Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchSelect treatment..Select..
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

 

Luteolin-Rich Extract from Harrisonia perforata (Blanco) Merr. Root Alleviates SARS-CoV-2 Spike Protein-Stimulated Lung Inflammation via Inhibition of MAPK/NLRP3 Inflammasome Signaling Pathways

Semmarath et al., Life, doi:10.3390/life15071077, Jul 2025
https://c19early.org/semmarath.html
In Vitro study showing that luteolin-rich extract from Harrisonia perforata (HPEE) root alleviates SARS-CoV-2 spike protein-stimulated lung inflammation in A549 cells.
Semmarath et al., 5 Jul 2025, peer-reviewed, 5 authors. Contact: pornngarm.d@cmu.ac.th (corresponding author), warathit.se@wu.ac.th, punnida.dream@gmail.com, kamonwan.sri@cmu.ac.th, sonthaya.u@cmu.ac.th.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
Luteolin-Rich Extract from Harrisonia perforata (Blanco) Merr. Root Alleviates SARS-CoV-2 Spike Protein-Stimulated Lung Inflammation via Inhibition of MAPK/NLRP3 Inflammasome Signaling Pathways
Warathit Semmarath, Punnida Arjsri, Kamonwan Srisawad, Sonthaya Umsumarng, Pornngarm Dejkriengkraikul
Life, doi:10.3390/life15071077
The COVID-19-related long-standing effect or Post-Acute Sequelae of COVID-19 (PASC) is often associated with NLRP3 inflammasome activation in pulmonary inflammation elicited by SARS-CoV-2 spike proteins. Spike proteins engage toll-like receptors (TLRs) in respiratory epithelial cells, leading to excessive cytokine production. Given the need for effective therapeutic strategies to mitigate spike protein-stimulated lung inflammation, we examined the anti-inflammatory properties of luteolin and ethanolic extract from Harrisonia perforata (Blanco) Merr. root. The ethanolic extract of H. perforata root (HPEE) contained a high concentration of luteolin flavonoid (143.53 ± 1.58 mg/g extract). Both HPEE (25-100 µg/mL) and luteolin (4.5-36 µM) significantly inhibited inflammation stimulated by the Wuhan (W) and Omicron (O) spike protein S1, as evidenced by a dose-dependent significant decrease in IL-6, IL-1β, and IL-18 secretion in A549 lung epithelial cells (p < 0.05). Furthermore, pretreatment with HPEE or luteolin prior to spike protein exposure (100 ng/mL) significantly, in a dose-dependent manner, repressed the inflammatory mRNA expression (p < 0.05). Mechanistic study revealed that HPEE and luteolin suppressed NLRP3 inflammasome signaling activation by reducing their machinery protein expressions. Additionally, they inhibited the ERK/JNK/p38 MAPK signaling activation, resulting in decreased inflammatory mRNA expression and cytokine release. These findings suggest that H. perforata root extract and its major flavonoid luteolin exert potent anti-inflammatory effects and may offer therapeutic potential against spike protein-induced lung inflammation.
Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.
References
Al-Khayri, Sahana, Nagella, Joseph, Alessa et al., Flavonoids as Potential Anti-Inflammatory Molecules: A Review, Molecules, doi:10.3390/molecules27092901
Al-Qahtani, Pantazi, Alhamlan, Alothaid, Matou-Nasri et al., SARS-CoV-2 modulates inflammatory responses of alveolar epithelial type II cells via PI3K/AKT pathway, Front. Immunol, doi:10.3389/fimmu.2022.1020624
Altmann, Whettlock, Liu, Arachchillage, Boyton, The immunology of long COVID, Nat. Rev. Immunol, doi:10.1038/s41577-023-00904-7
Arish, Qian, Narasimhan, Sun, COVID-19 immunopathology: From acute diseases to chronic sequelae, J. Med. Virol, doi:10.1002/jmv.28122
Aziz, Kim, Cho, Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies, J. Ethnopharmacol, doi:10.1016/j.jep.2018.05.019
Azkur, Akdis, Azkur, Sokolowska, Van De Veen et al., Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19, Allergy, doi:10.1111/all.14364
Barilli, Visigalli, Ferrari, Bianchi, Dall'asta et al., Immune-mediated inflammatory responses of alveolar epithelial cells: Implications for COVID-19 lung pathology, Biomedicines
Bchetnia, Girard, Duchaine, Laprise, The outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): A review of the current global status, J. Infect. Public Health, doi:10.1016/j.jiph.2020.07.011
Blevins, Xu, Biby, Zhang, The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases, Front. Aging Neurosci, doi:10.3389/fnagi.2022.879021
Bourgonje, Abdulle, Timens, Hillebrands, Navis et al., Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19), J. Pathol, doi:10.1002/path.5471
Cauchemez, Cossu, Delzenne, Elinav, Fassin et al., Standing the test of COVID-19: Charting the new frontiers of medicine, Front. Sci, doi:10.3389/fsci.2024.1236919
Cha, Baek, Symptoms and management of long COVID: A scoping review, J. Clin. Nurs, doi:10.1111/jocn.16150
Chavda, Vuppu, Mishra, Kamaraj, Patel et al., Recent review of COVID-19 management: Diagnosis, treatment and vaccination, Pharmacol. Rep, doi:10.1007/s43440-022-00425-5
Cheenpracha, Chokchaisiri, Ganranoo, Maneerat, Rujanapun et al., Isoprenylated chromones from the stems of Harrisonia perforata, Phytochem. Lett, doi:10.1016/j.phytol.2022.04.003
Chen, Peng, Tsai, Hsu, Luteolin suppresses inflammation-associated gene expression by blocking NF-kappaB and AP-1 activation pathway in mouse alveolar macrophages, Life Sci, doi:10.1016/j.lfs.2007.09.028
Chen, Ye, He, Ouyang, The Signaling Pathways Regulating NLRP3 Inflammasome Activation, Inflammation, doi:10.1007/s10753-021-01439-6
Choi, Jin, Choi, Choi, Kim, Effects of luteolin on the release of nitric oxide and interleukin-6 by macrophages stimulated with lipopolysaccharide from Prevotella intermedia, J. Periodontol, doi:10.1902/jop.2011.100759
Choodej, Sommit, Pudhom, Rearranged limonoids and chromones from Harrisonia perforata and their anti-inflammatory activity, Bioorg Med. Chem. Lett, doi:10.1016/j.bmcl.2013.04.064
Chou, Herman, Ahmed, Anderson, Selph et al., Long COVID Definitions and Models of Care: A Scoping Review, Ann. Intern. Med, doi:10.7326/M24-0677
Davis, Mccorkell, Vogel, Topol, Long, Major findings, mechanisms and recommendations, Nat. Rev. Microbiol, doi:10.1038/s41579-022-00846-2
Dissook, Umsumarng, Mapoung, Semmarath, Arjsri et al., Luteolin-rich fraction from Perilla frutescens seed meal inhibits spike glycoprotein S1 of SARS-CoV-2-induced NLRP3 inflammasome lung cell inflammation via regulation of JAK1/STAT3 pathway: A potential anti-inflammatory compound against inflammation-induced long-COVID, Front. Med, doi:10.3389/fmed.2022.1072056
Forsyth, Zhang, Bhushan, Swanson, Zhang et al., The SARS-CoV-2 S1 Spike Protein Promotes MAPK and NF-kB Activation in Human Lung Cells and Inflammatory Cytokine Production in Human Lung and Intestinal Epithelial Cells, Microorganisms, doi:10.3390/microorganisms10101996
Gkogkou, Barnasas, Vougas, Trougakos, Expression profiling meta-analysis of ACE2 and TMPRSS2, the putative anti-inflammatory receptor and priming protease of SARS-CoV-2 in human cells, and identification of putative modulators, Redox Biol, doi:10.1016/j.redox.2020.101615
Godin, Paze, Rizhikovs, Stankus, Virsis et al., Stability studies of bioactive compounds from birch outer bark ethanolic extracts, Key Eng. Mater, doi:10.4028/www.scientific.net/KEM.762.152
Grimes, Grimes, p38 MAPK inhibition: A promising therapeutic approach for COVID-19, J. Mol. Cell Cardiol, doi:10.1016/j.yjmcc.2020.05.007
He, Hara, Núñez, Mechanism and Regulation of NLRP3 Inflammasome Activation, Trends Biochem. Sci, doi:10.1016/j.tibs.2016.09.002
Hossain, Akter, Rashid, Khair, Alam, Unique mutations in SARS-CoV-2 Omicron subvariants' non-spike proteins: Potential impacts on viral pathogenesis and host immune evasion, Microb. Pathog, doi:10.1016/j.micpath.2022.105699
Huang, Wu, Zheng, Luo, Xu et al., Targeting inflammation and cytokine storm in COVID-19, Pharmacol. Res, doi:10.1016/j.phrs.2020.105051
Isazadeh, Heris, Shahabi, Mohammadinasab, Shomali et al., Pattern-recognition receptors (PRRs) in SARS-CoV-2, Life Sci, doi:10.1016/j.lfs.2023.121940
Juckmeta, Itharat, Anti-inflammatory and antioxidant activities of thai traditional remedy called "ya-ha-rak, J. Health Res
Juckmeta, Pipatrattanaseree, Jaidee, Dechayont, Chunthorng-Orn et al., Cytotoxicity to five cancer cell lines of the respiratory tract system and anti-inflammatory activity of Thai traditional remedy, Nat. Prod. Commun, doi:10.1177/1934578X19845815
Juckmeta, Thongdeeying, Itharat, Inhibitory Effect on β-Hexosaminidase Release from RBL-2H3 Cells of Extracts and Some Pure Constituents of Benchalokawichian, a Thai Herbal Remedy, Used for Allergic Disorders, Evid. Based Complement. Altern. Med, doi:10.1155/2014/828760
Kaewkumpai, Tharavanij, Itharat, Study on stability testing of the ethanolic extract of Benjakul remedy on antioxidant activities and total phenolic content, Thammasat Med. J
Kao, Huang, Inbaraj, Chen, Determination of flavonoids and saponins in Gynostemma pentaphyllum (Thunb.) Makino by liquid chromatography-mass spectrometry, Anal. Chim. Acta, doi:10.1016/j.aca.2008.07.049
Karak, Biological activities of flavonoids: An overview, Int. J. Pharm. Sci. Res
Kaul, Paul, Kumar, Büsselberg, Dwivedi et al., Promising antiviral activities of natural flavonoids against SARS-CoV-2 targets: Systematic review, Int. J. Mol. Sci, doi:10.3390/ijms222011069
Khan, Shafiei, Longoria, Schoggins, Savani et al., SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway, eLife, doi:10.7554/eLife.68563
Khanmohammadi, Rezaei, Role of Toll-like receptors in the pathogenesis of COVID-19, J. Med. Virol, doi:10.1002/jmv.26826
Li, Hilgenfeld, Whitley, De Clercq, Therapeutic strategies for COVID-19: Progress and lessons learned, Nat. Rev. Drug Discov, doi:10.1038/s41573-023-00672-y
Li, Wang, Lu, Cai, Luteolin suppresses inflammation and oxidative stress in chronic obstructive pulmonary disease through inhibition of the NOX4-mediated NF-κB signaling pathway, Immun. Inflamm. Dis, doi:10.1002/iid3.820
Li, Yeh, Yang, Kuan, Luteolin Suppresses Inflammatory Mediator Expression by Blocking the Akt/NFκB Pathway in Acute Lung Injury Induced by Lipopolysaccharide in Mice, Evid. Based Complement. Altern. Med, doi:10.1155/2012/383608
Limtrakul, Yodkeeree, Thippraphan, Punfa, Srisomboon, Anti-aging and tyrosinase inhibition effects of Cassia fistula flower butanolic extract, BMC Complement. Altern. Med, doi:10.1186/s12906-016-1484-3
Liu, Feng, Wang, Liu, p38MAPK inhibition attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway, Eur. J. Pharmacol, doi:10.1016/j.ejphar.2008.02.009
Majcherek, Hegerty, Kowalski, Lewandowska, Dikova, Opportunities for healthcare digitalization in Europe: Comparative analysis of inequalities in access to medical services, Health Policy, doi:10.1016/j.healthpol.2023.104950
Manzoor, Ahmad, Ahmed, Siddique, Zeng et al., Novel extraction techniques and pharmaceutical activities of luteolin and its derivatives, J. Food Biochem, doi:10.1111/jfbc.12974
Michalak, Michalak, Brenk-Krakowska, Acute COVID-19 and LongCOVID syndrome-Molecular implications for therapeutic strategies-Review, Front. Immunol, doi:10.3389/fimmu.2025.1582783
Mohapatra, Tiwari, Sarangi, Islam, Chakraborty et al., B.1.1.529) variant of SARS-CoV-2: Concerns, challenges, and recent updates, J. Med. Virol, doi:10.1002/jmv.27633
Müller, Di Benedetto, Inflammaging, immunosenescence, and cardiovascular aging: Insights into long COVID implications, Front. Cardiovasc. Med, doi:10.3389/fcvm.2024.1384996
Nithikathkul, Kijphati, Krates, Junto, Thessingha et al., Geographic Information Database of Herbs against COVID-19 in Thailand: The Medicinal Plants those Folk Healers Commonly Used for Treatment and Boosting People's Immunity, Int. J. Geoinformatics
Nooteboom, Flavonols, leuco-anthocyanins, cinnamic acids, and alkaloids in dried leaves of some Asiatic and Malesian Simaroubaceae, Blumea Biodivers. Evol. Biogeogr. Plants
Patel, Shamim, Umang, Pandey, Narayan, SARS-CoV-2 Alchemy: Understanding the dynamics of age, vaccination, and geography in the evolution of SARS-CoV-2 in India, PLoS Negl. Trop. Dis, doi:10.1371/journal.pntd.0012918
Plaskova, Mlcek, New insights of the application of water or ethanol-water plant extract rich in active compounds in food, Front. Nutr, doi:10.3389/fnut.2023.1118761
Pu, Chen, He, Ma, Cao et al., Potential beneficial effects of functional components of edible plants on COVID-19: Based on their anti-inflammatory and inhibitory effect on SARS-CoV-2, Food Innov. Adv, doi:10.48130/FIA-2023-0006
Roy, Khan, Ahmad, Alghamdi, Rajab et al., Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications, Biomed. Res. Int, doi:10.1155/2022/5445291
Saleem, Targeting MAPK signaling: A promising approach for treating inflammatory lung disease, Pathol. Res. Pract, doi:10.1016/j.prp.2024.155122
Schultheiß, Willscher, Paschold, Gottschick, Klee et al., The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19, Cell Rep. Med, doi:10.1016/j.xcrm.2022.100663
Sen, Sen, Maheshwari, Extraction, isolation, and quantitative determination of flavonoids by HPLC
Smits, Jochems, Diverging patterns in innate immunity against respiratory viruses during a lifetime: Lessons from the young and the old, Eur. Respir. Rev, doi:10.1183/16000617.0266-2023
Somsil, Ruangrungsi, Limpanasitikul, Itthipanichpong, In vivo and in vitro anti-inflammatory activity of Harrisonia perforata root extract, Pharmacogn. J, doi:10.5530/pj.2012.32.8
Souza, Mesquita, Amaral, Landim, Lima et al., The spike glycoprotein of SARS-CoV-2: A review of how mutations of spike glycoproteins have driven the emergence of variants with high transmissibility and immune escape, Int. J. Biol. Macromol, doi:10.1016/j.ijbiomac.2022.03.058
Telenti, Hodcroft, Robertson, The Evolution and Biology of SARS-CoV-2 Variants, Cold Spring Harb. Perspect. Med, doi:10.1101/cshperspect.a041390
Theoharides, Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome?, Mol. Neurobiol, doi:10.1007/s12035-021-02696-0
Umsumarng, Dissook, Arjsri, Srisawad, Thippraphan et al., Inhibitory Effect of Luteolin on Spike S1 Glycoprotein-Induced Inflammation in THP-1 Cells via the ER Stress-Inducing Calcium/CHOP/MAPK Pathway, Pharmaceuticals, doi:10.3390/ph17101402
Vargas-Pozada, Ramos-Tovar, Rodriguez-Callejas, Cardoso-Lezama, Galindo-Gómez et al., Caffeine Inhibits NLRP3 Inflammasome Activation by Downregulating TLR4/MAPK/NF-κB Signaling Pathway in an Experimental NASH Model, Int. J. Mol. Sci, doi:10.3390/ijms23179954
Vijayakumar, Ramesh, Joji, Jayachandra Prakasan, Kannan, In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2, Eur. J. Pharmacol, doi:10.1016/j.ejphar.2020.173448
Wang, Wu, Li, Qin, Hu et al., Haperforatones A-M, thirteen undescribed limonoids from Harrisonia perforata with anti-inflammatory activity, Bioorg Chem, doi:10.1016/j.bioorg.2024.107631
Yodkeeree, Thippraphan, Punfa, Srisomboon, Limtrakul, Skin anti-aging assays of proanthocyanidin rich red rice extract, oryzanol and other phenolic compounds, Nat. Prod. Commun, doi:10.1177/1934578X1801300812
Zhang, Liu, Hu, Zhao, Qin et al., Luteolin Confers Cerebroprotection after Subarachnoid Hemorrhage by Suppression of NLPR3 Inflammasome Activation through Nrf2-Dependent Pathway, Oxid. Med. Cell Longev, doi:10.1155/2021/5838101
Zhao, Kuang, Li, Zhu, Jia et al., SARS-CoV-2 spike protein interacts with and activates TLR41, Cell Res, doi:10.1038/s41422-021-00495-9
Zhu, Wu, Lu, Jiao, Liu et al., Acute lung injury induced by recombinant SARS-CoV-2 spike protein subunit S1 in mice, Respir. Res, doi:10.1186/s12931-025-03143-7
DOI record: { "DOI": "10.3390/life15071077", "ISSN": [ "2075-1729" ], "URL": "http://dx.doi.org/10.3390/life15071077", "abstract": "<jats:p>The COVID-19-related long-standing effect or Post-Acute Sequelae of COVID-19 (PASC) is often associated with NLRP3 inflammasome activation in pulmonary inflammation elicited by SARS-CoV-2 spike proteins. Spike proteins engage toll-like receptors (TLRs) in respiratory epithelial cells, leading to excessive cytokine production. Given the need for effective therapeutic strategies to mitigate spike protein-stimulated lung inflammation, we examined the anti-inflammatory properties of luteolin and ethanolic extract from Harrisonia perforata (Blanco) Merr. root. The ethanolic extract of H. perforata root (HPEE) contained a high concentration of luteolin flavonoid (143.53 ± 1.58 mg/g extract). Both HPEE (25–100 μg/mL) and luteolin (4.5–36 μM) significantly inhibited inflammation stimulated by the Wuhan (W) and Omicron (O) spike protein S1, as evidenced by a dose-dependent significant decrease in IL-6, IL-1β, and IL-18 secretion in A549 lung epithelial cells (p &lt; 0.05). Furthermore, pretreatment with HPEE or luteolin prior to spike protein exposure (100 ng/mL) significantly, in a dose-dependent manner, repressed the inflammatory mRNA expression (p &lt; 0.05). Mechanistic study revealed that HPEE and luteolin suppressed NLRP3 inflammasome signaling activation by reducing their machinery protein expressions. Additionally, they inhibited the ERK/JNK/p38 MAPK signaling activation, resulting in decreased inflammatory mRNA expression and cytokine release. These findings suggest that H. perforata root extract and its major flavonoid luteolin exert potent anti-inflammatory effects and may offer therapeutic potential against spike protein-induced lung inflammation.</jats:p>", "alternative-id": [ "life15071077" ], "author": [ { "ORCID": "https://orcid.org/0000-0001-6340-9653", "affiliation": [ { "name": "Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand" }, { "name": "Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand" } ], "authenticated-orcid": false, "family": "Semmarath", "given": "Warathit", "sequence": "first" }, { "ORCID": "https://orcid.org/0000-0001-6249-4497", "affiliation": [ { "name": "Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand" } ], "authenticated-orcid": false, "family": "Arjsri", "given": "Punnida", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-0260-7215", "affiliation": [ { "name": "Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand" }, { "name": "Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand" } ], "authenticated-orcid": false, "family": "Srisawad", "given": "Kamonwan", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-0275-1188", "affiliation": [ { "name": "Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand" } ], "authenticated-orcid": false, "family": "Umsumarng", "given": "Sonthaya", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0001-8732-8911", "affiliation": [ { "name": "Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand" }, { "name": "Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand" } ], "authenticated-orcid": false, "family": "Dejkriengkraikul", "given": "Pornngarm", "sequence": "additional" } ], "container-title": "Life", "container-title-short": "Life", "content-domain": { "crossmark-restriction": false, "domain": [] }, "created": { "date-parts": [ [ 2025, 7, 7 ] ], "date-time": "2025-07-07T06:53:07Z", "timestamp": 1751871187000 }, "deposited": { "date-parts": [ [ 2025, 7, 8 ] ], "date-time": "2025-07-08T04:27:30Z", "timestamp": 1751948850000 }, "funder": [ { "DOI": "10.13039/501100010731", "award": [ "FF063/2567" ], "doi-asserted-by": "crossref", "id": [ { "asserted-by": "crossref", "id": "10.13039/501100010731", "id-type": "DOI" } ], "name": "Faculty of Medicine, Chiang Mai University" } ], "indexed": { "date-parts": [ [ 2025, 7, 8 ] ], "date-time": "2025-07-08T04:40:03Z", "timestamp": 1751949603869, "version": "3.41.2" }, "is-referenced-by-count": 0, "issue": "7", "issued": { "date-parts": [ [ 2025, 7, 5 ] ] }, "journal-issue": { "issue": "7", "published-online": { "date-parts": [ [ 2025, 7 ] ] } }, "language": "en", "license": [ { "URL": "https://creativecommons.org/licenses/by/4.0/", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 7, 5 ] ], "date-time": "2025-07-05T00:00:00Z", "timestamp": 1751673600000 } } ], "link": [ { "URL": "https://www.mdpi.com/2075-1729/15/7/1077/pdf", "content-type": "unspecified", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "1968", "original-title": [], "page": "1077", "prefix": "10.3390", "published": { "date-parts": [ [ 2025, 7, 5 ] ] }, "published-online": { "date-parts": [ [ 2025, 7, 5 ] ] }, "publisher": "MDPI AG", "reference": [ { "DOI": "10.1007/s43440-022-00425-5", "article-title": "Recent review of COVID-19 management: Diagnosis, treatment and vaccination", "author": "Chavda", "doi-asserted-by": "crossref", "first-page": "1120", "journal-title": "Pharmacol. Rep.", "key": "ref_1", "volume": "74", "year": "2022" }, { "DOI": "10.1016/j.jiph.2020.07.011", "article-title": "The outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): A review of the current global status", "author": "Bchetnia", "doi-asserted-by": "crossref", "first-page": "1601", "journal-title": "J. Infect. Public Health", "key": "ref_2", "volume": "13", "year": "2020" }, { "DOI": "10.3389/fsci.2024.1236919", "doi-asserted-by": "crossref", "key": "ref_3", "unstructured": "Cauchemez, S., Cossu, G., Delzenne, N., Elinav, E., Fassin, D., Fischer, A., Hartung, T., Kalra, D., Netea, M., and Neyts, J. (2024). Standing the test of COVID-19: Charting the new frontiers of medicine. Front. Sci., 2." }, { "DOI": "10.1038/s41573-023-00672-y", "article-title": "Therapeutic strategies for COVID-19: Progress and lessons learned", "author": "Li", "doi-asserted-by": "crossref", "first-page": "449", "journal-title": "Nat. Rev. Drug Discov.", "key": "ref_4", "volume": "22", "year": "2023" }, { "DOI": "10.1371/journal.pntd.0012918", "doi-asserted-by": "crossref", "key": "ref_5", "unstructured": "Patel, M., Shamim, U., Umang, U., Pandey, R., and Narayan, J. (2025). SARS-CoV-2 Alchemy: Understanding the dynamics of age, vaccination, and geography in the evolution of SARS-CoV-2 in India. PLoS Negl. Trop. Dis., 19." }, { "DOI": "10.1183/16000617.0266-2023", "article-title": "Diverging patterns in innate immunity against respiratory viruses during a lifetime: Lessons from the young and the old", "author": "Smits", "doi-asserted-by": "crossref", "first-page": "230266", "journal-title": "Eur. Respir. Rev.", "key": "ref_6", "volume": "33", "year": "2024" }, { "DOI": "10.1038/s41579-022-00846-2", "article-title": "Long COVID: Major findings, mechanisms and recommendations", "author": "Davis", "doi-asserted-by": "crossref", "first-page": "133", "journal-title": "Nat. Rev. Microbiol.", "key": "ref_7", "volume": "21", "year": "2023" }, { "DOI": "10.1016/j.healthpol.2023.104950", "article-title": "Opportunities for healthcare digitalization in Europe: Comparative analysis of inequalities in access to medical services", "author": "Majcherek", "doi-asserted-by": "crossref", "first-page": "104950", "journal-title": "Health Policy", "key": "ref_8", "volume": "139", "year": "2024" }, { "DOI": "10.1002/path.5471", "article-title": "Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19)", "author": "Bourgonje", "doi-asserted-by": "crossref", "first-page": "228", "journal-title": "J. Pathol.", "key": "ref_9", "volume": "251", "year": "2020" }, { "DOI": "10.1016/j.redox.2020.101615", "doi-asserted-by": "crossref", "key": "ref_10", "unstructured": "Gkogkou, E., Barnasas, G., Vougas, K., and Trougakos, I.P. (2020). Expression profiling meta-analysis of ACE2 and TMPRSS2, the putative anti-inflammatory receptor and priming protease of SARS-CoV-2 in human cells, and identification of putative modulators. Redox Biol., 36." }, { "DOI": "10.1007/s12035-021-02696-0", "article-title": "Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome?", "author": "Theoharides", "doi-asserted-by": "crossref", "first-page": "1850", "journal-title": "Mol. Neurobiol.", "key": "ref_11", "volume": "59", "year": "2022" }, { "DOI": "10.1002/jmv.26826", "article-title": "Role of Toll-like receptors in the pathogenesis of COVID-19", "author": "Khanmohammadi", "doi-asserted-by": "crossref", "first-page": "2735", "journal-title": "J. Med. Virol.", "key": "ref_12", "volume": "93", "year": "2021" }, { "DOI": "10.1016/j.ijbiomac.2022.03.058", "article-title": "The spike glycoprotein of SARS-CoV-2: A review of how mutations of spike glycoproteins have driven the emergence of variants with high transmissibility and immune escape", "author": "Souza", "doi-asserted-by": "crossref", "first-page": "105", "journal-title": "Int. J. Biol. Macromol.", "key": "ref_13", "volume": "208", "year": "2022" }, { "DOI": "10.1101/cshperspect.a041390", "article-title": "The Evolution and Biology of SARS-CoV-2 Variants", "author": "Telenti", "doi-asserted-by": "crossref", "first-page": "a041390", "journal-title": "Cold Spring Harb. Perspect. Med.", "key": "ref_14", "volume": "12", "year": "2022" }, { "DOI": "10.1002/jmv.27633", "article-title": "Omicron (B.1.1.529) variant of SARS-CoV-2: Concerns, challenges, and recent updates", "author": "Mohapatra", "doi-asserted-by": "crossref", "first-page": "2336", "journal-title": "J. Med. Virol.", "key": "ref_15", "volume": "94", "year": "2022" }, { "DOI": "10.1111/all.14364", "article-title": "Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19", "author": "Azkur", "doi-asserted-by": "crossref", "first-page": "1564", "journal-title": "Allergy", "key": "ref_16", "volume": "75", "year": "2020" }, { "DOI": "10.1038/s41577-023-00904-7", "article-title": "The immunology of long COVID", "author": "Altmann", "doi-asserted-by": "crossref", "first-page": "618", "journal-title": "Nat. Rev. Immunol.", "key": "ref_17", "volume": "23", "year": "2023" }, { "DOI": "10.20944/preprints202206.0010.v1", "doi-asserted-by": "crossref", "key": "ref_18", "unstructured": "Forsyth, C.B., Zhang, L., Bhushan, A., Swanson, B., Zhang, L., Mamede, J.I., Voigt, R.M., Shaikh, M., Engen, P.A., and Keshavarzian, A. (2022). The SARS-CoV-2 S1 Spike Protein Promotes MAPK and NF-kB Activation in Human Lung Cells and Inflammatory Cytokine Production in Human Lung and Intestinal Epithelial Cells. Microorganisms, 10." }, { "DOI": "10.48130/FIA-2023-0006", "article-title": "Potential beneficial effects of functional components of edible plants on COVID-19: Based on their anti-inflammatory and inhibitory effect on SARS-CoV-2", "author": "Pu", "doi-asserted-by": "crossref", "first-page": "44", "journal-title": "Food Innov. Adv.", "key": "ref_19", "volume": "2", "year": "2023" }, { "DOI": "10.3389/fmed.2022.1072056", "doi-asserted-by": "crossref", "key": "ref_20", "unstructured": "Dissook, S., Umsumarng, S., Mapoung, S., Semmarath, W., Arjsri, P., Srisawad, K., and Dejkriengkraikul, P. (2022). Luteolin-rich fraction from Perilla frutescens seed meal inhibits spike glycoprotein S1 of SARS-CoV-2-induced NLRP3 inflammasome lung cell inflammation via regulation of JAK1/STAT3 pathway: A potential anti-inflammatory compound against inflammation-induced long-COVID. Front. Med., 9." }, { "article-title": "Flavonols, leuco-anthocyanins, cinnamic acids, and alkaloids in dried leaves of some Asiatic and Malesian Simaroubaceae", "author": "Nooteboom", "first-page": "309", "journal-title": "Blumea Biodivers. Evol. Biogeogr. Plants", "key": "ref_21", "volume": "14", "year": "1966" }, { "article-title": "Geographic Information Database of Herbs against COVID-19 in Thailand: The Medicinal Plants those Folk Healers Commonly Used for Treatment and Boosting People’s Immunity", "author": "Nithikathkul", "first-page": "67", "journal-title": "Int. J. Geoinformatics", "key": "ref_22", "volume": "19", "year": "2023" }, { "article-title": "Cytotoxicity to five cancer cell lines of the respiratory tract system and anti-inflammatory activity of Thai traditional remedy", "author": "Juckmeta", "first-page": "1934578X19845815", "journal-title": "Nat. Prod. Commun.", "key": "ref_23", "volume": "14", "year": "2019" }, { "DOI": "10.1155/2014/828760", "article-title": "Inhibitory Effect on β-Hexosaminidase Release from RBL-2H3 Cells of Extracts and Some Pure Constituents of Benchalokawichian, a Thai Herbal Remedy, Used for Allergic Disorders", "author": "Juckmeta", "doi-asserted-by": "crossref", "first-page": "828760", "journal-title": "Evid. Based Complement. Altern. Med.", "key": "ref_24", "volume": "2014", "year": "2014" }, { "DOI": "10.5530/pj.2012.32.8", "article-title": "In vivo and in vitro anti-inflammatory activity of Harrisonia perforata root extract", "author": "Somsil", "doi-asserted-by": "crossref", "first-page": "38", "journal-title": "Pharmacogn. J.", "key": "ref_25", "volume": "4", "year": "2012" }, { "article-title": "Skin anti-aging assays of proanthocyanidin rich red rice extract, oryzanol and other phenolic compounds", "author": "Yodkeeree", "first-page": "967", "journal-title": "Nat. Prod. Commun.", "key": "ref_26", "volume": "13", "year": "2018" }, { "DOI": "10.1016/j.aca.2008.07.049", "article-title": "Determination of flavonoids and saponins in Gynostemma pentaphyllum (Thunb.) Makino by liquid chromatography–mass spectrometry", "author": "Kao", "doi-asserted-by": "crossref", "first-page": "200", "journal-title": "Anal. Chim. Acta", "key": "ref_27", "volume": "626", "year": "2008" }, { "DOI": "10.1186/s12906-016-1484-3", "doi-asserted-by": "crossref", "key": "ref_28", "unstructured": "Limtrakul, P., Yodkeeree, S., Thippraphan, P., Punfa, W., and Srisomboon, J. (2016). Anti-aging and tyrosinase inhibition effects of Cassia fistula flower butanolic extract. BMC Complement. Altern. Med., 16." }, { "DOI": "10.1155/2022/5445291", "doi-asserted-by": "crossref", "key": "ref_29", "unstructured": "Roy, A., Khan, A., Ahmad, I., Alghamdi, S., Rajab, B.S., Babalghith, A.O., Alshahrani, M.Y., Islam, S., and Islam, M.R. (2022). Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications. Biomed. Res. Int., 2022." }, { "DOI": "10.7554/eLife.68563", "article-title": "SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway", "author": "Khan", "doi-asserted-by": "crossref", "first-page": "e68563", "journal-title": "eLife", "key": "ref_30", "volume": "10", "year": "2021" }, { "DOI": "10.1016/j.phrs.2020.105051", "article-title": "Targeting inflammation and cytokine storm in COVID-19", "author": "Huang", "doi-asserted-by": "crossref", "first-page": "105051", "journal-title": "Pharmacol. Res.", "key": "ref_31", "volume": "159", "year": "2020" }, { "DOI": "10.1038/s41422-021-00495-9", "article-title": "SARS-CoV-2 spike protein interacts with and activates TLR41", "author": "Zhao", "doi-asserted-by": "crossref", "first-page": "818", "journal-title": "Cell Res.", "key": "ref_32", "volume": "31", "year": "2021" }, { "DOI": "10.1186/s12931-025-03143-7", "article-title": "Acute lung injury induced by recombinant SARS-CoV-2 spike protein subunit S1 in mice", "author": "Zhu", "doi-asserted-by": "crossref", "first-page": "59", "journal-title": "Respir. Res.", "key": "ref_33", "volume": "26", "year": "2025" }, { "DOI": "10.1016/j.tibs.2016.09.002", "article-title": "Mechanism and Regulation of NLRP3 Inflammasome Activation", "author": "He", "doi-asserted-by": "crossref", "first-page": "1012", "journal-title": "Trends Biochem. Sci.", "key": "ref_34", "volume": "41", "year": "2016" }, { "DOI": "10.3389/fnagi.2022.879021", "doi-asserted-by": "crossref", "key": "ref_35", "unstructured": "Blevins, H.M., Xu, Y., Biby, S., and Zhang, S. (2022). The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Front. Aging Neurosci., 14." }, { "DOI": "10.1007/s10753-021-01439-6", "article-title": "The Signaling Pathways Regulating NLRP3 Inflammasome Activation", "author": "Chen", "doi-asserted-by": "crossref", "first-page": "1229", "journal-title": "Inflammation", "key": "ref_36", "volume": "44", "year": "2021" }, { "DOI": "10.3390/ijms23179954", "doi-asserted-by": "crossref", "key": "ref_37", "unstructured": "Vargas-Pozada, E.E., Ramos-Tovar, E., Rodriguez-Callejas, J.D., Cardoso-Lezama, I., Galindo-Gómez, S., Talamás-Lara, D., Vásquez-Garzón, V.R., Arellanes-Robledo, J., Tsutsumi, V., and Villa-Treviño, S. (2022). Caffeine Inhibits NLRP3 Inflammasome Activation by Downregulating TLR4/MAPK/NF-κB Signaling Pathway in an Experimental NASH Model. Int. J. Mol. Sci., 23." }, { "DOI": "10.1016/j.lfs.2023.121940", "article-title": "Pattern-recognition receptors (PRRs) in SARS-CoV-2", "author": "Isazadeh", "doi-asserted-by": "crossref", "first-page": "121940", "journal-title": "Life Sci.", "key": "ref_38", "volume": "329", "year": "2023" }, { "DOI": "10.1002/jmv.28122", "article-title": "COVID-19 immunopathology: From acute diseases to chronic sequelae", "author": "Arish", "doi-asserted-by": "crossref", "first-page": "e28122", "journal-title": "J. Med. Virol.", "key": "ref_39", "volume": "95", "year": "2023" }, { "DOI": "10.1016/j.xcrm.2022.100663", "article-title": "The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19", "author": "Willscher", "doi-asserted-by": "crossref", "first-page": "100663", "journal-title": "Cell Rep. Med.", "key": "ref_40", "volume": "3", "year": "2022" }, { "DOI": "10.3389/fcvm.2024.1384996", "doi-asserted-by": "crossref", "key": "ref_41", "unstructured": "Müller, L., and Di Benedetto, S. (2024). Inflammaging, immunosenescence, and cardiovascular aging: Insights into long COVID implications. Front. Cardiovasc. Med., 11." }, { "DOI": "10.1111/jocn.16150", "article-title": "Symptoms and management of long COVID: A scoping review", "author": "Cha", "doi-asserted-by": "crossref", "first-page": "11", "journal-title": "J. Clin. Nurs.", "key": "ref_42", "volume": "33", "year": "2024" }, { "DOI": "10.7326/M24-0677", "article-title": "Long COVID Definitions and Models of Care: A Scoping Review", "author": "Chou", "doi-asserted-by": "crossref", "first-page": "929", "journal-title": "Ann. Intern. Med.", "key": "ref_43", "volume": "177", "year": "2024" }, { "DOI": "10.3389/fimmu.2025.1582783", "doi-asserted-by": "crossref", "key": "ref_44", "unstructured": "Michalak, K.P., Michalak, A.Z., and Brenk-Krakowska, A. (2025). Acute COVID-19 and LongCOVID syndrome—Molecular implications for therapeutic strategies—Review. Front. Immunol., 16." }, { "key": "ref_45", "unstructured": "COVID-19 Multi-omics Blood ATlas (COMBAT) Consortium (2022). A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell, 185, 916–938.e58." }, { "DOI": "10.3390/molecules27092901", "doi-asserted-by": "crossref", "key": "ref_46", "unstructured": "Al-Khayri, J.M., Sahana, G.R., Nagella, P., Joseph, B.V., Alessa, F.M., and Al-Mssallem, M.Q. (2022). Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules, 27." }, { "DOI": "10.1155/2021/5838101", "article-title": "Luteolin Confers Cerebroprotection after Subarachnoid Hemorrhage by Suppression of NLPR3 Inflammasome Activation through Nrf2-Dependent Pathway", "author": "Zhang", "doi-asserted-by": "crossref", "first-page": "5838101", "journal-title": "Oxid. Med. Cell Longev.", "key": "ref_47", "volume": "2021", "year": "2021" }, { "DOI": "10.3390/ph17101402", "doi-asserted-by": "crossref", "key": "ref_48", "unstructured": "Umsumarng, S., Dissook, S., Arjsri, P., Srisawad, K., Thippraphan, P., Sangphukieo, A., Thongkumkoon, P., and Dejkriengkraikul, P. (2024). Inhibitory Effect of Luteolin on Spike S1 Glycoprotein-Induced Inflammation in THP-1 Cells via the ER Stress-Inducing Calcium/CHOP/MAPK Pathway. Pharmaceuticals, 17." }, { "article-title": "Biological activities of flavonoids: An overview", "author": "Karak", "first-page": "1567", "journal-title": "Int. J. Pharm. Sci. Res.", "key": "ref_49", "volume": "10", "year": "2019" }, { "DOI": "10.3390/ijms222011069", "doi-asserted-by": "crossref", "key": "ref_50", "unstructured": "Kaul, R., Paul, P., Kumar, S., Büsselberg, D., Dwivedi, V.D., and Chaari, A. (2021). Promising antiviral activities of natural flavonoids against SARS-CoV-2 targets: Systematic review. Int. J. Mol. Sci., 22." }, { "DOI": "10.1016/j.ejphar.2020.173448", "article-title": "In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2", "author": "Vijayakumar", "doi-asserted-by": "crossref", "first-page": "173448", "journal-title": "Eur. J. Pharmacol.", "key": "ref_51", "volume": "886", "year": "2020" }, { "DOI": "10.1007/978-981-13-7248-3_21", "doi-asserted-by": "crossref", "key": "ref_52", "unstructured": "Sen, A.K., Sen, D.B., and Maheshwari, R.A. (2019). Extraction, isolation, and quantitative determination of flavonoids by HPLC. Herbal Medicine in India: Indigenous Knowledge, Practice, Innovation and Its Value, Springer." }, { "DOI": "10.1016/j.bmcl.2013.04.064", "article-title": "Rearranged limonoids and chromones from Harrisonia perforata and their anti-inflammatory activity", "author": "Choodej", "doi-asserted-by": "crossref", "first-page": "3896", "journal-title": "Bioorg Med. Chem. Lett.", "key": "ref_53", "volume": "23", "year": "2013" }, { "DOI": "10.1016/j.bioorg.2024.107631", "doi-asserted-by": "crossref", "key": "ref_54", "unstructured": "Wang, Q., Wu, Z., Li, C., Qin, G., Hu, X., Guo, P., Ding, A., Xu, W., Wang, W., and Xuan, L. (2024). Haperforatones A-M, thirteen undescribed limonoids from Harrisonia perforata with anti-inflammatory activity. Bioorg Chem., 151." }, { "DOI": "10.1016/j.phytol.2022.04.003", "article-title": "Isoprenylated chromones from the stems of Harrisonia perforata", "author": "Cheenpracha", "doi-asserted-by": "crossref", "first-page": "192", "journal-title": "Phytochem. Lett.", "key": "ref_55", "volume": "49", "year": "2022" }, { "DOI": "10.3389/fnut.2023.1118761", "doi-asserted-by": "crossref", "key": "ref_56", "unstructured": "Plaskova, A., and Mlcek, J. (2023). New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front. Nutr., 10." }, { "DOI": "10.1111/jfbc.12974", "doi-asserted-by": "crossref", "key": "ref_57", "unstructured": "Manzoor, M.F., Ahmad, N., Ahmed, Z., Siddique, R., Zeng, X.A., Rahaman, A., Muhammad Aadil, R., and Wahab, A. (2019). Novel extraction techniques and pharmaceutical activities of luteolin and its derivatives. J. Food Biochem., 43." }, { "DOI": "10.4028/www.scientific.net/KEM.762.152", "article-title": "Stability studies of bioactive compounds from birch outer bark ethanolic extracts", "author": "Paze", "doi-asserted-by": "crossref", "first-page": "152", "journal-title": "Key Eng. Mater.", "key": "ref_58", "volume": "762", "year": "2018" }, { "article-title": "Study on stability testing of the ethanolic extract of Benjakul remedy on antioxidant activities and total phenolic content", "author": "Kaewkumpai", "first-page": "600", "journal-title": "Thammasat Med. J.", "key": "ref_59", "volume": "16", "year": "2016" }, { "article-title": "Anti-inflammatory and antioxidant activities of thai traditional remedy called “ya-ha-rak”", "author": "Juckmeta", "first-page": "205", "journal-title": "J. Health Res.", "key": "ref_60", "volume": "26", "year": "2012" }, { "DOI": "10.1002/iid3.820", "article-title": "Luteolin suppresses inflammation and oxidative stress in chronic obstructive pulmonary disease through inhibition of the NOX4-mediated NF-κB signaling pathway", "author": "Li", "doi-asserted-by": "crossref", "first-page": "e820", "journal-title": "Immun. Inflamm. Dis.", "key": "ref_61", "volume": "11", "year": "2023" }, { "DOI": "10.1016/j.lfs.2007.09.028", "article-title": "Luteolin suppresses inflammation-associated gene expression by blocking NF-kappaB and AP-1 activation pathway in mouse alveolar macrophages", "author": "Chen", "doi-asserted-by": "crossref", "first-page": "1602", "journal-title": "Life Sci.", "key": "ref_62", "volume": "81", "year": "2007" }, { "DOI": "10.1902/jop.2011.100759", "article-title": "Effects of luteolin on the release of nitric oxide and interleukin-6 by macrophages stimulated with lipopolysaccharide from Prevotella intermedia", "author": "Choi", "doi-asserted-by": "crossref", "first-page": "1509", "journal-title": "J. Periodontol.", "key": "ref_63", "volume": "82", "year": "2011" }, { "DOI": "10.1016/j.jep.2018.05.019", "article-title": "Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies", "author": "Aziz", "doi-asserted-by": "crossref", "first-page": "342", "journal-title": "J. Ethnopharmacol.", "key": "ref_64", "volume": "225", "year": "2018" }, { "DOI": "10.1155/2012/383608", "article-title": "Luteolin Suppresses Inflammatory Mediator Expression by Blocking the Akt/NFκB Pathway in Acute Lung Injury Induced by Lipopolysaccharide in Mice", "author": "Li", "doi-asserted-by": "crossref", "first-page": "383608", "journal-title": "Evid. Based Complement. Altern. Med.", "key": "ref_65", "volume": "2012", "year": "2012" }, { "DOI": "10.1016/j.yjmcc.2020.05.007", "article-title": "p38 MAPK inhibition: A promising therapeutic approach for COVID-19", "author": "Grimes", "doi-asserted-by": "crossref", "first-page": "63", "journal-title": "J. Mol. Cell Cardiol.", "key": "ref_66", "volume": "144", "year": "2020" }, { "DOI": "10.3389/fimmu.2022.1020624", "doi-asserted-by": "crossref", "key": "ref_67", "unstructured": "Al-Qahtani, A.A., Pantazi, I., Alhamlan, F.S., Alothaid, H., Matou-Nasri, S., Sourvinos, G., Vergadi, E., and Tsatsanis, C. (2022). SARS-CoV-2 modulates inflammatory responses of alveolar epithelial type II cells via PI3K/AKT pathway. Front. Immunol., 13." }, { "DOI": "10.1016/j.prp.2024.155122", "article-title": "Targeting MAPK signaling: A promising approach for treating inflammatory lung disease", "author": "Saleem", "doi-asserted-by": "crossref", "first-page": "155122", "journal-title": "Pathol. Res. Pract.", "key": "ref_68", "volume": "254", "year": "2024" }, { "DOI": "10.1016/j.ejphar.2008.02.009", "article-title": "p38MAPK inhibition attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway", "author": "Liu", "doi-asserted-by": "crossref", "first-page": "159", "journal-title": "Eur. J. Pharmacol.", "key": "ref_69", "volume": "584", "year": "2008" }, { "DOI": "10.1016/j.micpath.2022.105699", "article-title": "Unique mutations in SARS-CoV-2 Omicron subvariants’ non-spike proteins: Potential impacts on viral pathogenesis and host immune evasion", "author": "Hossain", "doi-asserted-by": "crossref", "first-page": "105699", "journal-title": "Microb. Pathog.", "key": "ref_70", "volume": "170", "year": "2022" }, { "DOI": "10.3390/biomedicines10030618", "doi-asserted-by": "crossref", "key": "ref_71", "unstructured": "Barilli, A., Visigalli, R., Ferrari, F., Bianchi, M.G., Dall’Asta, V., and Rotoli, B.M. (2022). Immune-mediated inflammatory responses of alveolar epithelial cells: Implications for COVID-19 lung pathology. Biomedicines, 10." } ], "reference-count": 71, "references-count": 71, "relation": {}, "resource": { "primary": { "URL": "https://www.mdpi.com/2075-1729/15/7/1077" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "Luteolin-Rich Extract from Harrisonia perforata (Blanco) Merr. Root Alleviates SARS-CoV-2 Spike Protein-Stimulated Lung Inflammation via Inhibition of MAPK/NLRP3 Inflammasome Signaling Pathways", "type": "journal-article", "volume": "15" }
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Submit