022.04.003
Chen, Peng, Tsai, Hsu, Luteolin suppresses inflammation-associated gene expression by blocking NF-kappaB and AP-1 activation pathway in mouse alveolar macrophages, Life Sci,
doi:10.1016/j.lfs.2007.09.028
Choi, Jin, Choi, Choi, Kim, Effects of luteolin on the release of nitric oxide and interleukin-6 by macrophages stimulated with lipopolysaccharide from Prevotella intermedia, J. Periodontol,
doi:10.1902/jop.2011.100759
Choodej, Sommit, Pudhom, Rearranged limonoids and chromones from Harrisonia perforata and their anti-inflammatory activity, Bioorg Med. Chem. Lett,
doi:10.1016/j.bmcl.2013.04.064
Chou, Herman, Ahmed, Anderson, Selph et al., Long COVID Definitions and Models of Care: A Scoping Review, Ann. Intern. Med,
doi:10.7326/M24-0677
Dissook, Umsumarng, Mapoung, Semmarath, Arjsri et al., Luteolin-rich fraction from Perilla frutescens seed meal inhibits spike glycoprotein S1 of SARS-CoV-2-induced NLRP3 inflammasome lung cell inflammation via regulation of JAK1/STAT3 pathway: A potential anti-inflammatory compound against inflammation-induced long-COVID, Front. Med,
doi:10.3389/fmed.2022.1072056
Forsyth, Zhang, Bhushan, Swanson, Zhang et al., The SARS-CoV-2 S1 Spike Protein Promotes MAPK and NF-kB Activation in Human Lung Cells and Inflammatory Cytokine Production in Human Lung and Intestinal Epithelial Cells, Microorganisms,
doi:10.3390/microorganisms10101996
Gkogkou, Barnasas, Vougas, Trougakos, Expression profiling meta-analysis of ACE2 and TMPRSS2, the putative anti-inflammatory receptor and priming protease of SARS-CoV-2 in human cells, and identification of putative modulators, Redox Biol,
doi:10.1016/j.redox.2020.101615
Hossain, Akter, Rashid, Khair, Alam, Unique mutations in SARS-CoV-2 Omicron subvariants' non-spike proteins: Potential impacts on viral pathogenesis and host immune evasion, Microb. Pathog,
doi:10.1016/j.micpath.2022.105699
Isazadeh, Heris, Shahabi, Mohammadinasab, Shomali et al., Pattern-recognition receptors (PRRs) in SARS-CoV-2, Life Sci,
doi:10.1016/j.lfs.2023.121940
Juckmeta, Itharat, Anti-inflammatory and antioxidant activities of thai traditional remedy called "ya-ha-rak, J. Health Res
Juckmeta, Pipatrattanaseree, Jaidee, Dechayont, Chunthorng-Orn et al., Cytotoxicity to five cancer cell lines of the respiratory tract system and anti-inflammatory activity of Thai traditional remedy, Nat. Prod. Commun,
doi:10.1177/1934578X19845815
Juckmeta, Thongdeeying, Itharat, Inhibitory Effect on β-Hexosaminidase Release from RBL-2H3 Cells of Extracts and Some Pure Constituents of Benchalokawichian, a Thai Herbal Remedy, Used for Allergic Disorders, Evid. Based Complement. Altern. Med,
doi:10.1155/2014/828760
Kaewkumpai, Tharavanij, Itharat, Study on stability testing of the ethanolic extract of Benjakul remedy on antioxidant activities and total phenolic content, Thammasat Med. J
Kao, Huang, Inbaraj, Chen, Determination of flavonoids and saponins in Gynostemma pentaphyllum (Thunb.) Makino by liquid chromatography-mass spectrometry, Anal. Chim. Acta,
doi:10.1016/j.aca.2008.07.049
Karak, Biological activities of flavonoids: An overview, Int. J. Pharm. Sci. Res
Kaul, Paul, Kumar, Büsselberg, Dwivedi et al., Promising antiviral activities of natural flavonoids against SARS-CoV-2 targets: Systematic review, Int. J. Mol. Sci,
doi:10.3390/ijms222011069
Khan, Shafiei, Longoria, Schoggins, Savani et al., SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway, eLife,
doi:10.7554/eLife.68563
Khanmohammadi, Rezaei, Role of Toll-like receptors in the pathogenesis of COVID-19, J. Med. Virol,
doi:10.1002/jmv.26826
Li, Hilgenfeld, Whitley, De Clercq, Therapeutic strategies for COVID-19: Progress and lessons learned, Nat. Rev. Drug Discov,
doi:10.1038/s41573-023-00672-y
Li, Wang, Lu, Cai, Luteolin suppresses inflammation and oxidative stress in chronic obstructive pulmonary disease through inhibition of the NOX4-mediated NF-κB signaling pathway, Immun. Inflamm. Dis,
doi:10.1002/iid3.820
Li, Yeh, Yang, Kuan, Luteolin Suppresses Inflammatory Mediator Expression by Blocking the Akt/NFκB Pathway in Acute Lung Injury Induced by Lipopolysaccharide in Mice, Evid. Based Complement. Altern. Med,
doi:10.1155/2012/383608
Limtrakul, Yodkeeree, Thippraphan, Punfa, Srisomboon, Anti-aging and tyrosinase inhibition effects of Cassia fistula flower butanolic extract, BMC Complement. Altern. Med,
doi:10.1186/s12906-016-1484-3
Liu, Feng, Wang, Liu, p38MAPK inhibition attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway, Eur. J. Pharmacol,
doi:10.1016/j.ejphar.2008.02.009
Majcherek, Hegerty, Kowalski, Lewandowska, Dikova, Opportunities for healthcare digitalization in Europe: Comparative analysis of inequalities in access to medical services, Health Policy,
doi:10.1016/j.healthpol.2023.104950
Manzoor, Ahmad, Ahmed, Siddique, Zeng et al., Novel extraction techniques and pharmaceutical activities of luteolin and its derivatives, J. Food Biochem,
doi:10.1111/jfbc.12974
Michalak, Michalak, Brenk-Krakowska, Acute COVID-19 and LongCOVID syndrome-Molecular implications for therapeutic strategies-Review, Front. Immunol,
doi:10.3389/fimmu.2025.1582783
Mohapatra, Tiwari, Sarangi, Islam, Chakraborty et al., B.1.1.529) variant of SARS-CoV-2: Concerns, challenges, and recent updates, J. Med. Virol,
doi:10.1002/jmv.27633
Müller, Di Benedetto, Inflammaging, immunosenescence, and cardiovascular aging: Insights into long COVID implications, Front. Cardiovasc. Med,
doi:10.3389/fcvm.2024.1384996
Nithikathkul, Kijphati, Krates, Junto, Thessingha et al., Geographic Information Database of Herbs against COVID-19 in Thailand: The Medicinal Plants those Folk Healers Commonly Used for Treatment and Boosting People's Immunity, Int. J. Geoinformatics
Nooteboom, Flavonols, leuco-anthocyanins, cinnamic acids, and alkaloids in dried leaves of some Asiatic and Malesian Simaroubaceae, Blumea Biodivers. Evol. Biogeogr. Plants
Patel, Shamim, Umang, Pandey, Narayan, SARS-CoV-2 Alchemy: Understanding the dynamics of age, vaccination, and geography in the evolution of SARS-CoV-2 in India, PLoS Negl. Trop. Dis,
doi:10.1371/journal.pntd.0012918
Plaskova, Mlcek, New insights of the application of water or ethanol-water plant extract rich in active compounds in food, Front. Nutr,
doi:10.3389/fnut.2023.1118761
Pu, Chen, He, Ma, Cao et al., Potential beneficial effects of functional components of edible plants on COVID-19: Based on their anti-inflammatory and inhibitory effect on SARS-CoV-2, Food Innov. Adv,
doi:10.48130/FIA-2023-0006
Roy, Khan, Ahmad, Alghamdi, Rajab et al., Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications, Biomed. Res. Int,
doi:10.1155/2022/5445291
Schultheiß, Willscher, Paschold, Gottschick, Klee et al., The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19, Cell Rep. Med,
doi:10.1016/j.xcrm.2022.100663
Sen, Sen, Maheshwari, Extraction, isolation, and quantitative determination of flavonoids by HPLC
Smits, Jochems, Diverging patterns in innate immunity against respiratory viruses during a lifetime: Lessons from the young and the old, Eur. Respir. Rev,
doi:10.1183/16000617.0266-2023
Somsil, Ruangrungsi, Limpanasitikul, Itthipanichpong, In vivo and in vitro anti-inflammatory activity of Harrisonia perforata root extract, Pharmacogn. J,
doi:10.5530/pj.2012.32.8
Souza, Mesquita, Amaral, Landim, Lima et al., The spike glycoprotein of SARS-CoV-2: A review of how mutations of spike glycoproteins have driven the emergence of variants with high transmissibility and immune escape, Int. J. Biol. Macromol,
doi:10.1016/j.ijbiomac.2022.03.058
Umsumarng, Dissook, Arjsri, Srisawad, Thippraphan et al., Inhibitory Effect of Luteolin on Spike S1 Glycoprotein-Induced Inflammation in THP-1 Cells via the ER Stress-Inducing Calcium/CHOP/MAPK Pathway, Pharmaceuticals,
doi:10.3390/ph17101402
Vargas-Pozada, Ramos-Tovar, Rodriguez-Callejas, Cardoso-Lezama, Galindo-Gómez et al., Caffeine Inhibits NLRP3 Inflammasome Activation by Downregulating TLR4/MAPK/NF-κB Signaling Pathway in an Experimental NASH Model, Int. J. Mol. Sci,
doi:10.3390/ijms23179954
Vijayakumar, Ramesh, Joji, Jayachandra Prakasan, Kannan, In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2, Eur. J. Pharmacol,
doi:10.1016/j.ejphar.2020.173448
Wang, Wu, Li, Qin, Hu et al., Haperforatones A-M, thirteen undescribed limonoids from Harrisonia perforata with anti-inflammatory activity, Bioorg Chem,
doi:10.1016/j.bioorg.2024.107631
Yodkeeree, Thippraphan, Punfa, Srisomboon, Limtrakul, Skin anti-aging assays of proanthocyanidin rich red rice extract, oryzanol and other phenolic compounds, Nat. Prod. Commun,
doi:10.1177/1934578X1801300812
Zhang, Liu, Hu, Zhao, Qin et al., Luteolin Confers Cerebroprotection after Subarachnoid Hemorrhage by Suppression of NLPR3 Inflammasome Activation through Nrf2-Dependent Pathway, Oxid. Med. Cell Longev,
doi:10.1155/2021/5838101
Zhu, Wu, Lu, Jiao, Liu et al., Acute lung injury induced by recombinant SARS-CoV-2 spike protein subunit S1 in mice, Respir. Res,
doi:10.1186/s12931-025-03143-7
DOI record:
{
"DOI": "10.3390/life15071077",
"ISSN": [
"2075-1729"
],
"URL": "http://dx.doi.org/10.3390/life15071077",
"abstract": "<jats:p>The COVID-19-related long-standing effect or Post-Acute Sequelae of COVID-19 (PASC) is often associated with NLRP3 inflammasome activation in pulmonary inflammation elicited by SARS-CoV-2 spike proteins. Spike proteins engage toll-like receptors (TLRs) in respiratory epithelial cells, leading to excessive cytokine production. Given the need for effective therapeutic strategies to mitigate spike protein-stimulated lung inflammation, we examined the anti-inflammatory properties of luteolin and ethanolic extract from Harrisonia perforata (Blanco) Merr. root. The ethanolic extract of H. perforata root (HPEE) contained a high concentration of luteolin flavonoid (143.53 ± 1.58 mg/g extract). Both HPEE (25–100 μg/mL) and luteolin (4.5–36 μM) significantly inhibited inflammation stimulated by the Wuhan (W) and Omicron (O) spike protein S1, as evidenced by a dose-dependent significant decrease in IL-6, IL-1β, and IL-18 secretion in A549 lung epithelial cells (p < 0.05). Furthermore, pretreatment with HPEE or luteolin prior to spike protein exposure (100 ng/mL) significantly, in a dose-dependent manner, repressed the inflammatory mRNA expression (p < 0.05). Mechanistic study revealed that HPEE and luteolin suppressed NLRP3 inflammasome signaling activation by reducing their machinery protein expressions. Additionally, they inhibited the ERK/JNK/p38 MAPK signaling activation, resulting in decreased inflammatory mRNA expression and cytokine release. These findings suggest that H. perforata root extract and its major flavonoid luteolin exert potent anti-inflammatory effects and may offer therapeutic potential against spike protein-induced lung inflammation.</jats:p>",
"alternative-id": [
"life15071077"
],
"author": [
{
"ORCID": "https://orcid.org/0000-0001-6340-9653",
"affiliation": [
{
"name": "Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand"
},
{
"name": "Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand"
}
],
"authenticated-orcid": false,
"family": "Semmarath",
"given": "Warathit",
"sequence": "first"
},
{
"ORCID": "https://orcid.org/0000-0001-6249-4497",
"affiliation": [
{
"name": "Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand"
}
],
"authenticated-orcid": false,
"family": "Arjsri",
"given": "Punnida",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0002-0260-7215",
"affiliation": [
{
"name": "Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand"
},
{
"name": "Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand"
}
],
"authenticated-orcid": false,
"family": "Srisawad",
"given": "Kamonwan",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0002-0275-1188",
"affiliation": [
{
"name": "Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand"
}
],
"authenticated-orcid": false,
"family": "Umsumarng",
"given": "Sonthaya",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0001-8732-8911",
"affiliation": [
{
"name": "Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand"
},
{
"name": "Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand"
}
],
"authenticated-orcid": false,
"family": "Dejkriengkraikul",
"given": "Pornngarm",
"sequence": "additional"
}
],
"container-title": "Life",
"container-title-short": "Life",
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2025,
7,
7
]
],
"date-time": "2025-07-07T06:53:07Z",
"timestamp": 1751871187000
},
"deposited": {
"date-parts": [
[
2025,
7,
8
]
],
"date-time": "2025-07-08T04:27:30Z",
"timestamp": 1751948850000
},
"funder": [
{
"DOI": "10.13039/501100010731",
"award": [
"FF063/2567"
],
"doi-asserted-by": "crossref",
"id": [
{
"asserted-by": "crossref",
"id": "10.13039/501100010731",
"id-type": "DOI"
}
],
"name": "Faculty of Medicine, Chiang Mai University"
}
],
"indexed": {
"date-parts": [
[
2025,
7,
8
]
],
"date-time": "2025-07-08T04:40:03Z",
"timestamp": 1751949603869,
"version": "3.41.2"
},
"is-referenced-by-count": 0,
"issue": "7",
"issued": {
"date-parts": [
[
2025,
7,
5
]
]
},
"journal-issue": {
"issue": "7",
"published-online": {
"date-parts": [
[
2025,
7
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2025,
7,
5
]
],
"date-time": "2025-07-05T00:00:00Z",
"timestamp": 1751673600000
}
}
],
"link": [
{
"URL": "https://www.mdpi.com/2075-1729/15/7/1077/pdf",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "1968",
"original-title": [],
"page": "1077",
"prefix": "10.3390",
"published": {
"date-parts": [
[
2025,
7,
5
]
]
},
"published-online": {
"date-parts": [
[
2025,
7,
5
]
]
},
"publisher": "MDPI AG",
"reference": [
{
"DOI": "10.1007/s43440-022-00425-5",
"article-title": "Recent review of COVID-19 management: Diagnosis, treatment and vaccination",
"author": "Chavda",
"doi-asserted-by": "crossref",
"first-page": "1120",
"journal-title": "Pharmacol. Rep.",
"key": "ref_1",
"volume": "74",
"year": "2022"
},
{
"DOI": "10.1016/j.jiph.2020.07.011",
"article-title": "The outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): A review of the current global status",
"author": "Bchetnia",
"doi-asserted-by": "crossref",
"first-page": "1601",
"journal-title": "J. Infect. Public Health",
"key": "ref_2",
"volume": "13",
"year": "2020"
},
{
"DOI": "10.3389/fsci.2024.1236919",
"doi-asserted-by": "crossref",
"key": "ref_3",
"unstructured": "Cauchemez, S., Cossu, G., Delzenne, N., Elinav, E., Fassin, D., Fischer, A., Hartung, T., Kalra, D., Netea, M., and Neyts, J. (2024). Standing the test of COVID-19: Charting the new frontiers of medicine. Front. Sci., 2."
},
{
"DOI": "10.1038/s41573-023-00672-y",
"article-title": "Therapeutic strategies for COVID-19: Progress and lessons learned",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "449",
"journal-title": "Nat. Rev. Drug Discov.",
"key": "ref_4",
"volume": "22",
"year": "2023"
},
{
"DOI": "10.1371/journal.pntd.0012918",
"doi-asserted-by": "crossref",
"key": "ref_5",
"unstructured": "Patel, M., Shamim, U., Umang, U., Pandey, R., and Narayan, J. (2025). SARS-CoV-2 Alchemy: Understanding the dynamics of age, vaccination, and geography in the evolution of SARS-CoV-2 in India. PLoS Negl. Trop. Dis., 19."
},
{
"DOI": "10.1183/16000617.0266-2023",
"article-title": "Diverging patterns in innate immunity against respiratory viruses during a lifetime: Lessons from the young and the old",
"author": "Smits",
"doi-asserted-by": "crossref",
"first-page": "230266",
"journal-title": "Eur. Respir. Rev.",
"key": "ref_6",
"volume": "33",
"year": "2024"
},
{
"DOI": "10.1038/s41579-022-00846-2",
"article-title": "Long COVID: Major findings, mechanisms and recommendations",
"author": "Davis",
"doi-asserted-by": "crossref",
"first-page": "133",
"journal-title": "Nat. Rev. Microbiol.",
"key": "ref_7",
"volume": "21",
"year": "2023"
},
{
"DOI": "10.1016/j.healthpol.2023.104950",
"article-title": "Opportunities for healthcare digitalization in Europe: Comparative analysis of inequalities in access to medical services",
"author": "Majcherek",
"doi-asserted-by": "crossref",
"first-page": "104950",
"journal-title": "Health Policy",
"key": "ref_8",
"volume": "139",
"year": "2024"
},
{
"DOI": "10.1002/path.5471",
"article-title": "Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19)",
"author": "Bourgonje",
"doi-asserted-by": "crossref",
"first-page": "228",
"journal-title": "J. Pathol.",
"key": "ref_9",
"volume": "251",
"year": "2020"
},
{
"DOI": "10.1016/j.redox.2020.101615",
"doi-asserted-by": "crossref",
"key": "ref_10",
"unstructured": "Gkogkou, E., Barnasas, G., Vougas, K., and Trougakos, I.P. (2020). Expression profiling meta-analysis of ACE2 and TMPRSS2, the putative anti-inflammatory receptor and priming protease of SARS-CoV-2 in human cells, and identification of putative modulators. Redox Biol., 36."
},
{
"DOI": "10.1007/s12035-021-02696-0",
"article-title": "Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome?",
"author": "Theoharides",
"doi-asserted-by": "crossref",
"first-page": "1850",
"journal-title": "Mol. Neurobiol.",
"key": "ref_11",
"volume": "59",
"year": "2022"
},
{
"DOI": "10.1002/jmv.26826",
"article-title": "Role of Toll-like receptors in the pathogenesis of COVID-19",
"author": "Khanmohammadi",
"doi-asserted-by": "crossref",
"first-page": "2735",
"journal-title": "J. Med. Virol.",
"key": "ref_12",
"volume": "93",
"year": "2021"
},
{
"DOI": "10.1016/j.ijbiomac.2022.03.058",
"article-title": "The spike glycoprotein of SARS-CoV-2: A review of how mutations of spike glycoproteins have driven the emergence of variants with high transmissibility and immune escape",
"author": "Souza",
"doi-asserted-by": "crossref",
"first-page": "105",
"journal-title": "Int. J. Biol. Macromol.",
"key": "ref_13",
"volume": "208",
"year": "2022"
},
{
"DOI": "10.1101/cshperspect.a041390",
"article-title": "The Evolution and Biology of SARS-CoV-2 Variants",
"author": "Telenti",
"doi-asserted-by": "crossref",
"first-page": "a041390",
"journal-title": "Cold Spring Harb. Perspect. Med.",
"key": "ref_14",
"volume": "12",
"year": "2022"
},
{
"DOI": "10.1002/jmv.27633",
"article-title": "Omicron (B.1.1.529) variant of SARS-CoV-2: Concerns, challenges, and recent updates",
"author": "Mohapatra",
"doi-asserted-by": "crossref",
"first-page": "2336",
"journal-title": "J. Med. Virol.",
"key": "ref_15",
"volume": "94",
"year": "2022"
},
{
"DOI": "10.1111/all.14364",
"article-title": "Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19",
"author": "Azkur",
"doi-asserted-by": "crossref",
"first-page": "1564",
"journal-title": "Allergy",
"key": "ref_16",
"volume": "75",
"year": "2020"
},
{
"DOI": "10.1038/s41577-023-00904-7",
"article-title": "The immunology of long COVID",
"author": "Altmann",
"doi-asserted-by": "crossref",
"first-page": "618",
"journal-title": "Nat. Rev. Immunol.",
"key": "ref_17",
"volume": "23",
"year": "2023"
},
{
"DOI": "10.20944/preprints202206.0010.v1",
"doi-asserted-by": "crossref",
"key": "ref_18",
"unstructured": "Forsyth, C.B., Zhang, L., Bhushan, A., Swanson, B., Zhang, L., Mamede, J.I., Voigt, R.M., Shaikh, M., Engen, P.A., and Keshavarzian, A. (2022). The SARS-CoV-2 S1 Spike Protein Promotes MAPK and NF-kB Activation in Human Lung Cells and Inflammatory Cytokine Production in Human Lung and Intestinal Epithelial Cells. Microorganisms, 10."
},
{
"DOI": "10.48130/FIA-2023-0006",
"article-title": "Potential beneficial effects of functional components of edible plants on COVID-19: Based on their anti-inflammatory and inhibitory effect on SARS-CoV-2",
"author": "Pu",
"doi-asserted-by": "crossref",
"first-page": "44",
"journal-title": "Food Innov. Adv.",
"key": "ref_19",
"volume": "2",
"year": "2023"
},
{
"DOI": "10.3389/fmed.2022.1072056",
"doi-asserted-by": "crossref",
"key": "ref_20",
"unstructured": "Dissook, S., Umsumarng, S., Mapoung, S., Semmarath, W., Arjsri, P., Srisawad, K., and Dejkriengkraikul, P. (2022). Luteolin-rich fraction from Perilla frutescens seed meal inhibits spike glycoprotein S1 of SARS-CoV-2-induced NLRP3 inflammasome lung cell inflammation via regulation of JAK1/STAT3 pathway: A potential anti-inflammatory compound against inflammation-induced long-COVID. Front. Med., 9."
},
{
"article-title": "Flavonols, leuco-anthocyanins, cinnamic acids, and alkaloids in dried leaves of some Asiatic and Malesian Simaroubaceae",
"author": "Nooteboom",
"first-page": "309",
"journal-title": "Blumea Biodivers. Evol. Biogeogr. Plants",
"key": "ref_21",
"volume": "14",
"year": "1966"
},
{
"article-title": "Geographic Information Database of Herbs against COVID-19 in Thailand: The Medicinal Plants those Folk Healers Commonly Used for Treatment and Boosting People’s Immunity",
"author": "Nithikathkul",
"first-page": "67",
"journal-title": "Int. J. Geoinformatics",
"key": "ref_22",
"volume": "19",
"year": "2023"
},
{
"article-title": "Cytotoxicity to five cancer cell lines of the respiratory tract system and anti-inflammatory activity of Thai traditional remedy",
"author": "Juckmeta",
"first-page": "1934578X19845815",
"journal-title": "Nat. Prod. Commun.",
"key": "ref_23",
"volume": "14",
"year": "2019"
},
{
"DOI": "10.1155/2014/828760",
"article-title": "Inhibitory Effect on β-Hexosaminidase Release from RBL-2H3 Cells of Extracts and Some Pure Constituents of Benchalokawichian, a Thai Herbal Remedy, Used for Allergic Disorders",
"author": "Juckmeta",
"doi-asserted-by": "crossref",
"first-page": "828760",
"journal-title": "Evid. Based Complement. Altern. Med.",
"key": "ref_24",
"volume": "2014",
"year": "2014"
},
{
"DOI": "10.5530/pj.2012.32.8",
"article-title": "In vivo and in vitro anti-inflammatory activity of Harrisonia perforata root extract",
"author": "Somsil",
"doi-asserted-by": "crossref",
"first-page": "38",
"journal-title": "Pharmacogn. J.",
"key": "ref_25",
"volume": "4",
"year": "2012"
},
{
"article-title": "Skin anti-aging assays of proanthocyanidin rich red rice extract, oryzanol and other phenolic compounds",
"author": "Yodkeeree",
"first-page": "967",
"journal-title": "Nat. Prod. Commun.",
"key": "ref_26",
"volume": "13",
"year": "2018"
},
{
"DOI": "10.1016/j.aca.2008.07.049",
"article-title": "Determination of flavonoids and saponins in Gynostemma pentaphyllum (Thunb.) Makino by liquid chromatography–mass spectrometry",
"author": "Kao",
"doi-asserted-by": "crossref",
"first-page": "200",
"journal-title": "Anal. Chim. Acta",
"key": "ref_27",
"volume": "626",
"year": "2008"
},
{
"DOI": "10.1186/s12906-016-1484-3",
"doi-asserted-by": "crossref",
"key": "ref_28",
"unstructured": "Limtrakul, P., Yodkeeree, S., Thippraphan, P., Punfa, W., and Srisomboon, J. (2016). Anti-aging and tyrosinase inhibition effects of Cassia fistula flower butanolic extract. BMC Complement. Altern. Med., 16."
},
{
"DOI": "10.1155/2022/5445291",
"doi-asserted-by": "crossref",
"key": "ref_29",
"unstructured": "Roy, A., Khan, A., Ahmad, I., Alghamdi, S., Rajab, B.S., Babalghith, A.O., Alshahrani, M.Y., Islam, S., and Islam, M.R. (2022). Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications. Biomed. Res. Int., 2022."
},
{
"DOI": "10.7554/eLife.68563",
"article-title": "SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway",
"author": "Khan",
"doi-asserted-by": "crossref",
"first-page": "e68563",
"journal-title": "eLife",
"key": "ref_30",
"volume": "10",
"year": "2021"
},
{
"DOI": "10.1016/j.phrs.2020.105051",
"article-title": "Targeting inflammation and cytokine storm in COVID-19",
"author": "Huang",
"doi-asserted-by": "crossref",
"first-page": "105051",
"journal-title": "Pharmacol. Res.",
"key": "ref_31",
"volume": "159",
"year": "2020"
},
{
"DOI": "10.1038/s41422-021-00495-9",
"article-title": "SARS-CoV-2 spike protein interacts with and activates TLR41",
"author": "Zhao",
"doi-asserted-by": "crossref",
"first-page": "818",
"journal-title": "Cell Res.",
"key": "ref_32",
"volume": "31",
"year": "2021"
},
{
"DOI": "10.1186/s12931-025-03143-7",
"article-title": "Acute lung injury induced by recombinant SARS-CoV-2 spike protein subunit S1 in mice",
"author": "Zhu",
"doi-asserted-by": "crossref",
"first-page": "59",
"journal-title": "Respir. Res.",
"key": "ref_33",
"volume": "26",
"year": "2025"
},
{
"DOI": "10.1016/j.tibs.2016.09.002",
"article-title": "Mechanism and Regulation of NLRP3 Inflammasome Activation",
"author": "He",
"doi-asserted-by": "crossref",
"first-page": "1012",
"journal-title": "Trends Biochem. Sci.",
"key": "ref_34",
"volume": "41",
"year": "2016"
},
{
"DOI": "10.3389/fnagi.2022.879021",
"doi-asserted-by": "crossref",
"key": "ref_35",
"unstructured": "Blevins, H.M., Xu, Y., Biby, S., and Zhang, S. (2022). The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Front. Aging Neurosci., 14."
},
{
"DOI": "10.1007/s10753-021-01439-6",
"article-title": "The Signaling Pathways Regulating NLRP3 Inflammasome Activation",
"author": "Chen",
"doi-asserted-by": "crossref",
"first-page": "1229",
"journal-title": "Inflammation",
"key": "ref_36",
"volume": "44",
"year": "2021"
},
{
"DOI": "10.3390/ijms23179954",
"doi-asserted-by": "crossref",
"key": "ref_37",
"unstructured": "Vargas-Pozada, E.E., Ramos-Tovar, E., Rodriguez-Callejas, J.D., Cardoso-Lezama, I., Galindo-Gómez, S., Talamás-Lara, D., Vásquez-Garzón, V.R., Arellanes-Robledo, J., Tsutsumi, V., and Villa-Treviño, S. (2022). Caffeine Inhibits NLRP3 Inflammasome Activation by Downregulating TLR4/MAPK/NF-κB Signaling Pathway in an Experimental NASH Model. Int. J. Mol. Sci., 23."
},
{
"DOI": "10.1016/j.lfs.2023.121940",
"article-title": "Pattern-recognition receptors (PRRs) in SARS-CoV-2",
"author": "Isazadeh",
"doi-asserted-by": "crossref",
"first-page": "121940",
"journal-title": "Life Sci.",
"key": "ref_38",
"volume": "329",
"year": "2023"
},
{
"DOI": "10.1002/jmv.28122",
"article-title": "COVID-19 immunopathology: From acute diseases to chronic sequelae",
"author": "Arish",
"doi-asserted-by": "crossref",
"first-page": "e28122",
"journal-title": "J. Med. Virol.",
"key": "ref_39",
"volume": "95",
"year": "2023"
},
{
"DOI": "10.1016/j.xcrm.2022.100663",
"article-title": "The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19",
"author": "Willscher",
"doi-asserted-by": "crossref",
"first-page": "100663",
"journal-title": "Cell Rep. Med.",
"key": "ref_40",
"volume": "3",
"year": "2022"
},
{
"DOI": "10.3389/fcvm.2024.1384996",
"doi-asserted-by": "crossref",
"key": "ref_41",
"unstructured": "Müller, L., and Di Benedetto, S. (2024). Inflammaging, immunosenescence, and cardiovascular aging: Insights into long COVID implications. Front. Cardiovasc. Med., 11."
},
{
"DOI": "10.1111/jocn.16150",
"article-title": "Symptoms and management of long COVID: A scoping review",
"author": "Cha",
"doi-asserted-by": "crossref",
"first-page": "11",
"journal-title": "J. Clin. Nurs.",
"key": "ref_42",
"volume": "33",
"year": "2024"
},
{
"DOI": "10.7326/M24-0677",
"article-title": "Long COVID Definitions and Models of Care: A Scoping Review",
"author": "Chou",
"doi-asserted-by": "crossref",
"first-page": "929",
"journal-title": "Ann. Intern. Med.",
"key": "ref_43",
"volume": "177",
"year": "2024"
},
{
"DOI": "10.3389/fimmu.2025.1582783",
"doi-asserted-by": "crossref",
"key": "ref_44",
"unstructured": "Michalak, K.P., Michalak, A.Z., and Brenk-Krakowska, A. (2025). Acute COVID-19 and LongCOVID syndrome—Molecular implications for therapeutic strategies—Review. Front. Immunol., 16."
},
{
"key": "ref_45",
"unstructured": "COVID-19 Multi-omics Blood ATlas (COMBAT) Consortium (2022). A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell, 185, 916–938.e58."
},
{
"DOI": "10.3390/molecules27092901",
"doi-asserted-by": "crossref",
"key": "ref_46",
"unstructured": "Al-Khayri, J.M., Sahana, G.R., Nagella, P., Joseph, B.V., Alessa, F.M., and Al-Mssallem, M.Q. (2022). Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules, 27."
},
{
"DOI": "10.1155/2021/5838101",
"article-title": "Luteolin Confers Cerebroprotection after Subarachnoid Hemorrhage by Suppression of NLPR3 Inflammasome Activation through Nrf2-Dependent Pathway",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "5838101",
"journal-title": "Oxid. Med. Cell Longev.",
"key": "ref_47",
"volume": "2021",
"year": "2021"
},
{
"DOI": "10.3390/ph17101402",
"doi-asserted-by": "crossref",
"key": "ref_48",
"unstructured": "Umsumarng, S., Dissook, S., Arjsri, P., Srisawad, K., Thippraphan, P., Sangphukieo, A., Thongkumkoon, P., and Dejkriengkraikul, P. (2024). Inhibitory Effect of Luteolin on Spike S1 Glycoprotein-Induced Inflammation in THP-1 Cells via the ER Stress-Inducing Calcium/CHOP/MAPK Pathway. Pharmaceuticals, 17."
},
{
"article-title": "Biological activities of flavonoids: An overview",
"author": "Karak",
"first-page": "1567",
"journal-title": "Int. J. Pharm. Sci. Res.",
"key": "ref_49",
"volume": "10",
"year": "2019"
},
{
"DOI": "10.3390/ijms222011069",
"doi-asserted-by": "crossref",
"key": "ref_50",
"unstructured": "Kaul, R., Paul, P., Kumar, S., Büsselberg, D., Dwivedi, V.D., and Chaari, A. (2021). Promising antiviral activities of natural flavonoids against SARS-CoV-2 targets: Systematic review. Int. J. Mol. Sci., 22."
},
{
"DOI": "10.1016/j.ejphar.2020.173448",
"article-title": "In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2",
"author": "Vijayakumar",
"doi-asserted-by": "crossref",
"first-page": "173448",
"journal-title": "Eur. J. Pharmacol.",
"key": "ref_51",
"volume": "886",
"year": "2020"
},
{
"DOI": "10.1007/978-981-13-7248-3_21",
"doi-asserted-by": "crossref",
"key": "ref_52",
"unstructured": "Sen, A.K., Sen, D.B., and Maheshwari, R.A. (2019). Extraction, isolation, and quantitative determination of flavonoids by HPLC. Herbal Medicine in India: Indigenous Knowledge, Practice, Innovation and Its Value, Springer."
},
{
"DOI": "10.1016/j.bmcl.2013.04.064",
"article-title": "Rearranged limonoids and chromones from Harrisonia perforata and their anti-inflammatory activity",
"author": "Choodej",
"doi-asserted-by": "crossref",
"first-page": "3896",
"journal-title": "Bioorg Med. Chem. Lett.",
"key": "ref_53",
"volume": "23",
"year": "2013"
},
{
"DOI": "10.1016/j.bioorg.2024.107631",
"doi-asserted-by": "crossref",
"key": "ref_54",
"unstructured": "Wang, Q., Wu, Z., Li, C., Qin, G., Hu, X., Guo, P., Ding, A., Xu, W., Wang, W., and Xuan, L. (2024). Haperforatones A-M, thirteen undescribed limonoids from Harrisonia perforata with anti-inflammatory activity. Bioorg Chem., 151."
},
{
"DOI": "10.1016/j.phytol.2022.04.003",
"article-title": "Isoprenylated chromones from the stems of Harrisonia perforata",
"author": "Cheenpracha",
"doi-asserted-by": "crossref",
"first-page": "192",
"journal-title": "Phytochem. Lett.",
"key": "ref_55",
"volume": "49",
"year": "2022"
},
{
"DOI": "10.3389/fnut.2023.1118761",
"doi-asserted-by": "crossref",
"key": "ref_56",
"unstructured": "Plaskova, A., and Mlcek, J. (2023). New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front. Nutr., 10."
},
{
"DOI": "10.1111/jfbc.12974",
"doi-asserted-by": "crossref",
"key": "ref_57",
"unstructured": "Manzoor, M.F., Ahmad, N., Ahmed, Z., Siddique, R., Zeng, X.A., Rahaman, A., Muhammad Aadil, R., and Wahab, A. (2019). Novel extraction techniques and pharmaceutical activities of luteolin and its derivatives. J. Food Biochem., 43."
},
{
"DOI": "10.4028/www.scientific.net/KEM.762.152",
"article-title": "Stability studies of bioactive compounds from birch outer bark ethanolic extracts",
"author": "Paze",
"doi-asserted-by": "crossref",
"first-page": "152",
"journal-title": "Key Eng. Mater.",
"key": "ref_58",
"volume": "762",
"year": "2018"
},
{
"article-title": "Study on stability testing of the ethanolic extract of Benjakul remedy on antioxidant activities and total phenolic content",
"author": "Kaewkumpai",
"first-page": "600",
"journal-title": "Thammasat Med. J.",
"key": "ref_59",
"volume": "16",
"year": "2016"
},
{
"article-title": "Anti-inflammatory and antioxidant activities of thai traditional remedy called “ya-ha-rak”",
"author": "Juckmeta",
"first-page": "205",
"journal-title": "J. Health Res.",
"key": "ref_60",
"volume": "26",
"year": "2012"
},
{
"DOI": "10.1002/iid3.820",
"article-title": "Luteolin suppresses inflammation and oxidative stress in chronic obstructive pulmonary disease through inhibition of the NOX4-mediated NF-κB signaling pathway",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "e820",
"journal-title": "Immun. Inflamm. Dis.",
"key": "ref_61",
"volume": "11",
"year": "2023"
},
{
"DOI": "10.1016/j.lfs.2007.09.028",
"article-title": "Luteolin suppresses inflammation-associated gene expression by blocking NF-kappaB and AP-1 activation pathway in mouse alveolar macrophages",
"author": "Chen",
"doi-asserted-by": "crossref",
"first-page": "1602",
"journal-title": "Life Sci.",
"key": "ref_62",
"volume": "81",
"year": "2007"
},
{
"DOI": "10.1902/jop.2011.100759",
"article-title": "Effects of luteolin on the release of nitric oxide and interleukin-6 by macrophages stimulated with lipopolysaccharide from Prevotella intermedia",
"author": "Choi",
"doi-asserted-by": "crossref",
"first-page": "1509",
"journal-title": "J. Periodontol.",
"key": "ref_63",
"volume": "82",
"year": "2011"
},
{
"DOI": "10.1016/j.jep.2018.05.019",
"article-title": "Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies",
"author": "Aziz",
"doi-asserted-by": "crossref",
"first-page": "342",
"journal-title": "J. Ethnopharmacol.",
"key": "ref_64",
"volume": "225",
"year": "2018"
},
{
"DOI": "10.1155/2012/383608",
"article-title": "Luteolin Suppresses Inflammatory Mediator Expression by Blocking the Akt/NFκB Pathway in Acute Lung Injury Induced by Lipopolysaccharide in Mice",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "383608",
"journal-title": "Evid. Based Complement. Altern. Med.",
"key": "ref_65",
"volume": "2012",
"year": "2012"
},
{
"DOI": "10.1016/j.yjmcc.2020.05.007",
"article-title": "p38 MAPK inhibition: A promising therapeutic approach for COVID-19",
"author": "Grimes",
"doi-asserted-by": "crossref",
"first-page": "63",
"journal-title": "J. Mol. Cell Cardiol.",
"key": "ref_66",
"volume": "144",
"year": "2020"
},
{
"DOI": "10.3389/fimmu.2022.1020624",
"doi-asserted-by": "crossref",
"key": "ref_67",
"unstructured": "Al-Qahtani, A.A., Pantazi, I., Alhamlan, F.S., Alothaid, H., Matou-Nasri, S., Sourvinos, G., Vergadi, E., and Tsatsanis, C. (2022). SARS-CoV-2 modulates inflammatory responses of alveolar epithelial type II cells via PI3K/AKT pathway. Front. Immunol., 13."
},
{
"DOI": "10.1016/j.prp.2024.155122",
"article-title": "Targeting MAPK signaling: A promising approach for treating inflammatory lung disease",
"author": "Saleem",
"doi-asserted-by": "crossref",
"first-page": "155122",
"journal-title": "Pathol. Res. Pract.",
"key": "ref_68",
"volume": "254",
"year": "2024"
},
{
"DOI": "10.1016/j.ejphar.2008.02.009",
"article-title": "p38MAPK inhibition attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway",
"author": "Liu",
"doi-asserted-by": "crossref",
"first-page": "159",
"journal-title": "Eur. J. Pharmacol.",
"key": "ref_69",
"volume": "584",
"year": "2008"
},
{
"DOI": "10.1016/j.micpath.2022.105699",
"article-title": "Unique mutations in SARS-CoV-2 Omicron subvariants’ non-spike proteins: Potential impacts on viral pathogenesis and host immune evasion",
"author": "Hossain",
"doi-asserted-by": "crossref",
"first-page": "105699",
"journal-title": "Microb. Pathog.",
"key": "ref_70",
"volume": "170",
"year": "2022"
},
{
"DOI": "10.3390/biomedicines10030618",
"doi-asserted-by": "crossref",
"key": "ref_71",
"unstructured": "Barilli, A., Visigalli, R., Ferrari, F., Bianchi, M.G., Dall’Asta, V., and Rotoli, B.M. (2022). Immune-mediated inflammatory responses of alveolar epithelial cells: Implications for COVID-19 lung pathology. Biomedicines, 10."
}
],
"reference-count": 71,
"references-count": 71,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.mdpi.com/2075-1729/15/7/1077"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Luteolin-Rich Extract from Harrisonia perforata (Blanco) Merr. Root Alleviates SARS-CoV-2 Spike Protein-Stimulated Lung Inflammation via Inhibition of MAPK/NLRP3 Inflammasome Signaling Pathways",
"type": "journal-article",
"volume": "15"
}