Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchSelect treatment..Select..
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

 

Beyond Stress Granules: G3BP1 and G3BP2 Redundantly Suppress SARS-CoV-2 Infection

Xu et al., Viruses, doi:10.3390/v17070912, Jun 2025
https://c19early.org/xu19.html
In Vitro study showing that G3BP1 and G3BP2 proteins redundantly suppress SARS-CoV-2 infection by inhibiting viral replication beyond their roles in stress granule formation. Authors identified G3BP1/2 as key host factors that interact with the SARS-CoV-2 nucleocapsid (N) protein through a comparative analysis of multiple proteomic datasets.
Xu et al., 27 Jun 2025, peer-reviewed, 9 authors. Contact: ronghai@ucr.edu (corresponding author), duox@ucr.edu, christine.light@email.ucr.edu, ywu548@ucr.edu, mbisw002@ucr.edu, jikuis@ucr.edu, quanqinz@ucr.edu, chenjinye@txbiomed.org, lmartinez@txbiomed.org.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
Beyond Stress Granules: G3BP1 and G3BP2 Redundantly Suppress SARS-CoV-2 Infection
Duo Xu, Mahamaya Biswal, Quanqing Zhang, Christine Light, Yijie Wu, Chenjin Ye, Luis Martínez-Sobrido, Jikui Song, Rong Hai
Viruses, doi:10.3390/v17070912
The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed unprecedented challenges to public health and economic stability. Central to SARS-CoV-2 pathogenesis is its ability to evade the host immune response by hijacking host pathways via the interaction between viral and host proteins. We identified Ras-GTPase-activating protein SH3 domain-binding protein 1/2 (G3BP1/G3BP2) as a critical host factor that interacts with the viral nucleocapsid (N) protein, emerging from a comparative analysis of proteomic data from multiple studies. We revisited the underlying molecular mechanisms by confirming the residues required for the interaction between G3BP1/G3BP2 and SARS-CoV-2 N protein and showed that this interaction disrupts stress granule formation. Intriguingly, we observed that the ablation of both G3BP1 and G3BP2 enhanced SARS-CoV-2 replication. Our data collectively supports the notion that G3BP1 and G3BP2 play a critical role in modulating the host-virus interface during SARS-CoV-2 infection, and that their multifaceted function in cellular defense extends beyond the stress granule pathway.
Supplementary Materials: The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/v17070912/s1 , Figure S1 : Linear representation of the SARS-CoV-2 nucleocapsid (N) protein, highlighting peptides identified by LC-MS analysis. The full-length protein sequence is shown, with tryptic digestion sites indicated in green. Red indicates the peptides that were successfully identified in our LC-MS analysis; Figure S2 : Coomassie blue-stained protein gel of pull-down assays using SARS-CoV-2 N protein versus mock samples, prepared for LC-MS analysis to compare interacting proteins; Figure S3 : Schematic of specific mutations in genes induced by CRISPR-Cas9 in A549 Cell Lines; Table S1 -1: The SARS-CoV-2 N protein associated host proteins obtained by MS data search; Table S1 -2: The selected SARS-CoV-2 N associated host proteins after intensity comparison; Table S2 -1: The Protein IDs summary and Venn results from our analysis and previously studies; Table S2 -2: The KEGG pathway summary and Venn results from our analysis and previously studies; Table S3 -1: The result of QIAGEN Ingenuity Pathway Analysis: Table S3 Conflicts of Interest: The authors declare no conflicts of interest.
References
Aloise, Schipper, Van Vliet, Oymans, Donselaar et al., SARS-CoV-2 nucleocapsid protein inhibits the PKR-mediated integrated stress response through RNA-binding domain N2b, PLoS Pathog, doi:10.1371/journal.ppat.1011582
Anderson, Kedersha, RNA granules: Post-transcriptional and epigenetic modulators of gene expression, Nat. Rev. Mol. Cell Biol, doi:10.1038/nrm2694
Anderson, Kedersha, Stress granules: The Tao of RNA triage, Trends Biochem. Sci, doi:10.1016/j.tibs.2007.12.003
Biswal, Lu, Song, SARS-CoV-2 Nucleocapsid Protein Targets a Conserved Surface Groove of the NTF2-like Domain of G3BP1, J. Mol. Biol, doi:10.1016/j.jmb.2022.167516
Brown, Storey, Treatment of allergy of the respiratory tract with beclomethasone dipropionate steroid aerosol, Postgrad. Med. J
Burd, Dreyfuss, Conserved structures and diversity of functions of RNA-binding proteins, Science, doi:10.1126/science.8036511
Cai, Zhang, Zhuang, Zhang, Ma et al., Phase-separated nucleocapsid protein of SARS-CoV-2 suppresses cGAS-DNA recognition by disrupting cGAS-G3BP1 complex, Signal Transduct. Target. Ther, doi:10.1038/s41392-023-01420-9
Chen, Xiao, Hu, Ge, Tian et al., SARS-CoV-2 Nucleocapsid Protein Interacts with RIG-I and Represses RIG-Mediated IFN-β Production, Viruses, doi:10.3390/v13010047
Ciccosanti, Di Rienzo, Romagnoli, Colavita, Refolo et al., Proteomic analysis identifies the RNA helicase DDX3X as a host target against SARS-CoV-2 infection, Antivir. Res, doi:10.1016/j.antiviral.2021.105064
Dinesh, Chalupska, Silhan, Koutna, Nencka et al., Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein, PLoS Pathog, doi:10.1371/journal.ppat.1009100
Gerassimovich, Miladinovski-Bangall, Bridges, Boateng, Ball et al., Proximity-dependent biotinylation detects associations between SARS coronavirus nonstructural protein 1 and stress granule-associated proteins, J. Biol. Chem, doi:10.1016/j.jbc.2021.101399
Ghisolfi, Dutt, Mcconkey, Ebert, Anderson, Stress granules contribute to α-globin homeostasis in differentiating erythroid cells, Biochem. Biophys. Res. Commun, doi:10.1016/j.bbrc.2012.03.070
Gordon, Hiatt, Bouhaddou, Rezelj, Ulferts et al., Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms, Science, doi:10.1126/science.abe9403
He, Gou, Zhou, Wu, Ren et al., The SARS-CoV-2 nucleocapsid protein suppresses innate immunity by remodeling stress granules to atypical foci, FASEB J, doi:10.1096/fj.202201973RR
Huang, Ju, Tian, Li, Yu et al., Molecular determinants for regulation of G3BP1/2 phase separation by the SARS-CoV-2 nucleocapsid protein, Cell Discov, doi:10.1038/s41421-021-00306-w
Jiang, Zhang, Meng, Xie, Li et al., SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70, Cell. Mol. Immunol, doi:10.1038/s41423-020-0514-8
Kang, Wang, Yang, Zhang, Zheng et al., Research Progress on the Structure and Function of G3BP, Front. Immunol, doi:10.3389/fimmu.2021.718548
Katsafanas, Moss, Vaccinia virus intermediate stage transcription is complemented by Ras-GTPase-activating protein SH3 domain-binding protein (G3BP) and cytoplasmic activation/proliferation-associated protein (p137) individually or as a heterodimer, J. Biol. Chem
Kedersha, Ivanov, Anderson, Stress granules and cell signaling: More than just a passing phase?, Trends Biochem. Sci, doi:10.1016/j.tibs.2013.07.004
Kennedy, French, Guitard, Ru, Tocque et al., Characterization of G3BPs: Tissue specific expression, chromosomal localisation and rasGAP(120) binding studies, J. Cell Biochem, doi:10.1002/jcb.1277
Kim, Maharjan, Kang, Kim, Park et al., Differential effect of SARS-CoV-2 infection on stress granule formation in Vero and Calu-3 cells, Front. Microbiol, doi:10.3389/fmicb.2022.997539
Korn, Dhamotharan, Jeffries, Schlundt, The preference signature of the SARS-CoV-2 Nucleocapsid NTD for its 5 ′ -genomic RNA elements, Nat. Commun, doi:10.1038/s41467-023-38882-y
Kruse, Benz, Garvanska, Lindqvist, Mihalic et al., Large scale discovery of coronavirus-host factor protein interaction motifs reveals SARS-CoV-2 specific mechanisms and vulnerabilities, Nat. Commun, doi:10.1038/s41467-021-26498-z
Leblanc, Lynch, Layne, Vendramelli, Sloan et al., The Nucleocapsid Proteins of SARS-CoV-2 and Its Close Relative Bat Coronavirus RaTG13 Are Capable of Inhibiting PKR-and RNase L-Mediated Antiviral Pathways, Microbiol. Spectr, doi:10.1128/spectrum.00994-23
Leblanc, Tocque, Delumeau, Ras-GAP controls Rho-mediated cytoskeletal reorganization through its SH3 domain, Mol. Cell Biol, doi:10.1128/MCB.18.9.5567
Lee, Klein, Fon Tacer, Lord, Oatley et al., Translational Repression of G3BP in Cancer and Germ Cells Suppresses Stress Granules and Enhances Stress Tolerance, Mol. Cell, doi:10.1016/j.molcel.2020.06.037
Li, Guo, Tian, Wang, Yang et al., Virus-Host Interactome and Proteomic Survey Reveal Potential Virulence Factors Influencing SARS-CoV-2 Pathogenesis, Med, doi:10.1016/j.medj.2020.07.002
Liu, Bai, Zhang, Gao, Liu et al., SARS-CoV-2 N Protein Antagonizes Stress Granule Assembly and IFN Production by Interacting with G3BPs to Facilitate Viral Replication, J. Virol, doi:10.1128/jvi.00412-22
Lu, Ye, Singh, Cao, Diedrich et al., The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein, Nat. Commun, doi:10.1038/s41467-020-20768-y
Luo, Li, Zhao, Ju, Ma et al., SARS-CoV-2 nucleocapsid protein phase separates with G3BPs to disassemble stress granules and facilitate viral production, Sci. Bull, doi:10.1016/j.scib.2021.01.013
Matsuki, Takahashi, Higuchi, Makokha, Oie et al., Both G3BP1 and G3BP2 contribute to stress granule formation, Genes. Cells, doi:10.1111/gtc.12023
Mccormick, Khaperskyy, Translation inhibition and stress granules in the antiviral immune response, Nat. Rev. Immunol, doi:10.1038/nri.2017.63
Murigneux, Softic, Aubé, Grandi, Judith et al., Proteomic analysis of SARS-CoV-2 particles unveils a key role of G3BP proteins in viral assembly, Nat. Commun, doi:10.1038/s41467-024-44958-0
Nabeel-Shah, Lee, Ahmed, Burke, Farhangmehr et al., SARS-CoV-2 nucleocapsid protein binds host mRNAs and attenuates stress granules to impair host stress response, iScience, doi:10.1016/j.isci.2021.103562
Parker, Maurier, Delumeau, Duchesne, Faucher et al., A Ras-GTPase-activating protein SH3-domain-binding protein, Mol. Cell Biol, doi:10.1128/MCB.16.6.2561
Reineke, Dougherty, Pierre, Lloyd, Large G3BP-induced granules trigger eIF2α phosphorylation, Mol. Biol. Cell, doi:10.1091/mbc.e12-05-0385
Thompson, Simons, Wilkins, Cheng, Del Valle et al., Molecular states during acute COVID-19 reveal distinct etiologies of long-term sequelae, Nat. Med, doi:10.1038/s41591-022-02107-4
Valiente-Echeverría, Melnychuk, Vyboh, Ajamian, Gallouzi et al., eEF2 and Ras-GAP SH3 domain-binding protein (G3BP1) modulate stress granule assembly during HIV-1 infection, Nat. Commun, doi:10.1038/ncomms5819
Wong, Perlman, Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses-Are we our own worst enemy?, Nat. Rev. Immunol, doi:10.1038/s41577-021-00656-2
Yang, Johnson, Meliopoulos, Ju, Zhang et al., Interaction between host G3BP and viral nucleocapsid protein regulates SARS-CoV-2 replication and pathogenicity, Cell Rep, doi:10.1016/j.celrep.2024.113965
Yang, Mathieu, Kolaitis, Zhang, Messing et al., G3BP1 Is a Tunable Switch that Triggers Phase Separation to Assemble Stress Granules, Cell, doi:10.1016/j.cell.2020.03.046
Ye, West, Silletti, Corbett, Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein, Protein Sci, doi:10.1002/pro.3909
Zheng, Sun, Yu, Shi, Zhu et al., Interactome Analysis of the Nucleocapsid Protein of SARS-CoV-2 Virus, Pathogens, doi:10.3390/pathogens10091155
Zheng, Wang, Xu, Fu, Wang, SARS-CoV-2 nucleocapsid protein impairs stress granule formation to promote viral replication, Cell Discov, doi:10.1038/s41421-021-00275-0
DOI record: { "DOI": "10.3390/v17070912", "ISSN": [ "1999-4915" ], "URL": "http://dx.doi.org/10.3390/v17070912", "abstract": "<jats:p>The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed unprecedented challenges to public health and economic stability. Central to SARS-CoV-2 pathogenesis is its ability to evade the host immune response by hijacking host pathways via the interaction between viral and host proteins. We identified Ras-GTPase-activating protein SH3 domain-binding protein 1/2 (G3BP1/G3BP2) as a critical host factor that interacts with the viral nucleocapsid (N) protein, emerging from a comparative analysis of proteomic data from multiple studies. We revisited the underlying molecular mechanisms by confirming the residues required for the interaction between G3BP1/G3BP2 and SARS-CoV-2 N protein and showed that this interaction disrupts stress granule formation. Intriguingly, we observed that the ablation of both G3BP1 and G3BP2 enhanced SARS-CoV-2 replication. Our data collectively supports the notion that G3BP1 and G3BP2 play a critical role in modulating the host–virus interface during SARS-CoV-2 infection, and that their multifaceted function in cellular defense extends beyond the stress granule pathway.</jats:p>", "alternative-id": [ "v17070912" ], "author": [ { "ORCID": "https://orcid.org/0000-0003-2554-3602", "affiliation": [ { "name": "Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, USA" } ], "authenticated-orcid": false, "family": "Xu", "given": "Duo", "sequence": "first" }, { "affiliation": [ { "name": "Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA" } ], "family": "Biswal", "given": "Mahamaya", "sequence": "additional" }, { "affiliation": [ { "name": "Institute for Integrative Genome Biology, Proteomics Core, University of California-Riverside, Riverside, CA 92521, USA" } ], "family": "Zhang", "given": "Quanqing", "sequence": "additional" }, { "affiliation": [ { "name": "Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, USA" } ], "family": "Light", "given": "Christine", "sequence": "additional" }, { "affiliation": [ { "name": "Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, USA" } ], "family": "Wu", "given": "Yijie", "sequence": "additional" }, { "affiliation": [ { "name": "Texas Biomedical Research Institute, San Antonio, TX 78227, USA" } ], "family": "Ye", "given": "Chenjin", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0001-7084-0804", "affiliation": [ { "name": "Texas Biomedical Research Institute, San Antonio, TX 78227, USA" } ], "authenticated-orcid": false, "family": "Martínez-Sobrido", "given": "Luis", "sequence": "additional" }, { "affiliation": [ { "name": "Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA" } ], "family": "Song", "given": "Jikui", "sequence": "additional" }, { "affiliation": [ { "name": "Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, USA" } ], "family": "Hai", "given": "Rong", "sequence": "additional" } ], "container-title": "Viruses", "container-title-short": "Viruses", "content-domain": { "crossmark-restriction": false, "domain": [] }, "created": { "date-parts": [ [ 2025, 7, 2 ] ], "date-time": "2025-07-02T11:55:43Z", "timestamp": 1751457343000 }, "deposited": { "date-parts": [ [ 2025, 7, 2 ] ], "date-time": "2025-07-02T11:59:55Z", "timestamp": 1751457595000 }, "funder": [ { "DOI": "10.13039/100000060", "award": [ "1R21AI147057", "R01AI153419" ], "doi-asserted-by": "publisher", "id": [ { "asserted-by": "publisher", "id": "10.13039/100000060", "id-type": "DOI" } ], "name": "NIAID" }, { "award": [ "T32 ES018827" ], "name": "NRSA T32" } ], "indexed": { "date-parts": [ [ 2025, 7, 2 ] ], "date-time": "2025-07-02T12:40:04Z", "timestamp": 1751460004211, "version": "3.41.0" }, "is-referenced-by-count": 0, "issue": "7", "issued": { "date-parts": [ [ 2025, 6, 27 ] ] }, "journal-issue": { "issue": "7", "published-online": { "date-parts": [ [ 2025, 7 ] ] } }, "language": "en", "license": [ { "URL": "https://creativecommons.org/licenses/by/4.0/", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 6, 27 ] ], "date-time": "2025-06-27T00:00:00Z", "timestamp": 1750982400000 } } ], "link": [ { "URL": "https://www.mdpi.com/1999-4915/17/7/912/pdf", "content-type": "unspecified", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "1968", "original-title": [], "page": "912", "prefix": "10.3390", "published": { "date-parts": [ [ 2025, 6, 27 ] ] }, "published-online": { "date-parts": [ [ 2025, 6, 27 ] ] }, "publisher": "MDPI AG", "reference": [ { "DOI": "10.1038/s41591-022-02107-4", "article-title": "Molecular states during acute COVID-19 reveal distinct etiologies of long-term sequelae", "author": "Thompson", "doi-asserted-by": "crossref", "first-page": "236", "journal-title": "Nat. Med.", "key": "ref_1", "volume": "29", "year": "2022" }, { "DOI": "10.1038/s41577-021-00656-2", "article-title": "Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses—Are we our own worst enemy?", "author": "Wong", "doi-asserted-by": "crossref", "first-page": "47", "journal-title": "Nat. Rev. Immunol.", "key": "ref_2", "volume": "22", "year": "2022" }, { "DOI": "10.1038/s41423-020-0514-8", "article-title": "SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70", "author": "Jiang", "doi-asserted-by": "crossref", "first-page": "998", "journal-title": "Cell. Mol. Immunol.", "key": "ref_3", "volume": "17", "year": "2020" }, { "DOI": "10.1002/pro.3909", "article-title": "Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein", "author": "Ye", "doi-asserted-by": "crossref", "first-page": "1890", "journal-title": "Protein Sci.", "key": "ref_4", "volume": "29", "year": "2020" }, { "DOI": "10.1101/2020.04.02.022194", "doi-asserted-by": "crossref", "key": "ref_5", "unstructured": "Dinesh, D.C., Chalupska, D., Silhan, J., Koutna, E., Nencka, R., Veverka, V., and Boura, E. (2020). Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathog., 16." }, { "DOI": "10.1038/s41467-023-38882-y", "article-title": "The preference signature of the SARS-CoV-2 Nucleocapsid NTD for its 5′-genomic RNA elements", "author": "Korn", "doi-asserted-by": "crossref", "first-page": "3331", "journal-title": "Nat. Commun.", "key": "ref_6", "volume": "14", "year": "2023" }, { "DOI": "10.1038/s41421-021-00306-w", "article-title": "Molecular determinants for regulation of G3BP1/2 phase separation by the SARS-CoV-2 nucleocapsid protein", "author": "Huang", "doi-asserted-by": "crossref", "first-page": "69", "journal-title": "Cell Discov.", "key": "ref_7", "volume": "7", "year": "2021" }, { "DOI": "10.1016/j.celrep.2024.113965", "article-title": "Interaction between host G3BP and viral nucleocapsid protein regulates SARS-CoV-2 replication and pathogenicity", "author": "Yang", "doi-asserted-by": "crossref", "first-page": "113965", "journal-title": "Cell Rep.", "key": "ref_8", "volume": "43", "year": "2024" }, { "DOI": "10.1038/s41467-024-44958-0", "article-title": "Proteomic analysis of SARS-CoV-2 particles unveils a key role of G3BP proteins in viral assembly", "author": "Murigneux", "doi-asserted-by": "crossref", "first-page": "640", "journal-title": "Nat. Commun.", "key": "ref_9", "volume": "15", "year": "2024" }, { "DOI": "10.1128/spectrum.00994-23", "doi-asserted-by": "crossref", "key": "ref_10", "unstructured": "LeBlanc, K., Lynch, J., Layne, C., Vendramelli, R., Sloan, A., Tailor, N., Deschambault, Y., Zhang, F., Kobasa, D., and Safronetz, D. (2023). The Nucleocapsid Proteins of SARS-CoV-2 and Its Close Relative Bat Coronavirus RaTG13 Are Capable of Inhibiting PKR- and RNase L-Mediated Antiviral Pathways. Microbiol. Spectr., 11." }, { "DOI": "10.1096/fj.202201973RR", "article-title": "The SARS-CoV-2 nucleocapsid protein suppresses innate immunity by remodeling stress granules to atypical foci", "author": "He", "doi-asserted-by": "crossref", "first-page": "e23269", "journal-title": "FASEB J.", "key": "ref_11", "volume": "37", "year": "2023" }, { "DOI": "10.1038/s41392-023-01420-9", "article-title": "Phase-separated nucleocapsid protein of SARS-CoV-2 suppresses cGAS-DNA recognition by disrupting cGAS-G3BP1 complex", "author": "Cai", "doi-asserted-by": "crossref", "first-page": "170", "journal-title": "Signal Transduct. Target. Ther.", "key": "ref_12", "volume": "8", "year": "2023" }, { "DOI": "10.1101/2022.09.02.506332", "doi-asserted-by": "crossref", "key": "ref_13", "unstructured": "Aloise, C., Schipper, J.G., van Vliet, A., Oymans, J., Donselaar, T., Hurdiss, D.L., de Groot, R.J., and van Kuppeveld, F.J.M. (2023). SARS-CoV-2 nucleocapsid protein inhibits the PKR-mediated integrated stress response through RNA-binding domain N2b. PLoS Pathog., 19." }, { "DOI": "10.1016/j.isci.2021.103562", "article-title": "SARS-CoV-2 nucleocapsid protein binds host mRNAs and attenuates stress granules to impair host stress response", "author": "Lee", "doi-asserted-by": "crossref", "first-page": "103562", "journal-title": "iScience", "key": "ref_14", "volume": "25", "year": "2022" }, { "DOI": "10.1128/jvi.00412-22", "article-title": "SARS-CoV-2 N Protein Antagonizes Stress Granule Assembly and IFN Production by Interacting with G3BPs to Facilitate Viral Replication", "author": "Liu", "doi-asserted-by": "crossref", "first-page": "e0041222", "journal-title": "J. Virol.", "key": "ref_15", "volume": "96", "year": "2022" }, { "DOI": "10.3389/fmicb.2022.997539", "doi-asserted-by": "crossref", "key": "ref_16", "unstructured": "Kim, D., Maharjan, S., Kang, M., Kim, J., Park, S., Kim, M., Baek, K., Kim, S., Suh, J.G., and Lee, Y. (2022). Differential effect of SARS-CoV-2 infection on stress granule formation in Vero and Calu-3 cells. Front. Microbiol., 13." }, { "DOI": "10.1016/j.jmb.2022.167516", "doi-asserted-by": "crossref", "key": "ref_17", "unstructured": "Biswal, M., Lu, J., and Song, J. (2022). SARS-CoV-2 Nucleocapsid Protein Targets a Conserved Surface Groove of the NTF2-like Domain of G3BP1. J. Mol. Biol., 434." }, { "DOI": "10.1038/s41421-021-00275-0", "article-title": "SARS-CoV-2 nucleocapsid protein impairs stress granule formation to promote viral replication", "author": "Zheng", "doi-asserted-by": "crossref", "first-page": "38", "journal-title": "Cell Discov.", "key": "ref_18", "volume": "7", "year": "2021" }, { "DOI": "10.1016/j.scib.2021.01.013", "article-title": "SARS-CoV-2 nucleocapsid protein phase separates with G3BPs to disassemble stress granules and facilitate viral production", "author": "Luo", "doi-asserted-by": "crossref", "first-page": "1194", "journal-title": "Sci. Bull.", "key": "ref_19", "volume": "66", "year": "2021" }, { "DOI": "10.1038/s41467-020-20768-y", "article-title": "The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein", "author": "Lu", "doi-asserted-by": "crossref", "first-page": "502", "journal-title": "Nat. Commun.", "key": "ref_20", "volume": "12", "year": "2021" }, { "DOI": "10.1038/s41467-021-26498-z", "article-title": "Large scale discovery of coronavirus-host factor protein interaction motifs reveals SARS-CoV-2 specific mechanisms and vulnerabilities", "author": "Kruse", "doi-asserted-by": "crossref", "first-page": "6761", "journal-title": "Nat. Commun.", "key": "ref_21", "volume": "12", "year": "2021" }, { "DOI": "10.1016/j.jbc.2021.101399", "doi-asserted-by": "crossref", "key": "ref_22", "unstructured": "Gerassimovich, Y.A., Miladinovski-Bangall, S.J., Bridges, K.M., Boateng, L., Ball, L.E., Valafar, H., and Nag, A. (2021). Proximity-dependent biotinylation detects associations between SARS coronavirus nonstructural protein 1 and stress granule-associated proteins. J. Biol. Chem., 297." }, { "DOI": "10.3390/pathogens10091155", "doi-asserted-by": "crossref", "key": "ref_23", "unstructured": "Zheng, X., Sun, Z., Yu, L., Shi, D., Zhu, M., Yao, H., and Li, L. (2021). Interactome Analysis of the Nucleocapsid Protein of SARS-CoV-2 Virus. Pathogens, 10." }, { "DOI": "10.1016/j.medj.2020.07.002", "article-title": "Virus-Host Interactome and Proteomic Survey Reveal Potential Virulence Factors Influencing SARS-CoV-2 Pathogenesis", "author": "Li", "doi-asserted-by": "crossref", "first-page": "99", "journal-title": "Med", "key": "ref_24", "volume": "2", "year": "2021" }, { "DOI": "10.3390/v13010047", "doi-asserted-by": "crossref", "key": "ref_25", "unstructured": "Chen, K., Xiao, F., Hu, D., Ge, W., Tian, M., Wang, W., Pan, P., Wu, K., and Wu, J. (2020). SARS-CoV-2 Nucleocapsid Protein Interacts with RIG-I and Represses RIG-Mediated IFN-β Production. Viruses, 13." }, { "DOI": "10.1126/science.abe9403", "article-title": "Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms", "author": "Gordon", "doi-asserted-by": "crossref", "first-page": "eabe9403", "journal-title": "Science", "key": "ref_26", "volume": "370", "year": "2020" }, { "DOI": "10.1038/nri.2017.63", "article-title": "Translation inhibition and stress granules in the antiviral immune response", "author": "McCormick", "doi-asserted-by": "crossref", "first-page": "647", "journal-title": "Nat. Rev. Immunol.", "key": "ref_27", "volume": "17", "year": "2017" }, { "DOI": "10.3389/fimmu.2021.718548", "doi-asserted-by": "crossref", "key": "ref_28", "unstructured": "Kang, W., Wang, Y., Yang, W., Zhang, J., Zheng, H., and Li, D. (2021). Research Progress on the Structure and Function of G3BP. Front. Immunol., 12." }, { "DOI": "10.1111/gtc.12023", "article-title": "Both G3BP1 and G3BP2 contribute to stress granule formation", "author": "Matsuki", "doi-asserted-by": "crossref", "first-page": "135", "journal-title": "Genes. Cells", "key": "ref_29", "volume": "18", "year": "2013" }, { "DOI": "10.1016/j.antiviral.2021.105064", "article-title": "Proteomic analysis identifies the RNA helicase DDX3X as a host target against SARS-CoV-2 infection", "author": "Ciccosanti", "doi-asserted-by": "crossref", "first-page": "105064", "journal-title": "Antivir. Res.", "key": "ref_30", "volume": "190", "year": "2021" }, { "article-title": "Treatment of allergy of the respiratory tract with beclomethasone dipropionate steroid aerosol", "author": "Brown", "first-page": "59", "journal-title": "Postgrad. Med. J.", "key": "ref_31", "volume": "51", "year": "1975" }, { "DOI": "10.1126/science.8036511", "article-title": "Conserved structures and diversity of functions of RNA-binding proteins", "author": "Burd", "doi-asserted-by": "crossref", "first-page": "615", "journal-title": "Science", "key": "ref_32", "volume": "265", "year": "1994" }, { "DOI": "10.1128/MCB.16.6.2561", "article-title": "A Ras-GTPase-activating protein SH3-domain-binding protein", "author": "Parker", "doi-asserted-by": "crossref", "first-page": "2561", "journal-title": "Mol. Cell Biol.", "key": "ref_33", "volume": "16", "year": "1996" }, { "DOI": "10.1128/MCB.18.9.5567", "article-title": "Ras-GAP controls Rho-mediated cytoskeletal reorganization through its SH3 domain", "author": "Leblanc", "doi-asserted-by": "crossref", "first-page": "5567", "journal-title": "Mol. Cell Biol.", "key": "ref_34", "volume": "18", "year": "1998" }, { "DOI": "10.1016/j.bbrc.2012.03.070", "article-title": "Stress granules contribute to α-globin homeostasis in differentiating erythroid cells", "author": "Ghisolfi", "doi-asserted-by": "crossref", "first-page": "768", "journal-title": "Biochem. Biophys. Res. Commun.", "key": "ref_35", "volume": "420", "year": "2012" }, { "DOI": "10.1002/jcb.1277", "article-title": "Characterization of G3BPs: Tissue specific expression, chromosomal localisation and rasGAP(120) binding studies", "author": "Kennedy", "doi-asserted-by": "crossref", "first-page": "173", "journal-title": "J. Cell Biochem.", "key": "ref_36", "volume": "84", "year": "2001" }, { "DOI": "10.1016/j.cell.2020.03.046", "article-title": "G3BP1 Is a Tunable Switch that Triggers Phase Separation to Assemble Stress Granules", "author": "Yang", "doi-asserted-by": "crossref", "first-page": "325", "journal-title": "Cell", "key": "ref_37", "volume": "181", "year": "2020" }, { "DOI": "10.1016/j.molcel.2020.06.037", "article-title": "Translational Repression of G3BP in Cancer and Germ Cells Suppresses Stress Granules and Enhances Stress Tolerance", "author": "Lee", "doi-asserted-by": "crossref", "first-page": "645", "journal-title": "Mol. Cell", "key": "ref_38", "volume": "79", "year": "2020" }, { "DOI": "10.1091/mbc.e12-05-0385", "article-title": "Large G3BP-induced granules trigger eIF2α phosphorylation", "author": "Reineke", "doi-asserted-by": "crossref", "first-page": "3499", "journal-title": "Mol. Biol. Cell", "key": "ref_39", "volume": "23", "year": "2012" }, { "DOI": "10.1038/nrm2694", "article-title": "RNA granules: Post-transcriptional and epigenetic modulators of gene expression", "author": "Anderson", "doi-asserted-by": "crossref", "first-page": "430", "journal-title": "Nat. Rev. Mol. Cell Biol.", "key": "ref_40", "volume": "10", "year": "2009" }, { "DOI": "10.1016/j.tibs.2007.12.003", "article-title": "Stress granules: The Tao of RNA triage", "author": "Anderson", "doi-asserted-by": "crossref", "first-page": "141", "journal-title": "Trends Biochem. Sci.", "key": "ref_41", "volume": "33", "year": "2008" }, { "DOI": "10.1016/j.tibs.2013.07.004", "article-title": "Stress granules and cell signaling: More than just a passing phase?", "author": "Kedersha", "doi-asserted-by": "crossref", "first-page": "494", "journal-title": "Trends Biochem. Sci.", "key": "ref_42", "volume": "38", "year": "2013" }, { "DOI": "10.1038/ncomms5819", "article-title": "eEF2 and Ras-GAP SH3 domain-binding protein (G3BP1) modulate stress granule assembly during HIV-1 infection", "author": "Melnychuk", "doi-asserted-by": "crossref", "first-page": "4819", "journal-title": "Nat. Commun.", "key": "ref_43", "volume": "5", "year": "2014" }, { "DOI": "10.1074/jbc.M411033200", "article-title": "Vaccinia virus intermediate stage transcription is complemented by Ras-GTPase-activating protein SH3 domain-binding protein (G3BP) and cytoplasmic activation/proliferation-associated protein (p137) individually or as a heterodimer", "author": "Katsafanas", "doi-asserted-by": "crossref", "first-page": "52210", "journal-title": "J. Biol. Chem.", "key": "ref_44", "volume": "279", "year": "2004" } ], "reference-count": 44, "references-count": 44, "relation": {}, "resource": { "primary": { "URL": "https://www.mdpi.com/1999-4915/17/7/912" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "Beyond Stress Granules: G3BP1 and G3BP2 Redundantly Suppress SARS-CoV-2 Infection", "type": "journal-article", "volume": "17" }
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Submit