Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchSelect treatment..Select..
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

 

Small molecules in the treatment of COVID-19

Lei et al., Signal Transduction and Targeted Therapy, doi:10.1038/s41392-022-01249-8, NCT04468139, Dec 2022
https://c19early.org/lei.html
Review of small molecule therapeutics for COVID-19, focusing on antiviral drugs and immunomodulatory agents. The review covers multiple therapeutic strategies including direct viral protein inhibition (targeting RdRp and Mpro), interference with host enzymes like ACE2 and proteases, and blocking immunoregulatory pathways such as JAK/STAT, BTK, NF-κB, and NLRP3 to address cytokine storm. Authors examine nucleoside/nucleotide analogs, protease inhibitors, flavonoids and terpenoids, and host protease inhibitors targeting TMPRSS2 and cathepsin L.
Lei et al., 5 Dec 2022, USA, peer-reviewed, 5 authors, trial NCT04468139 (history). Contact: duanxingmei2003@163.com, mendingbob@hotmail.com.
Abstract: Signal Transduction and Targeted Therapy REVIEW ARTICLE www.nature.com/sigtrans OPEN Small molecules in the treatment of COVID-19 Sibei Lei1, Xiaohua Chen2, Jieping Wu1, Xingmei Duan2 ✉ and Ke Men1 ✉ 1234567890();,: The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed. Signal Transduction and Targeted Therapy (2022)7:387
DOI record: { "DOI": "10.1038/s41392-022-01249-8", "ISSN": [ "2059-3635" ], "URL": "http://dx.doi.org/10.1038/s41392-022-01249-8", "abstract": "<jats:title>Abstract</jats:title><jats:p>The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and M<jats:sup>pro</jats:sup>, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.</jats:p>", "alternative-id": [ "1249" ], "article-number": "387", "assertion": [ { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "Received", "name": "received", "order": 1, "value": "26 July 2022" }, { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "Revised", "name": "revised", "order": 2, "value": "2 November 2022" }, { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "Accepted", "name": "accepted", "order": 3, "value": "8 November 2022" }, { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "First Online", "name": "first_online", "order": 4, "value": "5 December 2022" }, { "group": { "label": "Competing interests", "name": "EthicsHeading" }, "name": "Ethics", "order": 1, "value": "The authors declare no competing interests." } ], "author": [ { "affiliation": [], "family": "Lei", "given": "Sibei", "sequence": "first" }, { "affiliation": [], "family": "Chen", "given": "Xiaohua", "sequence": "additional" }, { "affiliation": [], "family": "Wu", "given": "Jieping", "sequence": "additional" }, { "affiliation": [], "family": "Duan", "given": "Xingmei", "sequence": "additional" }, { "affiliation": [], "family": "Men", "given": "Ke", "sequence": "additional" } ], "container-title": "Signal Transduction and Targeted Therapy", "container-title-short": "Sig Transduct Target Ther", "content-domain": { "crossmark-restriction": false, "domain": [ "link.springer.com" ] }, "created": { "date-parts": [ [ 2022, 12, 5 ] ], "date-time": "2022-12-05T01:02:27Z", "timestamp": 1670202147000 }, "deposited": { "date-parts": [ [ 2022, 12, 5 ] ], "date-time": "2022-12-05T01:03:40Z", "timestamp": 1670202220000 }, "funder": [ { "name": "the Science Foundation of Chengdu" }, { "DOI": "10.13039/501100001809", "award": [ "82003258" ], "doi-asserted-by": "publisher", "name": "National Natural Science Foundation of China" }, { "name": "the Medico-Engineering Cooperation Funds from university of Electronic Science and Technology of China" } ], "indexed": { "date-parts": [ [ 2024, 4, 18 ] ], "date-time": "2024-04-18T12:01:54Z", "timestamp": 1713441714821 }, "is-referenced-by-count": 45, "issue": "1", "issued": { "date-parts": [ [ 2022, 12, 5 ] ] }, "journal-issue": { "issue": "1", "published-online": { "date-parts": [ [ 2022, 12 ] ] } }, "language": "en", "license": [ { "URL": "https://creativecommons.org/licenses/by/4.0", "content-version": "tdm", "delay-in-days": 0, "start": { "date-parts": [ [ 2022, 12, 5 ] ], "date-time": "2022-12-05T00:00:00Z", "timestamp": 1670198400000 } }, { "URL": "https://creativecommons.org/licenses/by/4.0", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2022, 12, 5 ] ], "date-time": "2022-12-05T00:00:00Z", "timestamp": 1670198400000 } } ], "link": [ { "URL": "https://www.nature.com/articles/s41392-022-01249-8.pdf", "content-type": "application/pdf", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://www.nature.com/articles/s41392-022-01249-8", "content-type": "text/html", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://www.nature.com/articles/s41392-022-01249-8.pdf", "content-type": "application/pdf", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "297", "original-title": [], "prefix": "10.1038", "published": { "date-parts": [ [ 2022, 12, 5 ] ] }, "published-online": { "date-parts": [ [ 2022, 12, 5 ] ] }, "publisher": "Springer Science and Business Media LLC", "reference": [ { "DOI": "10.1038/s41591-021-01283-z", "author": "A Nalbandian", "doi-asserted-by": "publisher", "first-page": "601", "journal-title": "Nat. Med.", "key": "1249_CR1", "unstructured": "Nalbandian, A. et al. Post-acute COVID-19 syndrome. Nat. Med. 27, 601–615 (2021).", "volume": "27", "year": "2021" }, { "DOI": "10.1002/jmv.25681", "author": "Y Chen", "doi-asserted-by": "publisher", "first-page": "418", "journal-title": "J. Med. Virol.", "key": "1249_CR2", "unstructured": "Chen, Y., Liu, Q. & Guo, D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol. 92, 418–423 (2020).", "volume": "92", "year": "2020" }, { "DOI": "10.1038/s41564-020-0688-y", "author": "M Letko", "doi-asserted-by": "publisher", "first-page": "562", "journal-title": "Nat. Microbiol.", "key": "1249_CR3", "unstructured": "Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 5, 562–569 (2020).", "volume": "5", "year": "2020" }, { "DOI": "10.1038/s41467-022-28603-2", "author": "TCT Lan", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR4", "unstructured": "Lan, T. C. T. et al. Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells. Nat. Commun. 13, 1128 (2022).", "volume": "13", "year": "2022" }, { "DOI": "10.1016/j.bbrc.2020.08.116", "author": "Y Jiang", "doi-asserted-by": "publisher", "first-page": "47", "journal-title": "Biochem. Biophys. Res. Commun.", "key": "1249_CR5", "unstructured": "Jiang, Y., Yin, W. & Xu, H. E. RNA-dependent RNA polymerase: structure, mechanism, and drug discovery for COVID-19. Biochem. Biophys. Res. Commun. 538, 47–53 (2021).", "volume": "538", "year": "2021" }, { "DOI": "10.1016/j.bbrc.2020.10.091", "author": "Z Jin", "doi-asserted-by": "publisher", "first-page": "63", "journal-title": "Biochem. Biophys. Res. Commun.", "key": "1249_CR6", "unstructured": "Jin, Z., Wang, H., Duan, Y. & Yang, H. The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2. Biochem. Biophys. Res. Commun. 538, 63–71 (2021).", "volume": "538", "year": "2021" }, { "DOI": "10.1016/j.dsx.2020.04.020", "author": "I Astuti", "doi-asserted-by": "publisher", "first-page": "407", "journal-title": "Diabetes Metab. Syndr.", "key": "1249_CR7", "unstructured": "Astuti, I. & Ysrafil. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab. Syndr. 14, 407–412 (2020).", "volume": "14", "year": "2020" }, { "DOI": "10.1111/imr.12897", "author": "IG Ovsyannikova", "doi-asserted-by": "publisher", "first-page": "205", "journal-title": "Immunol. Rev.", "key": "1249_CR8", "unstructured": "Ovsyannikova, I. G., Haralambieva, I. H., Crooke, S. N., Poland, G. A. & Kennedy, R. B. The role of host genetics in the immune response to SARS-CoV-2 and COVID-19 susceptibility and severity. Immunol. Rev. 296, 205–219 (2020).", "volume": "296", "year": "2020" }, { "DOI": "10.1038/s41392-020-0191-1", "author": "M Catanzaro", "doi-asserted-by": "publisher", "first-page": "84", "journal-title": "Signal Transduct. Target Ther.", "key": "1249_CR9", "unstructured": "Catanzaro, M. et al. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct. Target Ther. 5, 84 (2020).", "volume": "5", "year": "2020" }, { "DOI": "10.1016/j.coviro.2021.11.002", "author": "EA Madden", "doi-asserted-by": "publisher", "first-page": "30", "journal-title": "Curr. Opin. Virol.", "key": "1249_CR10", "unstructured": "Madden, E. A. & Diamond, M. S. Host cell-intrinsic innate immune recognition of SARS-CoV-2. Curr. Opin. Virol. 52, 30–38 (2022).", "volume": "52", "year": "2022" }, { "DOI": "10.1038/s41573-021-00199-0", "author": "MJ Henley", "doi-asserted-by": "publisher", "first-page": "669", "journal-title": "Nat. Rev. Drug Discov.", "key": "1249_CR11", "unstructured": "Henley, M. J. & Koehler, A. N. Advances in targeting ‘undruggable’ transcription factors with small molecules. Nat. Rev. Drug Discov. 20, 669–688 (2021).", "volume": "20", "year": "2021" }, { "DOI": "10.1016/j.biopha.2021.111313", "author": "D Tian", "doi-asserted-by": "publisher", "first-page": "111313", "journal-title": "Biomed. Pharmacother.", "key": "1249_CR12", "unstructured": "Tian, D. et al. An update review of emerging small-molecule therapeutic options for COVID-19. Biomed. Pharmacother. 137, 111313 (2021).", "volume": "137", "year": "2021" }, { "DOI": "10.1039/D1CC07080K", "author": "M Billen", "doi-asserted-by": "publisher", "first-page": "4132", "journal-title": "Chem. Commun.", "key": "1249_CR13", "unstructured": "Billen, M., Schols, D. & Verwilst, P. Targeting chemokine receptors from the inside-out: discovery and development of small-molecule intracellular antagonists. Chem. Commun. 58, 4132–4148 (2022).", "volume": "58", "year": "2022" }, { "DOI": "10.1038/nrd.2018.93", "author": "KD Warner", "doi-asserted-by": "publisher", "first-page": "547", "journal-title": "Nat. Rev. Drug Discov.", "key": "1249_CR14", "unstructured": "Warner, K. D., Hajdin, C. E. & Weeks, K. M. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17, 547–558 (2018).", "volume": "17", "year": "2018" }, { "author": "R Rubin", "first-page": "2281", "journal-title": "J. Am. Med. Assoc.", "key": "1249_CR15", "unstructured": "Rubin, R. Baricitinib is first approved COVID-19 immunomodulatory treatment. J. Am. Med. Assoc. 327, 2281 (2022).", "volume": "327", "year": "2022" }, { "DOI": "10.1038/s41586-020-2368-8", "author": "HS Hillen", "doi-asserted-by": "publisher", "first-page": "154", "journal-title": "Nature", "key": "1249_CR16", "unstructured": "Hillen, H. S. et al. Structure of replicating SARS-CoV-2 polymerase. Nature 584, 154–156 (2020).", "volume": "584", "year": "2020" }, { "DOI": "10.1126/science.abb7498", "author": "Y Gao", "doi-asserted-by": "publisher", "first-page": "779", "journal-title": "Science", "key": "1249_CR17", "unstructured": "Gao, Y. et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368, 779–782 (2020).", "volume": "368", "year": "2020" }, { "DOI": "10.1016/j.cell.2020.05.034", "author": "Q Wang", "doi-asserted-by": "publisher", "first-page": "417", "journal-title": "Cell", "key": "1249_CR18", "unstructured": "Wang, Q. et al. Structural basis for RNA replication by the SARS-CoV-2 polymerase. Cell 182, 417–428e413 (2020).", "volume": "182", "year": "2020" }, { "DOI": "10.1126/science.abc1560", "author": "W Yin", "doi-asserted-by": "publisher", "first-page": "1499", "journal-title": "Science", "key": "1249_CR19", "unstructured": "Yin, W. et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368, 1499–1504 (2020).", "volume": "368", "year": "2020" }, { "DOI": "10.1038/s41580-021-00432-z", "author": "B Malone", "doi-asserted-by": "publisher", "first-page": "21", "journal-title": "Nat. Rev. Mol. Cell Biol.", "key": "1249_CR20", "unstructured": "Malone, B., Urakova, N., Snijder, E. J. & Campbell, E. A. Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat. Rev. Mol. Cell Biol. 23, 21–39 (2022).", "volume": "23", "year": "2022" }, { "DOI": "10.1016/j.jbc.2022.101923", "author": "E Grellet", "doi-asserted-by": "publisher", "first-page": "101923", "journal-title": "J. Biol. Chem.", "key": "1249_CR21", "unstructured": "Grellet, E., L’Hote, I., Goulet, A. & Imbert, I. Replication of the coronavirus genome: a paradox among positive-strand RNA viruses. J. Biol. Chem. 298, 101923 (2022).", "volume": "298", "year": "2022" }, { "DOI": "10.1073/pnas.1323705111", "author": "L Subissi", "doi-asserted-by": "publisher", "first-page": "E3900", "journal-title": "Proc. Natl Acad. Sci. USA", "key": "1249_CR22", "unstructured": "Subissi, L. et al. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl Acad. Sci. USA 111, E3900–E3909 (2014).", "volume": "111", "year": "2014" }, { "DOI": "10.1002/anie.202008835", "author": "H Su", "doi-asserted-by": "publisher", "first-page": "9789", "journal-title": "Angew. Chem. Int. Ed. Engl.", "key": "1249_CR23", "unstructured": "Su, H. et al. Molecular insights into small-molecule drug discovery for SARS-CoV-2. Angew. Chem. Int. Ed. Engl. 60, 9789–9802 (2021).", "volume": "60", "year": "2021" }, { "DOI": "10.1016/j.ijantimicag.2022.106542", "author": "LN Jeffreys", "doi-asserted-by": "publisher", "first-page": "106542", "journal-title": "Int. J. Antimicrob. Agents", "key": "1249_CR24", "unstructured": "Jeffreys, L. N. et al. Remdesivir-ivermectin combination displays synergistic interaction with improved in vitro activity against SARS-CoV-2. Int. J. Antimicrob. Agents 59, 106542 (2022).", "volume": "59", "year": "2022" }, { "DOI": "10.1016/j.jbc.2021.100770", "author": "CJ Gordon", "doi-asserted-by": "publisher", "first-page": "100770", "journal-title": "J. Biol. Chem.", "key": "1249_CR25", "unstructured": "Gordon, C. J., Tchesnokov, E. P., Schinazi, R. F. & Gotte, M. Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template. J. Biol. Chem. 297, 100770 (2021).", "volume": "297", "year": "2021" }, { "DOI": "10.1016/j.drup.2003.12.003", "author": "MS Freistadt", "doi-asserted-by": "publisher", "first-page": "19", "journal-title": "Drug Resist. Updat.", "key": "1249_CR26", "unstructured": "Freistadt, M. S., Meades, G. D. & Cameron, C. E. Lethal mutagens: broad-spectrum antivirals with limited potential for development of resistance? Drug Resist. Updat. 7, 19–24 (2004).", "volume": "7", "year": "2004" }, { "DOI": "10.1126/science.1699273", "author": "H Mitsuya", "doi-asserted-by": "publisher", "first-page": "1533", "journal-title": "Science", "key": "1249_CR27", "unstructured": "Mitsuya, H., Yarchoan, R. & Broder, S. Molecular targets for AIDS therapy. Science 249, 1533–1544 (1990).", "volume": "249", "year": "1990" }, { "DOI": "10.3390/v14040841", "doi-asserted-by": "crossref", "key": "1249_CR28", "unstructured": "Hadj Hassine, I., Ben M’hadheb, M. & Menendez-Arias, L. Lethal mutagenesis of RNA viruses and approved drugs with antiviral mutagenic activity. Viruses. 14, 841 (2022)." }, { "DOI": "10.1056/NEJMra1901594", "author": "H Feldmann", "doi-asserted-by": "publisher", "first-page": "1832", "journal-title": "N. Engl. J. Med.", "key": "1249_CR29", "unstructured": "Feldmann, H., Sprecher, A. & Geisbert, T. W. Ebola. N. Engl. J. Med. 382, 1832–1842 (2020).", "volume": "382", "year": "2020" }, { "DOI": "10.1002/rmv.2133", "author": "A Nili", "doi-asserted-by": "publisher", "first-page": "1", "journal-title": "Rev. Med Virol.", "key": "1249_CR30", "unstructured": "Nili, A. et al. Remdesivir: a beacon of hope from Ebola virus disease to COVID-19. Rev. Med Virol. 30, 1–13 (2020).", "volume": "30", "year": "2020" }, { "DOI": "10.1016/j.bbrc.2020.11.043", "author": "MG Santoro", "doi-asserted-by": "publisher", "first-page": "145", "journal-title": "Biochem. Biophys. Res. Commun.", "key": "1249_CR31", "unstructured": "Santoro, M. G. & Carafoli, E. Remdesivir: from Ebola to COVID-19. Biochem. Biophys. Res. Commun. 538, 145–150 (2021).", "volume": "538", "year": "2021" }, { "DOI": "10.1007/s40265-020-01378-w", "author": "YN Lamb", "doi-asserted-by": "publisher", "first-page": "1355", "journal-title": "Drugs", "key": "1249_CR32", "unstructured": "Lamb, Y. N. Remdesivir: first approval. Drugs 80, 1355–1363 (2020).", "volume": "80", "year": "2020" }, { "DOI": "10.1038/s41467-020-20542-0", "author": "G Kokic", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR33", "unstructured": "Kokic, G. et al. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat. Commun. 12, 279 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.1016/j.antiviral.2016.12.021", "author": "S Potisopon", "doi-asserted-by": "publisher", "first-page": "25", "journal-title": "Antivir. Res.", "key": "1249_CR34", "unstructured": "Potisopon, S., Ferron, F., Fattorini, V., Selisko, B. & Canard, B. Substrate selectivity of Dengue and Zika virus NS5 polymerase towards 2’-modified nucleotide analogues. Antivir. Res. 140, 25–36 (2017).", "volume": "140", "year": "2017" }, { "DOI": "10.3389/fimmu.2022.855496", "author": "L Tian", "doi-asserted-by": "publisher", "first-page": "855496", "journal-title": "Front. Immunol.", "key": "1249_CR35", "unstructured": "Tian, L. et al. Molnupiravir and its antiviral activity against COVID-19. Front. Immunol. 13, 855496 (2022).", "volume": "13", "year": "2022" }, { "DOI": "10.1016/j.cmi.2022.04.015", "doi-asserted-by": "crossref", "key": "1249_CR36", "unstructured": "Sendi, P., Razonable, R. R., Nelson, S. B., Soriano, A. & Gandhi, R. T. First-generation oral antivirals against SARS-CoV-2. Clin. Microbiol. Infect. 28, 1230–1235 (2022)." }, { "DOI": "10.1002/jmv.27730", "author": "S Masyeni", "doi-asserted-by": "publisher", "first-page": "3006", "journal-title": "J. Med. Virol.", "key": "1249_CR37", "unstructured": "Masyeni, S. et al. Molnupiravir: a lethal mutagenic drug against rapidly mutating severe acute respiratory syndrome coronavirus 2-A narrative review. J. Med. Virol. 94, 3006–3016 (2022).", "volume": "94", "year": "2022" }, { "DOI": "10.1038/s41594-021-00651-0", "author": "F Kabinger", "doi-asserted-by": "publisher", "first-page": "740", "journal-title": "Nat. Struct. Mol. Biol.", "key": "1249_CR38", "unstructured": "Kabinger, F. et al. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat. Struct. Mol. Biol. 28, 740–746 (2021).", "volume": "28", "year": "2021" }, { "DOI": "10.1038/ncomms5794", "author": "PP Cheung", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR39", "unstructured": "Cheung, P. P. et al. Generation and characterization of influenza A viruses with altered polymerase fidelity. Nat. Commun. 5, 4794 (2014).", "volume": "5", "year": "2014" }, { "DOI": "10.1016/0163-7258(79)90058-5", "author": "RW Sidwell", "doi-asserted-by": "publisher", "first-page": "123", "journal-title": "Pharm. Ther.", "key": "1249_CR40", "unstructured": "Sidwell, R. W., Robins, R. K. & Hillyard, I. W. Ribavirin: an antiviral agent. Pharm. Ther. 6, 123–146 (1979).", "volume": "6", "year": "1979" }, { "DOI": "10.1016/j.drup.2021.100794", "author": "S Drozdzal", "doi-asserted-by": "publisher", "first-page": "100794", "journal-title": "Drug Resist. Updat.", "key": "1249_CR41", "unstructured": "Drozdzal, S. et al. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist. Updat. 59, 100794 (2021).", "volume": "59", "year": "2021" }, { "DOI": "10.1016/j.jmii.2020.03.034", "author": "SS Jean", "doi-asserted-by": "publisher", "first-page": "436", "journal-title": "J. Microbiol. Immunol. Infect.", "key": "1249_CR42", "unstructured": "Jean, S. S., Lee, P. I. & Hsueh, P. R. Treatment options for COVID-19: the reality and challenges. J. Microbiol. Immunol. Infect. 53, 436–443 (2020).", "volume": "53", "year": "2020" }, { "DOI": "10.1021/acscentsci.0c01242", "author": "F Bylehn", "doi-asserted-by": "publisher", "first-page": "164", "journal-title": "ACS Cent. Sci.", "key": "1249_CR43", "unstructured": "Bylehn, F., Menendez, C. A., Perez-Lemus, G. R., Alvarado, W. & de Pablo, J. J. Modeling the binding mechanism of remdesivir, favilavir, and ribavirin to SARS-CoV-2 RNA-dependent RNA polymerase. ACS Cent. Sci. 7, 164–174 (2021).", "volume": "7", "year": "2021" }, { "DOI": "10.1016/j.antiviral.2013.09.015", "author": "Y Furuta", "doi-asserted-by": "publisher", "first-page": "446", "journal-title": "Antivir. Res.", "key": "1249_CR44", "unstructured": "Furuta, Y. et al. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antivir. Res. 100, 446–454 (2013).", "volume": "100", "year": "2013" }, { "DOI": "10.1016/j.ijid.2020.10.069", "author": "S Joshi", "doi-asserted-by": "publisher", "first-page": "501", "journal-title": "Int. J. Infect. Dis.", "key": "1249_CR45", "unstructured": "Joshi, S. et al. Role of favipiravir in the treatment of COVID-19. Int. J. Infect. Dis. 102, 501–508 (2021).", "volume": "102", "year": "2021" }, { "DOI": "10.3390/jcm10020273", "doi-asserted-by": "crossref", "key": "1249_CR46", "unstructured": "Lagocka, R., Dziedziejko, V., Klos, P. & Pawlik, A. Favipiravir in therapy of viral infections. J. Clin. Med. 10, 273 (2021)." }, { "DOI": "10.1016/j.pharmthera.2020.107512", "author": "K Shiraki", "doi-asserted-by": "publisher", "first-page": "107512", "journal-title": "Pharm. Ther.", "key": "1249_CR47", "unstructured": "Shiraki, K. & Daikoku, T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharm. Ther. 209, 107512 (2020).", "volume": "209", "year": "2020" }, { "DOI": "10.1038/s41467-020-18463-z", "author": "A Shannon", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR48", "unstructured": "Shannon, A. et al. Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis. Nat. Commun. 11, 4682 (2020).", "volume": "11", "year": "2020" }, { "DOI": "10.1016/j.xinn.2021.100080", "doi-asserted-by": "crossref", "key": "1249_CR49", "unstructured": "Peng, Q. et al. Structural basis of SARS-CoV-2 polymerase inhibition by favipiravir. Innovations. 2, 100080 (2021)." }, { "DOI": "10.1073/pnas.2021946118", "doi-asserted-by": "crossref", "key": "1249_CR50", "unstructured": "Naydenova, K. et al. Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP. Proc. Natl Acad. Sci. USA 118, e2021946118 (2021)." }, { "DOI": "10.1038/s41467-022-28113-1", "author": "A Shannon", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR51", "unstructured": "Shannon, A. et al. A dual mechanism of action of AT-527 against SARS-CoV-2 polymerase. Nat. Commun. 13, 621 (2022).", "volume": "13", "year": "2022" }, { "DOI": "10.1128/AAC.02479-20", "doi-asserted-by": "crossref", "key": "1249_CR52", "unstructured": "Good, S. S. et al. AT-527, a double prodrug of a guanosine nucleotide analog, is a potent inhibitor of SARS-CoV-2 In vitro and a promising oral antiviral for treatment of COVID-19. Antimicrob. Agents Chemother. 65, e02479–20 (2021)." }, { "DOI": "10.1016/j.antiviral.2022.105360", "author": "CC Melo-Filho", "doi-asserted-by": "publisher", "first-page": "105360", "journal-title": "Antivir. Res.", "key": "1249_CR53", "unstructured": "Melo-Filho, C. C. et al. Conserved coronavirus proteins as targets of broad-spectrum antivirals. Antivir. Res. 204, 105360 (2022).", "volume": "204", "year": "2022" }, { "DOI": "10.1056/NEJMoa1402454", "author": "N Afdhal", "doi-asserted-by": "publisher", "first-page": "1889", "journal-title": "N. Engl. J. Med.", "key": "1249_CR54", "unstructured": "Afdhal, N. et al. Ledipasvir and sofosbuvir for untreated HCV genotype 1 infection. N. Engl. J. Med. 370, 1889–1898 (2014).", "volume": "370", "year": "2014" }, { "DOI": "10.1056/NEJMoa1512612", "author": "GR Foster", "doi-asserted-by": "publisher", "first-page": "2608", "journal-title": "N. Engl. J. Med.", "key": "1249_CR55", "unstructured": "Foster, G. R. et al. Sofosbuvir and Velpatasvir for HCV Genotype 2 and 3 Infection. N. Engl. J. Med. 373, 2608–2617 (2015).", "volume": "373", "year": "2015" }, { "DOI": "10.1007/s40265-014-0179-7", "author": "GM Keating", "doi-asserted-by": "publisher", "first-page": "273", "journal-title": "Drugs", "key": "1249_CR56", "unstructured": "Keating, G. M. & Vaidya, A. Sofosbuvir: first global approval. Drugs 74, 273–282 (2014).", "volume": "74", "year": "2014" }, { "DOI": "10.1056/NEJMoa1214853", "author": "E Lawitz", "doi-asserted-by": "publisher", "first-page": "1878", "journal-title": "N. Engl. J. Med.", "key": "1249_CR57", "unstructured": "Lawitz, E. et al. Sofosbuvir for previously untreated chronic hepatitis C infection. N. Engl. J. Med. 368, 1878–1887 (2013).", "volume": "368", "year": "2013" }, { "DOI": "10.1126/science.1259210", "author": "TC Appleby", "doi-asserted-by": "publisher", "first-page": "771", "journal-title": "Science", "key": "1249_CR58", "unstructured": "Appleby, T. C. et al. Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase. Science 347, 771–775 (2015).", "volume": "347", "year": "2015" }, { "DOI": "10.1093/jac/dkab072", "author": "CQ Sacramento", "doi-asserted-by": "publisher", "first-page": "1874", "journal-title": "J. Antimicrob. Chemother.", "key": "1249_CR59", "unstructured": "Sacramento, C. Q. et al. In vitro antiviral activity of the anti-HCV drugs daclatasvir and sofosbuvir against SARS-CoV-2, the aetiological agent of COVID-19. J. Antimicrob. Chemother. 76, 1874–1885 (2021).", "volume": "76", "year": "2021" }, { "DOI": "10.1038/nature13027", "author": "TK Warren", "doi-asserted-by": "publisher", "first-page": "402", "journal-title": "Nature", "key": "1249_CR60", "unstructured": "Warren, T. K. et al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature 508, 402–405 (2014).", "volume": "508", "year": "2014" }, { "DOI": "10.1016/j.lfs.2020.117592", "author": "AA Elfiky", "doi-asserted-by": "publisher", "first-page": "117592", "journal-title": "Life Sci.", "key": "1249_CR61", "unstructured": "Elfiky, A. A. Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study. Life Sci. 253, 117592 (2020).", "volume": "253", "year": "2020" }, { "DOI": "10.1166/jnn.2020.18955", "author": "TD Silva Arouche", "doi-asserted-by": "publisher", "first-page": "7311", "journal-title": "J. Nanosci. Nanotechnol.", "key": "1249_CR62", "unstructured": "Silva Arouche, T. D. et al. Interactions between remdesivir, ribavirin, favipiravir, galidesivir, hydroxychloroquine and chloroquine with fragment molecular of the COVID-19 main protease with inhibitor N3 complex (PDB ID:6LU7) using molecular docking. J. Nanosci. Nanotechnol. 20, 7311–7323 (2020).", "volume": "20", "year": "2020" }, { "DOI": "10.1126/scitranslmed.aau9135", "doi-asserted-by": "crossref", "key": "1249_CR63", "unstructured": "Lim, S. Y. et al. A direct-acting antiviral drug abrogates viremia in Zika virus-infected rhesus macaques. Sci. Transl. Med. 12 (2020)." }, { "DOI": "10.1089/nat.2020.0921", "author": "EM Holgersen", "doi-asserted-by": "publisher", "first-page": "392", "journal-title": "Nucleic Acid Ther.", "key": "1249_CR64", "unstructured": "Holgersen, E. M. et al. Transcriptome-wide off-target effects of steric-blocking oligonucleotides. Nucleic Acid Ther. 31, 392–403 (2021).", "volume": "31", "year": "2021" }, { "DOI": "10.1038/s41392-020-0178-y", "author": "HM Mengist", "doi-asserted-by": "publisher", "first-page": "67", "journal-title": "Signal Transduct. Target Ther.", "key": "1249_CR65", "unstructured": "Mengist, H. M., Fan, X. & Jin, T. Designing of improved drugs for COVID-19: crystal structure of SARS-CoV-2 main protease M(pro). Signal Transduct. Target Ther. 5, 67 (2020).", "volume": "5", "year": "2020" }, { "DOI": "10.1038/s41589-020-00689-z", "author": "W Rut", "doi-asserted-by": "publisher", "first-page": "222", "journal-title": "Nat. Chem. Biol.", "key": "1249_CR66", "unstructured": "Rut, W. et al. SARS-CoV-2 M(pro) inhibitors and activity-based probes for patient-sample imaging. Nat. Chem. Biol. 17, 222–228 (2021).", "volume": "17", "year": "2021" }, { "DOI": "10.1038/s41586-020-2008-3", "author": "F Wu", "doi-asserted-by": "publisher", "first-page": "265", "journal-title": "Nature", "key": "1249_CR67", "unstructured": "Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020).", "volume": "579", "year": "2020" }, { "DOI": "10.1038/s41586-020-2223-y", "author": "Z Jin", "doi-asserted-by": "publisher", "first-page": "289", "journal-title": "Nature", "key": "1249_CR68", "unstructured": "Jin, Z. et al. Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature 582, 289–293 (2020).", "volume": "582", "year": "2020" }, { "DOI": "10.1038/s41392-020-00291-8", "author": "Y Chen", "doi-asserted-by": "publisher", "first-page": "173", "journal-title": "Signal Transduct. Target Ther.", "key": "1249_CR69", "unstructured": "Chen, Y., Wang, G. & Ouyang, L. Promising inhibitors targeting M(pro): an ideal strategy for anti-SARS-CoV-2 drug discovery. Signal Transduct. Target Ther. 5, 173 (2020).", "volume": "5", "year": "2020" }, { "DOI": "10.1126/science.abb4489", "author": "W Dai", "doi-asserted-by": "publisher", "first-page": "1331", "journal-title": "Science", "key": "1249_CR70", "unstructured": "Dai, W. et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 368, 1331–1335 (2020).", "volume": "368", "year": "2020" }, { "DOI": "10.1080/07391102.2021.1993341", "doi-asserted-by": "crossref", "key": "1249_CR71", "unstructured": "Elseginy, S. A. Virtual screening and structure-based 3D pharmacophore approach to identify small-molecule inhibitors of SARS-CoV-2 M(pro). J. Biomol. Struct. Dyn. 1–17 (2021)." }, { "DOI": "10.1126/science.abb3405", "author": "L Zhang", "doi-asserted-by": "publisher", "first-page": "409", "journal-title": "Science", "key": "1249_CR72", "unstructured": "Zhang, L. et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science 368, 409–412 (2020).", "volume": "368", "year": "2020" }, { "DOI": "10.1016/j.bioorg.2020.104269", "author": "Faheem", "doi-asserted-by": "publisher", "first-page": "104269", "journal-title": "Bioorg. Chem.", "key": "1249_CR73", "unstructured": "Faheem et al. Druggable targets of SARS-CoV-2 and treatment opportunities for COVID-19. Bioorg. Chem. 104, 104269 (2020).", "volume": "104", "year": "2020" }, { "DOI": "10.1038/s41598-020-74099-5", "author": "TS Komatsu", "doi-asserted-by": "publisher", "journal-title": "Sci. Rep.", "key": "1249_CR74", "unstructured": "Komatsu, T. S. et al. Drug binding dynamics of the dimeric SARS-CoV-2 main protease, determined by molecular dynamics simulation. Sci. Rep. 10, 16986 (2020).", "volume": "10", "year": "2020" }, { "DOI": "10.1039/D0RA08304F", "author": "V Frecer", "doi-asserted-by": "publisher", "first-page": "40244", "journal-title": "RSC Adv.", "key": "1249_CR75", "unstructured": "Frecer, V. & Miertus, S. Antiviral agents against COVID-19: structure-based design of specific peptidomimetic inhibitors of SARS-CoV-2 main protease. RSC Adv. 10, 40244–40263 (2020).", "volume": "10", "year": "2020" }, { "DOI": "10.1016/j.bbrc.2020.08.086", "author": "TH Shi", "doi-asserted-by": "publisher", "first-page": "467", "journal-title": "Biochem. Biophys. Res. Commun.", "key": "1249_CR76", "unstructured": "Shi, T. H. et al. Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV through covalent linkage. Biochem. Biophys. Res. Commun. 533, 467–473 (2020).", "volume": "533", "year": "2020" }, { "DOI": "10.1021/acs.jmedchem.1c00509", "author": "N Kitamura", "doi-asserted-by": "publisher", "first-page": "2848", "journal-title": "J. Med. Chem.", "key": "1249_CR77", "unstructured": "Kitamura, N. et al. Expedited approach toward the rational design of noncovalent SARS-CoV-2 main protease inhibitors. J. Med. Chem. 65, 2848–2865 (2022).", "volume": "65", "year": "2022" }, { "DOI": "10.1021/acs.jmedchem.2c00117", "author": "Y Unoh", "doi-asserted-by": "publisher", "first-page": "6499", "journal-title": "J. Med. Chem.", "key": "1249_CR78", "unstructured": "Unoh, Y. et al. Discovery of S-217622, a noncovalent oral SARS-CoV-2 3CL protease inhibitor clinical candidate for treating COVID-19. J. Med. Chem. 65, 6499–6512 (2022).", "volume": "65", "year": "2022" }, { "DOI": "10.1126/science.abf1611", "author": "J Qiao", "doi-asserted-by": "publisher", "first-page": "1374", "journal-title": "Science", "key": "1249_CR79", "unstructured": "Qiao, J. et al. SARS-CoV-2 M(pro) inhibitors with antiviral activity in a transgenic mouse model. Science 371, 1374–1378 (2021).", "volume": "371", "year": "2021" }, { "DOI": "10.1021/jacs.1c08060", "author": "C Ma", "doi-asserted-by": "publisher", "first-page": "20697", "journal-title": "J. Am. Chem. Soc.", "key": "1249_CR80", "unstructured": "Ma, C. et al. Discovery of di- and trihaloacetamides as covalent SARS-CoV-2 main protease inhibitors with high target specificity. J. Am. Chem. Soc. 143, 20697–20709 (2021).", "volume": "143", "year": "2021" }, { "DOI": "10.1038/s41564-022-01119-7", "author": "BX Quan", "doi-asserted-by": "publisher", "first-page": "716", "journal-title": "Nat. Microbiol.", "key": "1249_CR81", "unstructured": "Quan, B. X. et al. An orally available M(pro) inhibitor is effective against wild-type SARS-CoV-2 and variants including Omicron. Nat. Microbiol. 7, 716–725 (2022).", "volume": "7", "year": "2022" }, { "DOI": "10.1016/j.bmc.2020.115860", "author": "SA Amin", "doi-asserted-by": "publisher", "first-page": "115860", "journal-title": "Bioorg. Med. Chem.", "key": "1249_CR82", "unstructured": "Amin, S. A., Banerjee, S., Ghosh, K., Gayen, S. & Jha, T. Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors. Bioorg. Med. Chem. 29, 115860 (2021).", "volume": "29", "year": "2021" }, { "DOI": "10.1080/07391102.2020.1798286", "author": "P Sharma", "doi-asserted-by": "publisher", "first-page": "6649", "journal-title": "J. Biomol. Struct. Dyn.", "key": "1249_CR83", "unstructured": "Sharma, P. et al. Identification of potential drug candidates to combat COVID-19: a structural study using the main protease (mpro) of SARS-CoV-2. J. Biomol. Struct. Dyn. 39, 6649–6659 (2021).", "volume": "39", "year": "2021" }, { "DOI": "10.1126/science.abl4784", "author": "DR Owen", "doi-asserted-by": "publisher", "first-page": "1586", "journal-title": "Science", "key": "1249_CR84", "unstructured": "Owen, D. R. et al. An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19. Science 374, 1586–1593 (2021).", "volume": "374", "year": "2021" }, { "DOI": "10.1016/j.compbiolchem.2020.107292", "author": "J Liang", "doi-asserted-by": "publisher", "first-page": "107292", "journal-title": "Comput. Biol. Chem.", "key": "1249_CR85", "unstructured": "Liang, J. et al. Interaction of the prototypical alpha-ketoamide inhibitor with the SARS-CoV-2 main protease active site in silico: Molecular dynamic simulations highlight the stability of the ligand-protein complex. Comput. Biol. Chem. 87, 107292 (2020).", "volume": "87", "year": "2020" }, { "DOI": "10.1038/s41467-022-29915-z", "author": "DW Kneller", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR86", "unstructured": "Kneller, D. W. et al. Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease. Nat. Commun. 13, 2268 (2022).", "volume": "13", "year": "2022" }, { "DOI": "10.1038/s41467-021-23313-7", "author": "K Amporndanai", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR87", "unstructured": "Amporndanai, K. et al. Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nat. Commun. 12, 3061 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.1126/science.abf7945", "author": "S Gunther", "doi-asserted-by": "publisher", "first-page": "642", "journal-title": "Science", "key": "1249_CR88", "unstructured": "Gunther, S. et al. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science 372, 642–646 (2021).", "volume": "372", "year": "2021" }, { "DOI": "10.1021/acsomega.0c04808", "author": "A Gupta", "doi-asserted-by": "publisher", "first-page": "33151", "journal-title": "ACS Omega", "key": "1249_CR89", "unstructured": "Gupta, A. et al. Structure-based virtual screening and biochemical validation to discover a potential inhibitor of the SARS-CoV-2 main protease. ACS Omega 5, 33151–33161 (2020).", "volume": "5", "year": "2020" }, { "DOI": "10.1016/j.micpath.2020.104241", "author": "E Khodadadi", "doi-asserted-by": "publisher", "first-page": "104241", "journal-title": "Microb. Pathog.", "key": "1249_CR90", "unstructured": "Khodadadi, E. et al. Study of combining virtual screening and antiviral treatments of the Sars-CoV-2 (Covid-19). Microb. Pathog. 146, 104241 (2020).", "volume": "146", "year": "2020" }, { "DOI": "10.1038/s41467-021-20900-6", "author": "SI Hattori", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR91", "unstructured": "Hattori, S. I. et al. A small molecule compound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat. Commun. 12, 668 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.1042/BST20211180", "author": "A Narayanan", "doi-asserted-by": "publisher", "first-page": "151", "journal-title": "Biochem. Soc. Trans.", "key": "1249_CR92", "unstructured": "Narayanan, A., Toner, S. A. & Jose, J. Structure-based inhibitor design and repurposing clinical drugs to target SARS-CoV-2 proteases. Biochem. Soc. Trans. 50, 151–165 (2022).", "volume": "50", "year": "2022" }, { "DOI": "10.1038/s41579-021-00630-8", "author": "H Yang", "doi-asserted-by": "publisher", "first-page": "685", "journal-title": "Nat. Rev. Microbiol", "key": "1249_CR93", "unstructured": "Yang, H. & Rao, Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat. Rev. Microbiol 19, 685–700 (2021).", "volume": "19", "year": "2021" }, { "DOI": "10.1038/s41467-021-23751-3", "author": "H Su", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR94", "unstructured": "Su, H. et al. Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease. Nat. Commun. 12, 3623 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.1038/s41467-020-18233-x", "author": "L Fu", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR95", "unstructured": "Fu, L. et al. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat. Commun. 11, 4417 (2020).", "volume": "11", "year": "2020" }, { "DOI": "10.1038/s41422-020-0356-z", "author": "C Ma", "doi-asserted-by": "publisher", "first-page": "678", "journal-title": "Cell Res", "key": "1249_CR96", "unstructured": "Ma, C. et al. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res 30, 678–692 (2020).", "volume": "30", "year": "2020" }, { "DOI": "10.1038/s41467-020-18096-2", "author": "W Vuong", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR97", "unstructured": "Vuong, W. et al. Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat. Commun. 11, 4282 (2020).", "volume": "11", "year": "2020" }, { "DOI": "10.1126/science.abg5827", "author": "N Drayman", "doi-asserted-by": "publisher", "first-page": "931", "journal-title": "Science", "key": "1249_CR98", "unstructured": "Drayman, N. et al. Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science 373, 931–936 (2021).", "volume": "373", "year": "2021" }, { "DOI": "10.1016/j.apsb.2020.08.014", "author": "X Gao", "doi-asserted-by": "publisher", "first-page": "237", "journal-title": "Acta Pharm. Sin. B", "key": "1249_CR99", "unstructured": "Gao, X. et al. Crystal structure of SARS-CoV-2 papain-like protease. Acta Pharm. Sin. B 11, 237–245 (2021).", "volume": "11", "year": "2021" }, { "DOI": "10.1126/sciadv.abd4596", "author": "W Rut", "doi-asserted-by": "publisher", "first-page": "eabd4596", "journal-title": "Sci. Adv.", "key": "1249_CR100", "unstructured": "Rut, W. et al. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: a framework for anti-COVID-19 drug design. Sci. Adv. 6, eabd4596 (2020).", "volume": "6", "year": "2020" }, { "DOI": "10.1038/s41598-021-83229-6", "author": "E Weglarz-Tomczak", "doi-asserted-by": "publisher", "journal-title": "Sci. Rep.", "key": "1249_CR101", "unstructured": "Weglarz-Tomczak, E. et al. Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2. Sci. Rep. 11, 3640 (2021).", "volume": "11", "year": "2021" }, { "DOI": "10.15252/embj.2020106275", "author": "T Klemm", "doi-asserted-by": "publisher", "first-page": "e106275", "journal-title": "EMBO J.", "key": "1249_CR102", "unstructured": "Klemm, T. et al. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J. 39, e106275 (2020).", "volume": "39", "year": "2020" }, { "DOI": "10.1038/s41392-020-00335-z", "author": "CB McClain", "doi-asserted-by": "publisher", "first-page": "223", "journal-title": "Signal Transduct. Target Ther.", "key": "1249_CR103", "unstructured": "McClain, C. B. & Vabret, N. SARS-CoV-2: the many pros of targeting PLpro. Signal Transduct. Target Ther. 5, 223 (2020).", "volume": "5", "year": "2020" }, { "DOI": "10.1016/j.celrep.2021.109754", "author": "S Patchett", "doi-asserted-by": "publisher", "first-page": "109754", "journal-title": "Cell Rep.", "key": "1249_CR104", "unstructured": "Patchett, S. et al. A molecular sensor determines the ubiquitin substrate specificity of SARS-CoV-2 papain-like protease. Cell Rep. 36, 109754 (2021).", "volume": "36", "year": "2021" }, { "DOI": "10.1038/s41586-020-2601-5", "author": "D Shin", "doi-asserted-by": "publisher", "first-page": "657", "journal-title": "Nature", "key": "1249_CR105", "unstructured": "Shin, D. et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587, 657–662 (2020).", "volume": "587", "year": "2020" }, { "DOI": "10.3390/ijms23073711", "doi-asserted-by": "crossref", "key": "1249_CR106", "unstructured": "Esposito, S. et al. Host and viral zinc-finger proteins in COVID-19. Int. J. Mol. Sci. 23 (2022)." }, { "DOI": "10.1021/acs.jmedchem.2c00303", "author": "H Tan", "doi-asserted-by": "publisher", "first-page": "7561", "journal-title": "J. Med. Chem.", "key": "1249_CR107", "unstructured": "Tan, H., Hu, Y., Jadhav, P., Tan, B. & Wang, J. Progress and challenges in targeting the SARS-CoV-2 papain-like protease. J. Med. Chem. 65, 7561–7580 (2022).", "volume": "65", "year": "2022" }, { "DOI": "10.1007/s13238-021-00836-9", "author": "Y Zhao", "doi-asserted-by": "publisher", "first-page": "877", "journal-title": "Protein Cell", "key": "1249_CR108", "unstructured": "Zhao, Y. et al. High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors. Protein Cell 12, 877–888 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.1038/s41467-021-27072-3", "author": "N Franko", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR109", "unstructured": "Franko, N., Teixeira, A. P., Xue, S., Charpin-El Hamri, G. & Fussenegger, M. Design of modular autoproteolytic gene switches responsive to anti-coronavirus drug candidates. Nat. Commun. 12, 6786 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.1073/pnas.0805240105", "author": "K Ratia", "doi-asserted-by": "publisher", "first-page": "16119", "journal-title": "Proc. Natl Acad. Sci. USA", "key": "1249_CR110", "unstructured": "Ratia, K. et al. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc. Natl Acad. Sci. USA 105, 16119–16124 (2008).", "volume": "105", "year": "2008" }, { "DOI": "10.1021/acscentsci.1c00519", "author": "C Ma", "doi-asserted-by": "publisher", "first-page": "1245", "journal-title": "ACS Cent. Sci.", "key": "1249_CR111", "unstructured": "Ma, C. et al. Discovery of SARS-CoV-2 papain-like protease inhibitors through a combination of high-throughput screening and a FlipGFP-based reporter assay. ACS Cent. Sci. 7, 1245–1260 (2021).", "volume": "7", "year": "2021" }, { "DOI": "10.1038/s41467-020-20718-8", "author": "Z Fu", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR112", "unstructured": "Fu, Z. et al. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nat. Commun. 12, 488 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.1038/s41467-021-21060-3", "author": "J Osipiuk", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR113", "unstructured": "Osipiuk, J. et al. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun. 12, 743 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.1016/j.chembiol.2021.04.020", "author": "H Shan", "doi-asserted-by": "publisher", "first-page": "855", "journal-title": "Cell Chem. Biol.", "key": "1249_CR114", "unstructured": "Shan, H. et al. Development of potent and selective inhibitors targeting the papain-like protease of SARS-CoV-2. Cell Chem. Biol. 28, 855–865e859 (2021).", "volume": "28", "year": "2021" }, { "DOI": "10.1038/s41594-020-0479-4", "author": "R Henderson", "doi-asserted-by": "publisher", "first-page": "925", "journal-title": "Nat. Struct. Mol. Biol.", "key": "1249_CR115", "unstructured": "Henderson, R. et al. Controlling the SARS-CoV-2 spike glycoprotein conformation. Nat. Struct. Mol. Biol. 27, 925–933 (2020).", "volume": "27", "year": "2020" }, { "DOI": "10.1038/s41580-021-00418-x", "author": "CB Jackson", "doi-asserted-by": "publisher", "first-page": "3", "journal-title": "Nat. Rev. Mol. Cell Biol.", "key": "1249_CR116", "unstructured": "Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23, 3–20 (2022).", "volume": "23", "year": "2022" }, { "DOI": "10.1126/science.abf2303", "doi-asserted-by": "crossref", "key": "1249_CR117", "unstructured": "Zhang, J. et al. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science 372, 525−530 (2020)." }, { "DOI": "10.1126/science.1116480", "author": "F Li", "doi-asserted-by": "publisher", "first-page": "1864", "journal-title": "Science", "key": "1249_CR118", "unstructured": "Li, F., Li, W., Farzan, M. & Harrison, S. C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309, 1864–1868 (2005).", "volume": "309", "year": "2005" }, { "DOI": "10.1038/s41586-020-2180-5", "author": "J Lan", "doi-asserted-by": "publisher", "first-page": "215", "journal-title": "Nature", "key": "1249_CR119", "unstructured": "Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020).", "volume": "581", "year": "2020" }, { "DOI": "10.1038/s41467-020-18319-6", "author": "J Yang", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR120", "unstructured": "Yang, J. et al. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat. Commun. 11, 4541 (2020).", "volume": "11", "year": "2020" }, { "DOI": "10.1007/s41061-021-00353-7", "author": "I Ahmad", "doi-asserted-by": "publisher", "first-page": "40", "journal-title": "Top. Curr. Chem.", "key": "1249_CR121", "unstructured": "Ahmad, I., Pawara, R., Surana, S. & Patel, H. The repurposed ACE2 inhibitors: SARS-CoV-2 entry blockers of Covid-19. Top. Curr. Chem. 379, 40 (2021).", "volume": "379", "year": "2021" }, { "DOI": "10.1128/mBio.03681-20", "doi-asserted-by": "crossref", "key": "1249_CR122", "unstructured": "Day, C. J. et al. Multidisciplinary approaches identify compounds that bind to human ACE2 or SARS-CoV-2 spike protein as candidates to block SARS-CoV-2-ACE2 receptor interactions. mBio. 12, e03681-20 (2021)." }, { "DOI": "10.1016/j.bcp.2021.114724", "author": "Y Xiang", "doi-asserted-by": "publisher", "first-page": "114724", "journal-title": "Biochem. Pharm.", "key": "1249_CR123", "unstructured": "Xiang, Y., Wang, M., Chen, H. & Chen, L. Potential therapeutic approaches for the early entry of SARS-CoV-2 by interrupting the interaction between the spike protein on SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2). Biochem. Pharm. 192, 114724 (2021).", "volume": "192", "year": "2021" }, { "DOI": "10.1038/s41392-021-00619-y", "author": "C Lin", "doi-asserted-by": "publisher", "first-page": "198", "journal-title": "Signal Transduct. Target Ther.", "key": "1249_CR124", "unstructured": "Lin, C. et al. Ceftazidime is a potential drug to inhibit SARS-CoV-2 infection in vitro by blocking spike protein-ACE2 interaction. Signal Transduct. Target Ther. 6, 198 (2021).", "volume": "6", "year": "2021" }, { "DOI": "10.1038/s41401-021-00735-z", "author": "L Wang", "doi-asserted-by": "publisher", "first-page": "788", "journal-title": "Acta Pharm. Sin.", "key": "1249_CR125", "unstructured": "Wang, L. et al. Discovery of potential small molecular SARS-CoV-2 entry blockers targeting the spike protein. Acta Pharm. Sin. 43, 788–796 (2022).", "volume": "43", "year": "2022" }, { "DOI": "10.1080/01652176.2020.1727993", "author": "YS Malik", "doi-asserted-by": "publisher", "first-page": "68", "journal-title": "Vet. Q", "key": "1249_CR126", "unstructured": "Malik, Y. S. et al. Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. Vet. Q 40, 68–76 (2020).", "volume": "40", "year": "2020" }, { "DOI": "10.1080/22221751.2020.1719902", "author": "JF Chan", "doi-asserted-by": "publisher", "first-page": "221", "journal-title": "Emerg. Microbes Infect.", "key": "1249_CR127", "unstructured": "Chan, J. F. et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect. 9, 221–236 (2020).", "volume": "9", "year": "2020" }, { "DOI": "10.1038/s41401-020-0485-4", "author": "Y Huang", "doi-asserted-by": "publisher", "first-page": "1141", "journal-title": "Acta Pharm. Sin.", "key": "1249_CR128", "unstructured": "Huang, Y., Yang, C., Xu, X. F., Xu, W. & Liu, S. W. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharm. Sin. 41, 1141–1149 (2020).", "volume": "41", "year": "2020" }, { "DOI": "10.1038/s41422-020-0305-x", "author": "S Xia", "doi-asserted-by": "publisher", "first-page": "343", "journal-title": "Cell Res.", "key": "1249_CR129", "unstructured": "Xia, S. et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 30, 343–355 (2020).", "volume": "30", "year": "2020" }, { "DOI": "10.1038/s41586-020-2599-8", "author": "J Yang", "doi-asserted-by": "publisher", "first-page": "572", "journal-title": "Nature", "key": "1249_CR130", "unstructured": "Yang, J. et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature 586, 572–577 (2020).", "volume": "586", "year": "2020" }, { "DOI": "10.1016/j.cell.2020.11.032", "author": "AC Walls", "doi-asserted-by": "publisher", "first-page": "1735", "journal-title": "Cell", "key": "1249_CR131", "unstructured": "Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 183, 1735 (2020).", "volume": "183", "year": "2020" }, { "DOI": "10.1128/JVI.00617-21", "author": "J Ou", "doi-asserted-by": "publisher", "first-page": "e0061721", "journal-title": "J. Virol.", "key": "1249_CR132", "unstructured": "Ou, J. et al. V367F mutation in SARS-CoV-2 spike RBD emerging during the early transmission phase enhances viral infectivity through increased human ACE2 receptor binding affinity. J. Virol. 95, e0061721 (2021).", "volume": "95", "year": "2021" }, { "DOI": "10.1038/s41423-020-0400-4", "author": "W Tai", "doi-asserted-by": "publisher", "first-page": "613", "journal-title": "Cell Mol. Immunol.", "key": "1249_CR133", "unstructured": "Tai, W. et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol. Immunol. 17, 613–620 (2020).", "volume": "17", "year": "2020" }, { "DOI": "10.1126/science.abn8863", "author": "W Yin", "doi-asserted-by": "publisher", "first-page": "1048", "journal-title": "Science", "key": "1249_CR134", "unstructured": "Yin, W. et al. Structures of the Omicron spike trimer with ACE2 and an anti-Omicron antibody. Science 375, 1048–1053 (2022).", "volume": "375", "year": "2022" }, { "DOI": "10.1126/science.abl9463", "author": "J Zhang", "doi-asserted-by": "publisher", "first-page": "1353", "journal-title": "Science", "key": "1249_CR135", "unstructured": "Zhang, J. et al. Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant. Science 374, 1353–1360 (2021).", "volume": "374", "year": "2021" }, { "DOI": "10.1128/JVI.00635-20", "doi-asserted-by": "crossref", "key": "1249_CR136", "unstructured": "Zhu, Y., Yu, D., Yan, H., Chong, H. & He, Y. Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity. J. Virol. 94, e00635-20 (2020)." }, { "DOI": "10.1128/mbio.01249-22", "author": "KS Schmitz", "doi-asserted-by": "publisher", "first-page": "e0124922", "journal-title": "mBio", "key": "1249_CR137", "unstructured": "Schmitz, K. S. et al. Potency of fusion-inhibitory lipopeptides against SARS-CoV-2 variants of concern. mBio 13, e0124922 (2022).", "volume": "13", "year": "2022" }, { "DOI": "10.1038/s41421-022-00455-6", "author": "S Xue", "doi-asserted-by": "publisher", "first-page": "88", "journal-title": "Cell Discov.", "key": "1249_CR138", "unstructured": "Xue, S. et al. A novel cyclic gamma-AApeptide-based long-acting pan-coronavirus fusion inhibitor with potential oral bioavailability by targeting two sites in spike protein. Cell Discov. 8, 88 (2022).", "volume": "8", "year": "2022" }, { "DOI": "10.1128/JVI.00127-20", "doi-asserted-by": "crossref", "key": "1249_CR139", "unstructured": "Wan, Y., Shang, J., Graham, R., Baric, R. S. & Li, F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 94, e00127-20 (2020)." }, { "DOI": "10.1073/pnas.2100425118", "doi-asserted-by": "crossref", "key": "1249_CR140", "unstructured": "Mehdipour, A. R. & Hummer, G. Dual nature of human ACE2 glycosylation in binding to SARS-CoV-2 spike. Proc. Natl Acad. Sci. USA 118, e2100425118 (2021)." }, { "DOI": "10.1016/j.ymthe.2021.02.007", "author": "T Azad", "doi-asserted-by": "publisher", "first-page": "1984", "journal-title": "Mol. Ther.", "key": "1249_CR141", "unstructured": "Azad, T. et al. Nanoluciferase complementation-based bioreporter reveals the importance of N-linked glycosylation of SARS-CoV-2 S for viral entry. Mol. Ther. 29, 1984–2000 (2021).", "volume": "29", "year": "2021" }, { "DOI": "10.1038/s41589-021-00924-1", "author": "L Nguyen", "doi-asserted-by": "publisher", "first-page": "81", "journal-title": "Nat. Chem. Biol.", "key": "1249_CR142", "unstructured": "Nguyen, L. et al. Sialic acid-containing glycolipids mediate binding and viral entry of SARS-CoV-2. Nat. Chem. Biol. 18, 81–90 (2022).", "volume": "18", "year": "2022" }, { "DOI": "10.1038/s41467-022-30313-8", "author": "SJL Petitjean", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR143", "unstructured": "Petitjean, S. J. L. et al. Multivalent 9-O-Acetylated-sialic acid glycoclusters as potent inhibitors for SARS-CoV-2 infection. Nat. Commun. 13, 2564 (2022).", "volume": "13", "year": "2022" }, { "DOI": "10.1016/j.jare.2021.11.012", "author": "Y Yi", "doi-asserted-by": "publisher", "first-page": "201", "journal-title": "J. Adv. Res.", "key": "1249_CR144", "unstructured": "Yi, Y. et al. Natural triterpenoids from licorice potently inhibit SARS-CoV-2 infection. J. Adv. Res. 36, 201–210 (2022).", "volume": "36", "year": "2022" }, { "DOI": "10.1371/journal.ppat.1009328", "author": "H Yao", "doi-asserted-by": "publisher", "first-page": "e1009328", "journal-title": "PLoS Pathog.", "key": "1249_CR145", "unstructured": "Yao, H. et al. A high-affinity RBD-targeting nanobody improves fusion partner’s potency against SARS-CoV-2. PLoS Pathog. 17, e1009328 (2021).", "volume": "17", "year": "2021" }, { "DOI": "10.1073/pnas.2120419119", "doi-asserted-by": "crossref", "key": "1249_CR146", "unstructured": "Shi, Y. et al. Thiol-based chemical probes exhibit antiviral activity against SARS-CoV-2 via allosteric disulfide disruption in the spike glycoprotein. Proc. Natl Acad. Sci. USA 119, e2120419119 (2022)." }, { "DOI": "10.1128/jvi.67.12.7394-7401.1993", "author": "DJ Opstelten", "doi-asserted-by": "publisher", "first-page": "7394", "journal-title": "J. Virol.", "key": "1249_CR147", "unstructured": "Opstelten, D. J., de Groote, P., Horzinek, M. C., Vennema, H. & Rottier, P. J. Disulfide bonds in folding and transport of mouse hepatitis coronavirus glycoproteins. J. Virol. 67, 7394–7401 (1993).", "volume": "67", "year": "1993" }, { "DOI": "10.1021/acsomega.0c02125", "author": "S Hati", "doi-asserted-by": "publisher", "first-page": "16292", "journal-title": "ACS Omega", "key": "1249_CR148", "unstructured": "Hati, S. & Bhattacharyya, S. Impact of thiol-disulfide balance on the binding of covid-19 spike protein with angiotensin-converting enzyme 2 receptor. ACS Omega 5, 16292–16298 (2020).", "volume": "5", "year": "2020" }, { "DOI": "10.2174/1389557520666201117111259", "author": "SK Nayak", "doi-asserted-by": "publisher", "first-page": "689", "journal-title": "Mini Rev. Med. Chem.", "key": "1249_CR149", "unstructured": "Nayak, S. K. Inhibition of S-protein RBD and hACE2 interaction for control of SARSCoV- 2 infection (COVID-19). Mini Rev. Med. Chem. 21, 689–703 (2021).", "volume": "21", "year": "2021" }, { "DOI": "10.1002/anie.202115695", "author": "YH Shin", "doi-asserted-by": "publisher", "first-page": "e202115695", "journal-title": "Angew. Chem. Int. Ed. Engl.", "key": "1249_CR150", "unstructured": "Shin, Y. H. et al. Inhibition of ACE2-spike interaction by an ACE2 binder suppresses SARS-CoV-2 entry. Angew. Chem. Int. Ed. Engl. 61, e202115695 (2022).", "volume": "61", "year": "2022" }, { "DOI": "10.1038/s41598-022-10987-2", "author": "D Junker", "doi-asserted-by": "publisher", "journal-title": "Sci. Rep.", "key": "1249_CR151", "unstructured": "Junker, D. et al. COVID-19 patient serum less potently inhibits ACE2-RBD binding for various SARS-CoV-2 RBD mutants. Sci. Rep. 12, 7168 (2022).", "volume": "12", "year": "2022" }, { "DOI": "10.1093/bib/bbab243", "doi-asserted-by": "crossref", "key": "1249_CR152", "unstructured": "Pei, P. et al. Computational design of ultrashort peptide inhibitors of the receptor-binding domain of the SARS-CoV-2 S protein. Brief Bioinform. 22, bbab298 (2021)." }, { "DOI": "10.1126/sciadv.abb8097", "author": "PK Panda", "doi-asserted-by": "publisher", "first-page": "eabb8097", "journal-title": "Sci. Adv.", "key": "1249_CR153", "unstructured": "Panda, P. K. et al. Structure-based drug designing and immunoinformatics approach for SARS-CoV-2. Sci. Adv. 6, eabb8097 (2020).", "volume": "6", "year": "2020" }, { "DOI": "10.3390/ijms23074050", "doi-asserted-by": "crossref", "key": "1249_CR154", "unstructured": "Lee, R. K. et al. Identification of entry inhibitors against delta and omicron variants of SARS-CoV-2. Int. J. Mol. Sci. 23, 4050 (2022)." }, { "DOI": "10.3389/fchem.2021.740702", "author": "J Xiong", "doi-asserted-by": "publisher", "first-page": "740702", "journal-title": "Front. Chem.", "key": "1249_CR155", "unstructured": "Xiong, J. et al. Structure-based virtual screening and identification of potential inhibitors of SARS-CoV-2 S-RBD and ACE2 interaction. Front. Chem. 9, 740702 (2021).", "volume": "9", "year": "2021" }, { "DOI": "10.1016/j.peptides.2020.170328", "author": "R Ling", "doi-asserted-by": "publisher", "first-page": "170328", "journal-title": "Peptides", "key": "1249_CR156", "unstructured": "Ling, R. et al. In silico design of antiviral peptides targeting the spike protein of SARS-CoV-2. Peptides 130, 170328 (2020).", "volume": "130", "year": "2020" }, { "DOI": "10.1038/s41467-020-15562-9", "author": "X Ou", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR157", "unstructured": "Ou, X. et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11, 1620 (2020).", "volume": "11", "year": "2020" }, { "DOI": "10.1016/j.molcel.2020.04.022", "author": "M Hoffmann", "doi-asserted-by": "publisher", "first-page": "779", "journal-title": "Mol. Cell", "key": "1249_CR158", "unstructured": "Hoffmann, M., Kleine-Weber, H. & Pohlmann, S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 78, 779–784e775 (2020).", "volume": "78", "year": "2020" }, { "DOI": "10.1002/jmv.26911", "author": "AZ Abbasi", "doi-asserted-by": "publisher", "first-page": "4205", "journal-title": "J. Med. Virol.", "key": "1249_CR159", "unstructured": "Abbasi, A. Z. et al. Spiking dependence of SARS-CoV-2 pathogenicity on TMPRSS2. J. Med. Virol. 93, 4205–4218 (2021).", "volume": "93", "year": "2021" }, { "DOI": "10.1002/rmv.2157", "author": "MB de Loyola", "doi-asserted-by": "publisher", "first-page": "e2157", "journal-title": "Rev. Med. Virol.", "key": "1249_CR160", "unstructured": "de Loyola, M. B. et al. Alpha-1-antitrypsin: a possible host protective factor against Covid-19. Rev. Med. Virol. 31, e2157 (2021).", "volume": "31", "year": "2021" }, { "DOI": "10.1073/pnas.2002589117", "author": "S Matsuyama", "doi-asserted-by": "publisher", "first-page": "7001", "journal-title": "Proc. Natl Acad. Sci. USA", "key": "1249_CR161", "unstructured": "Matsuyama, S. et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl Acad. Sci. USA 117, 7001–7003 (2020).", "volume": "117", "year": "2020" }, { "DOI": "10.15252/embj.2021107821", "author": "J Koch", "doi-asserted-by": "publisher", "first-page": "e107821", "journal-title": "EMBO J.", "key": "1249_CR162", "unstructured": "Koch, J. et al. TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells. EMBO J. 40, e107821 (2021).", "volume": "40", "year": "2021" }, { "DOI": "10.1038/s41591-020-01227-z", "author": "C Muus", "doi-asserted-by": "publisher", "first-page": "546", "journal-title": "Nat. Med.", "key": "1249_CR163", "unstructured": "Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat. Med. 27, 546–559 (2021).", "volume": "27", "year": "2021" }, { "DOI": "10.1038/s41392-021-00558-8", "author": "MM Zhao", "doi-asserted-by": "publisher", "first-page": "134", "journal-title": "Signal Transduct. Target Ther.", "key": "1249_CR164", "unstructured": "Zhao, M. M. et al. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct. Target Ther. 6, 134 (2021).", "volume": "6", "year": "2021" }, { "DOI": "10.1038/s41421-022-00419-w", "author": "MM Zhao", "doi-asserted-by": "publisher", "first-page": "53", "journal-title": "Cell Discov.", "key": "1249_CR165", "unstructured": "Zhao, M. M. et al. Novel cleavage sites identified in SARS-CoV-2 spike protein reveal mechanism for cathepsin L-facilitated viral infection and treatment strategies. Cell Discov. 8, 53 (2022).", "volume": "8", "year": "2022" }, { "DOI": "10.1128/JVI.02447-20", "doi-asserted-by": "crossref", "key": "1249_CR166", "unstructured": "Cheng, J. et al. The furin-S2’ site in avian coronavirus plays a key role in central nervous system damage progression. J. Virol. 95, e02447–20 (2021)." }, { "DOI": "10.1038/s41586-021-03237-4", "author": "BA Johnson", "doi-asserted-by": "publisher", "first-page": "293", "journal-title": "Nature", "key": "1249_CR167", "unstructured": "Johnson, B. A. et al. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature 591, 293–299 (2021).", "volume": "591", "year": "2021" }, { "DOI": "10.1038/s41564-021-00908-w", "author": "TP Peacock", "doi-asserted-by": "publisher", "first-page": "899", "journal-title": "Nat. Microbiol.", "key": "1249_CR168", "unstructured": "Peacock, T. P. et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat. Microbiol. 6, 899–909 (2021).", "volume": "6", "year": "2021" }, { "DOI": "10.1039/D1SC00785H", "author": "HAT Phan", "doi-asserted-by": "publisher", "first-page": "10825", "journal-title": "Chem. Sci.", "key": "1249_CR169", "unstructured": "Phan, H. A. T., Giannakoulias, S. G., Barrett, T. M., Liu, C. & Petersson, E. J. Rational design of thioamide peptides as selective inhibitors of cysteine protease cathepsin L. Chem. Sci. 12, 10825–10835 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.1080/17460441.2022.2029843", "author": "C Mantzourani", "doi-asserted-by": "publisher", "first-page": "231", "journal-title": "Expert Opin. Drug Discov.", "key": "1249_CR170", "unstructured": "Mantzourani, C., Vasilakaki, S., Gerogianni, V. E. & Kokotos, G. The discovery and development of transmembrane serine protease 2 (TMPRSS2) inhibitors as candidate drugs for the treatment of COVID-19. Expert Opin. Drug Discov. 17, 231–246 (2022).", "volume": "17", "year": "2022" }, { "DOI": "10.1111/bcpt.13533", "author": "P Breining", "doi-asserted-by": "publisher", "first-page": "204", "journal-title": "Basic Clin. Pharm. Toxicol.", "key": "1249_CR171", "unstructured": "Breining, P. et al. Camostat mesylate against SARS-CoV-2 and COVID-19-Rationale, dosing and safety. Basic Clin. Pharm. Toxicol. 128, 204–212 (2021).", "volume": "128", "year": "2021" }, { "author": "L Stenke", "first-page": "723", "journal-title": "Chemioterapia", "key": "1249_CR172", "unstructured": "Stenke, L., Hast, R. & Reizenstein, P. Treatment of poor prognosis acute myeloid leukemia with aggressive and non-aggressive chemotherapy. Chemioterapia 6, 723–724 (1987).", "volume": "6", "year": "1987" }, { "DOI": "10.1172/JCI147973", "doi-asserted-by": "crossref", "key": "1249_CR173", "unstructured": "Sun, Y. J. et al. Structure-based phylogeny identifies avoralstat as a TMPRSS2 inhibitor that prevents SARS-CoV-2 infection in mice. J. Clin. Invest. 131, e147973 (2021)." }, { "DOI": "10.1038/s41586-022-04661-w", "author": "T Shapira", "doi-asserted-by": "publisher", "first-page": "340", "journal-title": "Nature", "key": "1249_CR174", "unstructured": "Shapira, T. et al. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature 605, 340–348 (2022).", "volume": "605", "year": "2022" }, { "DOI": "10.1073/pnas.2108728118", "doi-asserted-by": "crossref", "key": "1249_CR175", "unstructured": "Mahoney, M. et al. A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. Proc Natl Acad Sci USA. 118, e2108728118 (2021)." }, { "DOI": "10.1038/s41467-021-24156-y", "author": "Y Chen", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR176", "unstructured": "Chen, Y. et al. A high-throughput screen for TMPRSS2 expression identifies FDA-approved compounds that can limit SARS-CoV-2 entry. Nat. Commun. 12, 3907 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.1021/jm701190v", "author": "SF Chowdhury", "doi-asserted-by": "publisher", "first-page": "1361", "journal-title": "J. Med. Chem.", "key": "1249_CR177", "unstructured": "Chowdhury, S. F. et al. Exploring inhibitor binding at the S’ subsites of cathepsin L. J. Med. Chem. 51, 1361–1368 (2008).", "volume": "51", "year": "2008" }, { "DOI": "10.1016/S0014-5793(97)00216-0", "author": "A Fujishima", "doi-asserted-by": "publisher", "first-page": "47", "journal-title": "FEBS Lett.", "key": "1249_CR178", "unstructured": "Fujishima, A. et al. The crystal structure of human cathepsin L complexed with E-64. FEBS Lett. 407, 47–50 (1997).", "volume": "407", "year": "1997" }, { "DOI": "10.1007/s00726-006-0403-1", "author": "SQ Wang", "doi-asserted-by": "publisher", "first-page": "129", "journal-title": "Amino Acids", "key": "1249_CR179", "unstructured": "Wang, S. Q. et al. Virtual screening for finding natural inhibitor against cathepsin-L for SARS therapy. Amino Acids 33, 129–135 (2007).", "volume": "33", "year": "2007" }, { "DOI": "10.1021/acs.jmedchem.1c01494", "doi-asserted-by": "crossref", "key": "1249_CR180", "unstructured": "Ashhurst, A. S. et al. Potent Anti-SARS-CoV-2 Activity by the Natural Product Gallinamide A and Analogues via Inhibition of Cathepsin L. J Med Chem. 65, 2956-2970 (2022)." }, { "DOI": "10.1021/np400727r", "author": "B Miller", "doi-asserted-by": "publisher", "first-page": "92", "journal-title": "J. Nat. Prod.", "key": "1249_CR181", "unstructured": "Miller, B. et al. The marine cyanobacterial metabolite gallinamide A is a potent and selective inhibitor of human cathepsin L. J. Nat. Prod. 77, 92–99 (2014).", "volume": "77", "year": "2014" }, { "DOI": "10.1021/acs.jmedchem.1c01494", "author": "AS Ashhurst", "doi-asserted-by": "publisher", "first-page": "2956", "journal-title": "J. Med. Chem.", "key": "1249_CR182", "unstructured": "Ashhurst, A. S. et al. Potent anti-SARS-CoV-2 activity by the natural product gallinamide A and analogues via inhibition of cathepsin L. J. Med. Chem. 65, 2956–2970 (2022).", "volume": "65", "year": "2022" }, { "DOI": "10.1101/2021.07.20.453127", "doi-asserted-by": "publisher", "key": "1249_CR183", "unstructured": "Frueh, F. W. et al. An orally available cathepsin L inhibitor protects lungs against SARS-CoV-2-induced diffuse alveolar damage in african green monkeys. Preprint at bioRxiv https://doi.org/10.1101/2021.07.20.453127 (2021)." }, { "DOI": "10.1016/j.pharmthera.2020.107587", "author": "T Liu", "doi-asserted-by": "publisher", "first-page": "107587", "journal-title": "Pharm. Ther.", "key": "1249_CR184", "unstructured": "Liu, T., Luo, S., Libby, P. & Shi, G. P. Cathepsin L-selective inhibitors: a potentially promising treatment for COVID-19 patients. Pharm. Ther. 213, 107587 (2020).", "volume": "213", "year": "2020" }, { "DOI": "10.1021/acsinfecdis.0c00761", "author": "Y Hu", "doi-asserted-by": "publisher", "first-page": "586", "journal-title": "ACS Infect. Dis.", "key": "1249_CR185", "unstructured": "Hu, Y. et al. Boceprevir, calpain inhibitors II and XII, and GC-376 have broad-spectrum antiviral activity against coronaviruses. ACS Infect. Dis. 7, 586–597 (2021).", "volume": "7", "year": "2021" }, { "DOI": "10.1126/sciadv.abe0751", "doi-asserted-by": "crossref", "key": "1249_CR186", "unstructured": "Sacco, M. D. et al. Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against M(pro) and cathepsin L. Sci. Adv. 6, eabe0751 (2020)." }, { "DOI": "10.1016/j.celrep.2020.108254", "author": "YW Cheng", "doi-asserted-by": "publisher", "first-page": "108254", "journal-title": "Cell Rep.", "key": "1249_CR187", "unstructured": "Cheng, Y. W. et al. Furin inhibitors block SARS-CoV-2 spike protein cleavage to suppress virus production and cytopathic effects. Cell Rep. 33, 108254 (2020).", "volume": "33", "year": "2020" }, { "DOI": "10.1016/j.antiviral.2020.104742", "author": "B Coutard", "doi-asserted-by": "publisher", "first-page": "104742", "journal-title": "Antivir. Res.", "key": "1249_CR188", "unstructured": "Coutard, B. et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir. Res. 176, 104742 (2020).", "volume": "176", "year": "2020" }, { "DOI": "10.1021/acs.jmedchem.1c00518", "author": "EEA Osman", "doi-asserted-by": "publisher", "first-page": "2747", "journal-title": "J. Med. Chem.", "key": "1249_CR189", "unstructured": "Osman, E. E. A., Rehemtulla, A. & Neamati, N. Why all the fury over furin? J. Med. Chem. 65, 2747–2784 (2022).", "volume": "65", "year": "2022" }, { "DOI": "10.1073/pnas.2109905118", "doi-asserted-by": "crossref", "key": "1249_CR190", "unstructured": "Zhang, L. et al. Furin cleavage of the SARS-CoV-2 spike is modulated by O-glycosylation. Proc. Natl Acad. Sci. USA 118, e2109905118 (2021)." }, { "DOI": "10.1371/journal.ppat.1009246", "author": "G Papa", "doi-asserted-by": "publisher", "first-page": "e1009246", "journal-title": "PLoS Pathog.", "key": "1249_CR191", "unstructured": "Papa, G. et al. Furin cleavage of SARS-CoV-2 Spike promotes but is not essential for infection and cell-cell fusion. PLoS Pathog. 17, e1009246 (2021).", "volume": "17", "year": "2021" }, { "DOI": "10.1073/pnas.2003138117", "author": "J Shang", "doi-asserted-by": "publisher", "first-page": "11727", "journal-title": "Proc. Natl Acad. Sci. USA", "key": "1249_CR192", "unstructured": "Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 11727–11734 (2020).", "volume": "117", "year": "2020" }, { "DOI": "10.1021/acs.jproteome.0c00526", "author": "Y Zhang", "doi-asserted-by": "publisher", "first-page": "49", "journal-title": "J. Proteome Res.", "key": "1249_CR193", "unstructured": "Zhang, Y. & Tang, L. V. Overview of targets and potential drugs of SARS-CoV-2 according to the viral replication. J. Proteome Res. 20, 49–59 (2021).", "volume": "20", "year": "2021" }, { "DOI": "10.1016/j.biopha.2022.113124", "author": "E Paszti-Gere", "doi-asserted-by": "publisher", "first-page": "113124", "journal-title": "Biomed. Pharmacother.", "key": "1249_CR194", "unstructured": "Paszti-Gere, E. et al. In vitro characterization of the furin inhibitor MI-1851: albumin binding, interaction with cytochrome P450 enzymes and cytotoxicity. Biomed. Pharmacother. 151, 113124 (2022).", "volume": "151", "year": "2022" }, { "DOI": "10.1111/all.14364", "author": "AK Azkur", "doi-asserted-by": "publisher", "first-page": "1564", "journal-title": "Allergy", "key": "1249_CR195", "unstructured": "Azkur, A. K. et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 75, 1564–1581 (2020).", "volume": "75", "year": "2020" }, { "DOI": "10.1038/s43587-021-00114-7", "author": "JM Bartleson", "doi-asserted-by": "publisher", "first-page": "769", "journal-title": "Nat. Aging", "key": "1249_CR196", "unstructured": "Bartleson, J. M. et al. SARS-CoV-2, COVID-19 and the ageing immune system. Nat. Aging 1, 769–782 (2021).", "volume": "1", "year": "2021" }, { "DOI": "10.1016/j.intimp.2020.106519", "author": "G di Mauro", "doi-asserted-by": "publisher", "first-page": "106519", "journal-title": "Int. Immunopharmacol.", "key": "1249_CR197", "unstructured": "di Mauro, G., Scavone, C., Rafaniello, C., Rossi, F. & Capuano, A. SARS-Cov-2 infection: response of human immune system and possible implications for the rapid test and treatment. Int. Immunopharmacol. 84, 106519 (2020).", "volume": "84", "year": "2020" }, { "DOI": "10.1016/S0140-6736(20)30183-5", "author": "C Huang", "doi-asserted-by": "publisher", "first-page": "497", "journal-title": "Lancet", "key": "1249_CR198", "unstructured": "Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).", "volume": "395", "year": "2020" }, { "DOI": "10.1038/s41392-020-0148-4", "author": "L Tan", "doi-asserted-by": "publisher", "first-page": "33", "journal-title": "Signal Transduct. Target Ther.", "key": "1249_CR199", "unstructured": "Tan, L. et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct. Target Ther. 5, 33 (2020).", "volume": "5", "year": "2020" }, { "DOI": "10.1177/1073858420941476", "author": "D Kempuraj", "doi-asserted-by": "publisher", "first-page": "402", "journal-title": "Neuroscientist", "key": "1249_CR200", "unstructured": "Kempuraj, D. et al. COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation. Neuroscientist 26, 402–414 (2020).", "volume": "26", "year": "2020" }, { "DOI": "10.1111/imm.13223", "author": "M Tan", "doi-asserted-by": "publisher", "first-page": "261", "journal-title": "Immunology", "key": "1249_CR201", "unstructured": "Tan, M. et al. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. Immunology 160, 261–268 (2020).", "volume": "160", "year": "2020" }, { "DOI": "10.1016/S2213-2600(20)30076-X", "author": "Z Xu", "doi-asserted-by": "publisher", "first-page": "420", "journal-title": "Lancet Respir. Med.", "key": "1249_CR202", "unstructured": "Xu, Z. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8, 420–422 (2020).", "volume": "8", "year": "2020" }, { "DOI": "10.1016/j.cytogfr.2020.05.003", "author": "F Coperchini", "doi-asserted-by": "publisher", "first-page": "25", "journal-title": "Cytokine Growth Factor Rev.", "key": "1249_CR203", "unstructured": "Coperchini, F., Chiovato, L., Croce, L., Magri, F. & Rotondi, M. The cytokine storm in COVID-19: an overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 53, 25–32 (2020).", "volume": "53", "year": "2020" }, { "DOI": "10.1016/j.cytogfr.2020.06.013", "author": "B Goker Bagca", "doi-asserted-by": "publisher", "first-page": "51", "journal-title": "Cytokine Growth Factor Rev.", "key": "1249_CR204", "unstructured": "Goker Bagca, B. & Biray Avci, C. The potential of JAK/STAT pathway inhibition by ruxolitinib in the treatment of COVID-19. Cytokine Growth Factor Rev. 54, 51–62 (2020).", "volume": "54", "year": "2020" }, { "DOI": "10.1002/jmv.26232", "author": "B Hu", "doi-asserted-by": "publisher", "first-page": "250", "journal-title": "J. Med. Virol.", "key": "1249_CR205", "unstructured": "Hu, B., Huang, S. & Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 93, 250–256 (2021).", "volume": "93", "year": "2021" }, { "DOI": "10.1038/s41577-020-00429-3", "author": "JS Lee", "doi-asserted-by": "publisher", "first-page": "585", "journal-title": "Nat. Rev. Immunol.", "key": "1249_CR206", "unstructured": "Lee, J. S. & Shin, E. C. The type I interferon response in COVID-19: implications for treatment. Nat. Rev. Immunol. 20, 585–586 (2020).", "volume": "20", "year": "2020" }, { "DOI": "10.1038/s41577-020-0319-0", "author": "N Vabret", "doi-asserted-by": "publisher", "first-page": "338", "journal-title": "Nat. Rev. Immunol.", "key": "1249_CR207", "unstructured": "Vabret, N. et al. Advancing scientific knowledge in times of pandemics. Nat. Rev. Immunol. 20, 338 (2020).", "volume": "20", "year": "2020" }, { "DOI": "10.1056/NEJMoa2001017", "author": "N Zhu", "doi-asserted-by": "publisher", "first-page": "727", "journal-title": "N. Engl. J. Med.", "key": "1249_CR208", "unstructured": "Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).", "volume": "382", "year": "2020" }, { "DOI": "10.1038/s41392-021-00791-1", "author": "X Hu", "doi-asserted-by": "publisher", "first-page": "402", "journal-title": "Signal Transduct. Target Ther.", "key": "1249_CR209", "unstructured": "Hu, X., Li, J., Fu, M., Zhao, X. & Wang, W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct. Target Ther. 6, 402 (2021).", "volume": "6", "year": "2021" }, { "DOI": "10.1038/s41573-020-0082-8", "author": "AA Zarrin", "doi-asserted-by": "publisher", "first-page": "39", "journal-title": "Nat. Rev. Drug Discov.", "key": "1249_CR210", "unstructured": "Zarrin, A. A., Bao, K., Lupardus, P. & Vucic, D. Kinase inhibition in autoimmunity and inflammation. Nat. Rev. Drug Discov. 20, 39–63 (2021).", "volume": "20", "year": "2021" }, { "DOI": "10.1136/jitc-2021-002838", "doi-asserted-by": "crossref", "key": "1249_CR211", "unstructured": "Levy, G., Guglielmelli, P., Langmuir, P. & Constantinescu, S. JAK inhibitors and COVID-19. J. Immunother. Cancer 10 (2022)." }, { "DOI": "10.1038/s41590-021-01056-3", "author": "X Cao", "doi-asserted-by": "publisher", "first-page": "1360", "journal-title": "Nat. Immunol.", "key": "1249_CR212", "unstructured": "Cao, X. ISG15 secretion exacerbates inflammation in SARS-CoV-2 infection. Nat. Immunol. 22, 1360–1362 (2021).", "volume": "22", "year": "2021" }, { "DOI": "10.1016/j.jaad.2020.03.099", "author": "D Peterson", "doi-asserted-by": "publisher", "first-page": "e223", "journal-title": "J. Am. Acad. Dermatol.", "key": "1249_CR213", "unstructured": "Peterson, D., Damsky, W. & King, B. The use of Janus kinase inhibitors in the time of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). J. Am. Acad. Dermatol. 82, e223–e226 (2020).", "volume": "82", "year": "2020" }, { "DOI": "10.1016/j.cca.2020.06.017", "author": "P Song", "doi-asserted-by": "publisher", "first-page": "280", "journal-title": "Clin. Chim. Acta", "key": "1249_CR214", "unstructured": "Song, P., Li, W., Xie, J., Hou, Y. & You, C. Cytokine storm induced by SARS-CoV-2. Clin. Chim. Acta 509, 280–287 (2020).", "volume": "509", "year": "2020" }, { "DOI": "10.1002/eji.202149173", "author": "F Solimani", "doi-asserted-by": "publisher", "first-page": "1071", "journal-title": "Eur. J. Immunol.", "key": "1249_CR215", "unstructured": "Solimani, F., Meier, K. & Ghoreschi, K. Janus kinase signaling as risk factor and therapeutic target for severe SARS-CoV-2 infection. Eur. J. Immunol. 51, 1071–1075 (2021).", "volume": "51", "year": "2021" }, { "DOI": "10.1056/NEJMe2034982", "author": "D Goletti", "doi-asserted-by": "publisher", "first-page": "867", "journal-title": "N. Engl. J. Med.", "key": "1249_CR216", "unstructured": "Goletti, D. & Cantini, F. Baricitinib therapy in covid-19 pneumonia—an unmet need fulfilled. N. Engl. J. Med. 384, 867–869 (2021).", "volume": "384", "year": "2021" }, { "DOI": "10.1002/phar.2438", "author": "SCJ Jorgensen", "doi-asserted-by": "publisher", "first-page": "843", "journal-title": "Pharmacotherapy", "key": "1249_CR217", "unstructured": "Jorgensen, S. C. J., Tse, C. L. Y., Burry, L. & Dresser, L. D. Baricitinib: a review of pharmacology, safety, and emerging clinical experience in COVID-19. Pharmacotherapy 40, 843–856 (2020).", "volume": "40", "year": "2020" }, { "DOI": "10.1136/rmdopen-2020-001370", "doi-asserted-by": "crossref", "key": "1249_CR218", "unstructured": "Kay, J. et al. Changes in selected haematological parameters associated with JAK1/JAK2 inhibition observed in patients with rheumatoid arthritis treated with baricitinib. RMD Open. 6, e001370 (2020)." }, { "DOI": "10.1126/sciadv.abe4724", "doi-asserted-by": "crossref", "key": "1249_CR219", "unstructured": "Stebbing, J. et al. JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality. Sci Adv. 7, eabe4724 (2021)." }, { "DOI": "10.1172/jci.insight.157432", "doi-asserted-by": "crossref", "key": "1249_CR220", "unstructured": "Nystrom, S. E. et al. JAK inhibitor blocks COVID-19 cytokine-induced JAK/STAT/APOL1 signaling in glomerular cells and podocytopathy in human kidney organoids. JCI Insight. 7, e157432 (2022)." }, { "DOI": "10.1038/s41375-021-01266-6", "author": "CX Chen", "doi-asserted-by": "publisher", "first-page": "2616", "journal-title": "Leukemia", "key": "1249_CR221", "unstructured": "Chen, C. X. et al. JAK-inhibitors for coronavirus disease-2019 (COVID-19): a meta-analysis. Leukemia 35, 2616–2620 (2021).", "volume": "35", "year": "2021" }, { "DOI": "10.1183/13993003.00673-2021", "doi-asserted-by": "crossref", "key": "1249_CR222", "unstructured": "Singh, D. et al. A phase 2 multiple ascending dose study of the inhaled pan-JAK inhibitor nezulcitinib (TD-0903) in severe COVID-19. Eur. Respir. J. 58, 2100673 (2021)." }, { "DOI": "10.7326/ACPJ202110190-111", "author": "SYC Tong", "doi-asserted-by": "publisher", "first-page": "JC111", "journal-title": "Ann. Intern. Med.", "key": "1249_CR223", "unstructured": "Tong, S. Y. C. & Petersiel, N. Tofacitinib reduced death or respiratory failure at 28 d in patients hospitalized with COVID-19 pneumonia. Ann. Intern. Med. 174, JC111 (2021).", "volume": "174", "year": "2021" }, { "DOI": "10.1126/sciimmunol.abg0833", "doi-asserted-by": "crossref", "key": "1249_CR224", "unstructured": "Yan, B. et al. SARS-CoV-2 drives JAK1/2-dependent local complement hyperactivation. Sci. Immunol. 6, eabg0833 (2021)." }, { "DOI": "10.1038/s41375-020-0907-9", "author": "A Neubauer", "doi-asserted-by": "publisher", "first-page": "2276", "journal-title": "Leukemia", "key": "1249_CR225", "unstructured": "Neubauer, A. et al. Ruxolitinib for the treatment of SARS-CoV-2 induced acute respiratory distress syndrome (ARDS). Leukemia 34, 2276–2278 (2020).", "volume": "34", "year": "2020" }, { "DOI": "10.1136/annrheumdis-2014-206028", "author": "DL Boyle", "doi-asserted-by": "publisher", "first-page": "1311", "journal-title": "Ann. Rheum. Dis.", "key": "1249_CR226", "unstructured": "Boyle, D. L. et al. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis. Ann. Rheum. Dis. 74, 1311–1316 (2015).", "volume": "74", "year": "2015" }, { "DOI": "10.1021/jm401490p", "author": "JD Clark", "doi-asserted-by": "publisher", "first-page": "5023", "journal-title": "J. Med. Chem.", "key": "1249_CR227", "unstructured": "Clark, J. D., Flanagan, M. E. & Telliez, J. B. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J. Med. Chem. 57, 5023–5038 (2014).", "volume": "57", "year": "2014" }, { "DOI": "10.1097/HS9.0000000000000313", "author": "I Govaerts", "doi-asserted-by": "publisher", "first-page": "e313", "journal-title": "Hemasphere", "key": "1249_CR228", "unstructured": "Govaerts, I., Jacobs, K., Vandepoel, R. & Cools, J. JAK/STAT pathway mutations in T-ALL, including the STAT5B N642H mutation, are sensitive to JAK1/JAK3 inhibitors. Hemasphere 3, e313 (2019).", "volume": "3", "year": "2019" }, { "DOI": "10.1002/eji.202049159", "author": "K Palasiewicz", "doi-asserted-by": "publisher", "first-page": "2330", "journal-title": "Eur. J. Immunol.", "key": "1249_CR229", "unstructured": "Palasiewicz, K., Umar, S., Romay, B., Zomorrodi, R. K. & Shahrara, S. Tofacitinib therapy intercepts macrophage metabolic reprogramming instigated by SARS-CoV-2 Spike protein. Eur. J. Immunol. 51, 2330–2340 (2021).", "volume": "51", "year": "2021" }, { "DOI": "10.1016/j.biopha.2022.112614", "author": "S Zununi Vahed", "doi-asserted-by": "publisher", "first-page": "112614", "journal-title": "Biomed. Pharmacother.", "key": "1249_CR230", "unstructured": "Zununi Vahed, S., Hosseiniyan Khatibi, S. M., Ahmadian, E. & Ardalan, M. Targeting chronic COVID-19 lung injury; Tofacitinib can be used against tissue-resident memory T cells. Biomed. Pharmacother. 147, 112614 (2022).", "volume": "147", "year": "2022" }, { "DOI": "10.1056/NEJMoa1215637", "author": "JC Byrd", "doi-asserted-by": "publisher", "first-page": "32", "journal-title": "N. Engl. J. Med.", "key": "1249_CR231", "unstructured": "Byrd, J. C. et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 369, 32–42 (2013).", "volume": "369", "year": "2013" }, { "DOI": "10.1126/sciimmunol.abd0110", "doi-asserted-by": "crossref", "key": "1249_CR232", "unstructured": "Roschewski, M. et al. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci. Immunol. 5, eabd0110 (2020)." }, { "DOI": "10.1371/journal.pone.0085834", "author": "J Ni Gabhann", "doi-asserted-by": "publisher", "first-page": "e85834", "journal-title": "PLoS ONE", "key": "1249_CR233", "unstructured": "Ni Gabhann, J. et al. Btk regulates macrophage polarization in response to lipopolysaccharide. PLoS ONE 9, e85834 (2014).", "volume": "9", "year": "2014" }, { "DOI": "10.1182/blood.2020006288", "author": "SP Treon", "doi-asserted-by": "publisher", "first-page": "1912", "journal-title": "Blood", "key": "1249_CR234", "unstructured": "Treon, S. P. et al. The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19-infected patients. Blood 135, 1912–1915 (2020).", "volume": "135", "year": "2020" }, { "DOI": "10.1158/1078-0432.CCR-20-1427", "author": "EA Chong", "doi-asserted-by": "publisher", "first-page": "3514", "journal-title": "Clin. Cancer Res.", "key": "1249_CR235", "unstructured": "Chong, E. A. et al. BTK inhibitors in cancer patients with COVID-19: “The Winner Will be the One Who Controls That Chaos” (Napoleon Bonaparte). Clin. Cancer Res. 26, 3514–3516 (2020).", "volume": "26", "year": "2020" }, { "DOI": "10.1186/s13045-020-00999-8", "author": "B Benner", "doi-asserted-by": "publisher", "first-page": "15", "journal-title": "J. Hematol. Oncol.", "key": "1249_CR236", "unstructured": "Benner, B. & Carson, W. E. Observations on the use of Bruton’s tyrosine kinase inhibitors in SAR-CoV-2 and cancer. J. Hematol. Oncol. 14, 15 (2021).", "volume": "14", "year": "2021" }, { "DOI": "10.3390/ijms22137071", "doi-asserted-by": "crossref", "key": "1249_CR237", "unstructured": "Kaliamurthi, S. et al. Structure-based virtual screening reveals Ibrutinib and Zanubrutinib as potential repurposed drugs against COVID-19. Int. J. Mol. Sci. 22, 7071 (2021)." }, { "DOI": "10.1016/j.ccr.2004.09.003", "author": "BB Aggarwal", "doi-asserted-by": "publisher", "first-page": "203", "journal-title": "Cancer Cell", "key": "1249_CR238", "unstructured": "Aggarwal, B. B. Nuclear factor-kappaB: the enemy within. Cancer Cell 6, 203–208 (2004).", "volume": "6", "year": "2004" }, { "DOI": "10.3389/fimmu.2019.00085", "author": "M Mussbacher", "doi-asserted-by": "publisher", "first-page": "85", "journal-title": "Front. Immunol.", "key": "1249_CR239", "unstructured": "Mussbacher, M. et al. Cell type-specific roles of NF-kappaB linking inflammation and thrombosis. Front. Immunol. 10, 85 (2019).", "volume": "10", "year": "2019" }, { "DOI": "10.1016/j.biopha.2021.112420", "author": "M Farahani", "doi-asserted-by": "publisher", "first-page": "112420", "journal-title": "Biomed. Pharmacother.", "key": "1249_CR240", "unstructured": "Farahani, M. et al. Molecular pathways involved in COVID-19 and potential pathway-based therapeutic targets. Biomed. Pharmacother. 145, 112420 (2022).", "volume": "145", "year": "2022" }, { "DOI": "10.1007/s10787-020-00773-9", "author": "A Hariharan", "doi-asserted-by": "publisher", "first-page": "91", "journal-title": "Inflammopharmacology", "key": "1249_CR241", "unstructured": "Hariharan, A., Hakeem, A. R., Radhakrishnan, S., Reddy, M. S. & Rela, M. The role and therapeutic potential of NF-kappa-B pathway in severe COVID-19 patients. Inflammopharmacology 29, 91–100 (2021).", "volume": "29", "year": "2021" }, { "DOI": "10.1128/JVI.01257-21", "author": "BE Nilsson-Payant", "doi-asserted-by": "publisher", "first-page": "e0125721", "journal-title": "J. Virol.", "key": "1249_CR242", "unstructured": "Nilsson-Payant, B. E. et al. The NF-kappaB transcriptional footprint is essential for SARS-CoV-2 replication. J. Virol. 95, e0125721 (2021).", "volume": "95", "year": "2021" }, { "DOI": "10.1111/imr.12033", "author": "H Oh", "doi-asserted-by": "publisher", "first-page": "41", "journal-title": "Immunol. Rev.", "key": "1249_CR243", "unstructured": "Oh, H. & Ghosh, S. NF-kappaB: roles and regulation in different CD4(+) T-cell subsets. Immunol. Rev. 252, 41–51 (2013).", "volume": "252", "year": "2013" }, { "DOI": "10.3389/fimmu.2021.750969", "author": "W Li", "doi-asserted-by": "publisher", "first-page": "750969", "journal-title": "Front. Immunol.", "key": "1249_CR244", "unstructured": "Li, W. et al. SARS-CoV-2 Nsp5 activates NF-kappaB pathway by upregulating SUMOylation of MAVS. Front. Immunol. 12, 750969 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.1038/s41392-021-00575-7", "author": "Y Wu", "doi-asserted-by": "publisher", "first-page": "167", "journal-title": "Signal Transduct. Target Ther.", "key": "1249_CR245", "unstructured": "Wu, Y. et al. RNA-induced liquid phase separation of SARS-CoV-2 nucleocapsid protein facilitates NF-kappaB hyper-activation and inflammation. Signal Transduct. Target Ther. 6, 167 (2021).", "volume": "6", "year": "2021" }, { "DOI": "10.3389/fimmu.2021.791753", "author": "J Xia", "doi-asserted-by": "publisher", "first-page": "791753", "journal-title": "Front. Immunol.", "key": "1249_CR246", "unstructured": "Xia, J. et al. SARS-CoV-2 N protein induces acute lung injury in mice via NF-kB activation. Front. Immunol. 12, 791753 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.3390/ijms23095283", "doi-asserted-by": "crossref", "key": "1249_CR247", "unstructured": "Gudowska-Sawczuk, M. & Mroczko, B. The role of nuclear factor kappa B (NF-kappaB) in development and treatment of COVID-19: review. Int. J. Mol. Sci. 23, 5283 (2022)." }, { "DOI": "10.1101/cshperspect.a001651", "author": "T Lawrence", "doi-asserted-by": "publisher", "first-page": "a001651", "journal-title": "Cold Spring Harb. Perspect. Biol.", "key": "1249_CR248", "unstructured": "Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 1, a001651 (2009).", "volume": "1", "year": "2009" }, { "DOI": "10.1038/sigtrans.2017.23", "doi-asserted-by": "crossref", "key": "1249_CR249", "unstructured": "Liu, T., Zhang, L., Joo, D. & Sun, S. C. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2, 17023 (2017)." }, { "DOI": "10.1021/acsabm.1c00874", "author": "VK Sharma", "doi-asserted-by": "publisher", "first-page": "483", "journal-title": "Cells ACS Appl. Bio Mater.", "key": "1249_CR250", "unstructured": "Sharma, V. K. et al. Nanocurcumin potently inhibits SARS-CoV-2 spike protein-induced cytokine storm by deactivation of MAPK/NF-kappaB signaling in epithelial. Cells ACS Appl. Bio Mater. 5, 483–491 (2022).", "volume": "5", "year": "2022" }, { "DOI": "10.1016/j.lfs.2021.119752", "author": "MC Lee", "doi-asserted-by": "publisher", "first-page": "119752", "journal-title": "Life Sci.", "key": "1249_CR251", "unstructured": "Lee, M. C., Chen, Y. K., Tsai-Wu, J. J., Hsu, Y. J. & Lin, B. R. Zinc supplementation augments the suppressive effects of repurposed NF-kappaB inhibitors on ACE2 expression in human lung cell lines. Life Sci. 280, 119752 (2021).", "volume": "280", "year": "2021" }, { "DOI": "10.3389/fimmu.2020.01518", "author": "TL Freeman", "doi-asserted-by": "publisher", "first-page": "1518", "journal-title": "Front. Immunol.", "key": "1249_CR252", "unstructured": "Freeman, T. L. & Swartz, T. H. Targeting the NLRP3 Inflammasome in Severe COVID-19. Front. Immunol. 11, 1518 (2020).", "volume": "11", "year": "2020" }, { "DOI": "10.3389/fimmu.2020.01580", "author": "DF van den Berg", "doi-asserted-by": "publisher", "first-page": "1580", "journal-title": "Front. Immunol.", "key": "1249_CR253", "unstructured": "van den Berg, D. F. & Te Velde, A. A. Severe COVID-19: NLRP3 inflammasome dysregulated. Front. Immunol. 11, 1580 (2020).", "volume": "11", "year": "2020" }, { "DOI": "10.1080/22221751.2020.1736644", "author": "SY Fung", "doi-asserted-by": "publisher", "first-page": "558", "journal-title": "Emerg. Microbes Infect.", "key": "1249_CR254", "unstructured": "Fung, S. Y., Yuen, K. S., Ye, Z. W., Chan, C. P. & Jin, D. Y. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg. Microbes Infect. 9, 558–570 (2020).", "volume": "9", "year": "2020" }, { "DOI": "10.1016/j.tibs.2016.09.002", "author": "Y He", "doi-asserted-by": "publisher", "first-page": "1012", "journal-title": "Trends Biochem. Sci.", "key": "1249_CR255", "unstructured": "He, Y., Hara, H. & Nunez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41, 1012–1021 (2016).", "volume": "41", "year": "2016" }, { "DOI": "10.1172/JCI12568", "author": "M Kolb", "doi-asserted-by": "publisher", "first-page": "1529", "journal-title": "J. Clin. Invest.", "key": "1249_CR256", "unstructured": "Kolb, M., Margetts, P. J., Anthony, D. C., Pitossi, F. & Gauldie, J. Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J. Clin. Invest. 107, 1529–1536 (2001).", "volume": "107", "year": "2001" }, { "key": "1249_CR257", "unstructured": "Rodrigues, T. S. et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med. 218, e20201707 (2021)." }, { "DOI": "10.1038/s41467-021-25015-6", "author": "P Pan", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR258", "unstructured": "Pan, P. et al. SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nat. Commun. 12, 4664 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.3389/fimmu.2020.01021", "author": "A Shah", "doi-asserted-by": "publisher", "first-page": "1021", "journal-title": "Front Immunol.", "key": "1249_CR259", "unstructured": "Shah, A. Novel Coronavirus-induced NLRP3 inflammasome activation: a potential drug target in the treatment of COVID-19. Front Immunol. 11, 1021 (2020).", "volume": "11", "year": "2020" }, { "DOI": "10.1016/j.ebiom.2021.103803", "author": "J Zeng", "doi-asserted-by": "publisher", "first-page": "103803", "journal-title": "EBioMedicine", "key": "1249_CR260", "unstructured": "Zeng, J. et al. Specific inhibition of the NLRP3 inflammasome suppresses immune overactivation and alleviates COVID-19 like pathology in mice. EBioMedicine 75, 103803 (2022).", "volume": "75", "year": "2022" }, { "DOI": "10.1016/j.antiviral.2010.02.001", "author": "D Deville-Bonne", "doi-asserted-by": "publisher", "first-page": "101", "journal-title": "Antivir. Res.", "key": "1249_CR261", "unstructured": "Deville-Bonne, D. et al. Human and viral nucleoside/nucleotide kinases involved in antiviral drug activation: structural and catalytic properties. Antivir. Res. 86, 101–120 (2010).", "volume": "86", "year": "2010" }, { "DOI": "10.1093/jac/dkr388", "author": "J Fung", "doi-asserted-by": "publisher", "first-page": "2715", "journal-title": "J. Antimicrob. Chemother.", "key": "1249_CR262", "unstructured": "Fung, J., Lai, C. L., Seto, W. K. & Yuen, M. F. Nucleoside/nucleotide analogues in the treatment of chronic hepatitis B. J. Antimicrob. Chemother. 66, 2715–2725 (2011).", "volume": "66", "year": "2011" }, { "DOI": "10.3389/fonc.2021.664794", "author": "JJ Garcia-Trejo", "doi-asserted-by": "publisher", "first-page": "664794", "journal-title": "Front. Oncol.", "key": "1249_CR263", "unstructured": "Garcia-Trejo, J. J., Ortega, R. & Zarco-Zavala, M. Putative repurposing of lamivudine, a nucleoside/nucleotide analogue and antiretroviral to improve the outcome of cancer and COVID-19 patients. Front. Oncol. 11, 664794 (2021).", "volume": "11", "year": "2021" }, { "DOI": "10.1016/j.cgh.2007.12.043", "author": "EB Keeffe", "doi-asserted-by": "publisher", "first-page": "268", "journal-title": "Clin. Gastroenterol. Hepatol.", "key": "1249_CR264", "unstructured": "Keeffe, E. B., Dieterich, D. T., Pawlotsky, J. M. & Benhamou, Y. Chronic hepatitis B: preventing, detecting, and managing viral resistance. Clin. Gastroenterol. Hepatol. 6, 268–274 (2008).", "volume": "6", "year": "2008" }, { "DOI": "10.1007/978-94-007-2869-1_16", "author": "GP Leung", "doi-asserted-by": "publisher", "first-page": "347", "journal-title": "Adv. Exp. Med. Biol.", "key": "1249_CR265", "unstructured": "Leung, G. P. Iatrogenic mitochondriopathies: a recent lesson from nucleoside/nucleotide reverse transcriptase inhibitors. Adv. Exp. Med. Biol. 942, 347–369 (2012).", "volume": "942", "year": "2012" }, { "DOI": "10.1001/jamainternmed.2019.5713", "author": "CE Luyt", "doi-asserted-by": "publisher", "first-page": "263", "journal-title": "JAMA Intern. Med.", "key": "1249_CR266", "unstructured": "Luyt, C. E. et al. Acyclovir for mechanically ventilated patients with herpes simplex virus oropharyngeal reactivation: a randomized clinical trial. JAMA Intern. Med. 180, 263–272 (2020).", "volume": "180", "year": "2020" }, { "DOI": "10.1016/S1470-2045(08)70334-6", "author": "WA Chow", "doi-asserted-by": "publisher", "first-page": "61", "journal-title": "Lancet Oncol.", "key": "1249_CR267", "unstructured": "Chow, W. A., Jiang, C. & Guan, M. Anti-HIV drugs for cancer therapeutics: back to the future? Lancet Oncol. 10, 61–71 (2009).", "volume": "10", "year": "2009" }, { "DOI": "10.1111/liv.13165", "author": "KV Kowdley", "doi-asserted-by": "publisher", "first-page": "1611", "journal-title": "Liver Int.", "key": "1249_CR268", "unstructured": "Kowdley, K. V. et al. On-treatment HCV RNA as a predictor of sustained virological response in HCV genotype 3-infected patients treated with daclatasvir and sofosbuvir. Liver Int. 36, 1611–1618 (2016).", "volume": "36", "year": "2016" }, { "DOI": "10.1038/aps.2008.5", "author": "C Wohlfarth", "doi-asserted-by": "publisher", "first-page": "25", "journal-title": "Acta Pharm. Sin.", "key": "1249_CR269", "unstructured": "Wohlfarth, C. & Efferth, T. Natural products as promising drug candidates for the treatment of hepatitis B and C. Acta Pharm. Sin. 30, 25–30 (2009).", "volume": "30", "year": "2009" }, { "DOI": "10.1080/13543776.2021.1880568", "author": "I Vicenti", "doi-asserted-by": "publisher", "first-page": "325", "journal-title": "Expert Opin. Ther. Pat.", "key": "1249_CR270", "unstructured": "Vicenti, I., Zazzi, M. & Saladini, F. SARS-CoV-2 RNA-dependent RNA polymerase as a therapeutic target for COVID-19. Expert Opin. Ther. Pat. 31, 325–337 (2021).", "volume": "31", "year": "2021" }, { "DOI": "10.1002/jmv.26264", "author": "Y Wang", "doi-asserted-by": "publisher", "first-page": "300", "journal-title": "J. Med. Virol.", "key": "1249_CR271", "unstructured": "Wang, Y., Anirudhan, V., Du, R., Cui, Q. & Rong, L. RNA-dependent RNA polymerase of SARS-CoV-2 as a therapeutic target. J. Med. Virol. 93, 300–310 (2021).", "volume": "93", "year": "2021" }, { "DOI": "10.3109/1061186X.2015.1058803", "author": "M Kazemzadeh-Narbat", "doi-asserted-by": "publisher", "first-page": "580", "journal-title": "J. Drug Target", "key": "1249_CR272", "unstructured": "Kazemzadeh-Narbat, M. et al. Adenosine-associated delivery systems. J. Drug Target 23, 580–596 (2015).", "volume": "23", "year": "2015" }, { "DOI": "10.1152/physrev.00031.2005", "author": "V Vallon", "doi-asserted-by": "publisher", "first-page": "901", "journal-title": "Physiol. Rev.", "key": "1249_CR273", "unstructured": "Vallon, V., Muhlbauer, B. & Osswald, H. Adenosine and kidney function. Physiol. Rev. 86, 901–940 (2006).", "volume": "86", "year": "2006" }, { "DOI": "10.1016/j.bbrc.2020.11.043", "doi-asserted-by": "crossref", "key": "1249_CR274", "unstructured": "Santoro, M. G. & Carafoli, E. Remdesivir: From Ebola to COVID-19. Biochem. Biophys. Res. Commun. 538, 145–150 (2021)." }, { "DOI": "10.1016/j.celrep.2020.107940", "author": "AJ Pruijssers", "doi-asserted-by": "publisher", "first-page": "107940", "journal-title": "Cell Rep.", "key": "1249_CR275", "unstructured": "Pruijssers, A. J. et al. Remdesivir inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice. Cell Rep. 32, 107940 (2020).", "volume": "32", "year": "2020" }, { "DOI": "10.1056/NEJMoa2001191", "author": "ML Holshue", "doi-asserted-by": "publisher", "first-page": "929", "journal-title": "N. Engl. J. Med.", "key": "1249_CR276", "unstructured": "Holshue, M. L. et al. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 382, 929–936 (2020).", "volume": "382", "year": "2020" }, { "DOI": "10.1056/NEJMoa2007764", "author": "JH Beigel", "doi-asserted-by": "publisher", "first-page": "1813", "journal-title": "N. Engl. J. Med.", "key": "1249_CR277", "unstructured": "Beigel, J. H. et al. Remdesivir for the treatment of Covid-19—final report. N. Engl. J. Med. 383, 1813–1826 (2020).", "volume": "383", "year": "2020" }, { "DOI": "10.1126/scitranslmed.abo0718", "author": "LJ Stevens", "doi-asserted-by": "publisher", "first-page": "eabo0718", "journal-title": "Sci. Transl. Med.", "key": "1249_CR278", "unstructured": "Stevens, L. J. et al. Mutations in the SARS-CoV-2 RNA-dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms. Sci. Transl. Med. 14, eabo0718 (2022).", "volume": "14", "year": "2022" }, { "DOI": "10.1038/s41467-021-26760-4", "author": "RM Cox", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR279", "unstructured": "Cox, R. M. et al. Oral prodrug of remdesivir parent GS-441524 is efficacious against SARS-CoV-2 in ferrets. Nat. Commun. 12, 6415 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.1021/acsmedchemlett.0c00316", "author": "VC Yan", "doi-asserted-by": "publisher", "first-page": "1361", "journal-title": "ACS Med. Chem. Lett.", "key": "1249_CR280", "unstructured": "Yan, V. C. & Muller, F. L. Advantages of the parent nucleoside GS-441524 over remdesivir for covid-19 treatment. ACS Med. Chem. Lett. 11, 1361–1366 (2020).", "volume": "11", "year": "2020" }, { "DOI": "10.1016/j.tmaid.2020.101615", "author": "JA Al-Tawfiq", "doi-asserted-by": "publisher", "first-page": "101615", "journal-title": "Travel Med. Infect. Dis.", "key": "1249_CR281", "unstructured": "Al-Tawfiq, J. A., Al-Homoud, A. H. & Memish, Z. A. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med. Infect. Dis. 34, 101615 (2020).", "volume": "34", "year": "2020" }, { "DOI": "10.1021/acs.jmedchem.0c01929", "author": "Y Li", "doi-asserted-by": "publisher", "first-page": "2785", "journal-title": "J. Med. Chem.", "key": "1249_CR282", "unstructured": "Li, Y. et al. Remdesivir metabolite GS-441524 effectively inhibits SARS-CoV-2 infection in mouse models. J. Med. Chem. 65, 2785–2793 (2022).", "volume": "65", "year": "2022" }, { "DOI": "10.1016/j.apsb.2021.03.028", "author": "J Xie", "doi-asserted-by": "publisher", "first-page": "1607", "journal-title": "Acta Pharm. Sin. B", "key": "1249_CR283", "unstructured": "Xie, J. & Wang, Z. Can remdesivir and its parent nucleoside GS-441524 be potential oral drugs? An in vitro and in vivo DMPK assessment. Acta Pharm. Sin. B 11, 1607–1616 (2021).", "volume": "11", "year": "2021" }, { "DOI": "10.1002/prp2.945", "author": "HB Rasmussen", "doi-asserted-by": "publisher", "first-page": "e00945", "journal-title": "Pharm. Res. Perspect.", "key": "1249_CR284", "unstructured": "Rasmussen, H. B., Thomsen, R. & Hansen, P. R. Nucleoside analog GS-441524: pharmacokinetics in different species, safety, and potential effectiveness against Covid-19. Pharm. Res. Perspect. 10, e00945 (2022).", "volume": "10", "year": "2022" }, { "DOI": "10.1093/jac/dkaa239", "author": "M Tempestilli", "doi-asserted-by": "publisher", "first-page": "2977", "journal-title": "J. Antimicrob. Chemother.", "key": "1249_CR285", "unstructured": "Tempestilli, M. et al. Pharmacokinetics of remdesivir and GS-441524 in two critically ill patients who recovered from COVID-19. J. Antimicrob. Chemother. 75, 2977–2980 (2020).", "volume": "75", "year": "2020" }, { "DOI": "10.1038/s41392-022-00963-7", "author": "R Zhang", "doi-asserted-by": "publisher", "first-page": "123", "journal-title": "Signal Transduct. Target Ther.", "key": "1249_CR286", "unstructured": "Zhang, R. et al. Oral remdesivir derivative VV116 is a potent inhibitor of respiratory syncytial virus with efficacy in mouse model. Signal Transduct. Target Ther. 7, 123 (2022).", "volume": "7", "year": "2022" }, { "DOI": "10.1038/s41401-021-00851-w", "doi-asserted-by": "crossref", "key": "1249_CR287", "unstructured": "Wu, C. R., Yin, W. C., Jiang, Y. & Xu, H. E. Structure genomics of SARS-CoV-2 and its Omicron variant: drug design templates for COVID-19. Acta Pharmacol. Sin. 1–13 (2022)." }, { "DOI": "10.1038/s41401-022-00895-6", "doi-asserted-by": "crossref", "key": "1249_CR288", "unstructured": "Qian, H. J. et al. Safety, tolerability, and pharmacokinetics of VV116, an oral nucleoside analog against SARS-CoV-2, in Chinese healthy subjects. Acta Pharmacol Sin. 1–9 (2022)." }, { "DOI": "10.1080/22221751.2022.2078230", "author": "Y Shen", "doi-asserted-by": "publisher", "first-page": "1518", "journal-title": "Emerg. Microbes Infect.", "key": "1249_CR289", "unstructured": "Shen, Y. et al. An open, prospective cohort study of VV116 in Chinese participants infected with SARS-CoV-2 omicron variants. Emerg. Microbes Infect. 11, 1518–1523 (2022).", "volume": "11", "year": "2022" }, { "DOI": "10.1186/s12967-020-02439-0", "author": "SO Aftab", "doi-asserted-by": "publisher", "journal-title": "J. Transl. Med.", "key": "1249_CR290", "unstructured": "Aftab, S. O. et al. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J. Transl. Med. 18, 275 (2020).", "volume": "18", "year": "2020" }, { "DOI": "10.3390/antibiotics10111294", "doi-asserted-by": "crossref", "key": "1249_CR291", "unstructured": "Lee, C. C., Hsieh, C. C. & Ko, W. C. Molnupiravir—a novel oral anti-SARS-CoV-2 agent. Antibiotics (Basel) 10, 1294 (2021)." }, { "DOI": "10.1126/scitranslmed.abb5883", "doi-asserted-by": "crossref", "key": "1249_CR292", "unstructured": "Sheahan, T. P. et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med. 12, eabb5883 (2020)." }, { "DOI": "10.1038/s41422-022-00618-w", "author": "P Li", "doi-asserted-by": "publisher", "first-page": "322", "journal-title": "Cell Res.", "key": "1249_CR293", "unstructured": "Li, P. et al. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res. 32, 322–324 (2022).", "volume": "32", "year": "2022" }, { "DOI": "10.1093/infdis/jiab247", "author": "S Zhou", "doi-asserted-by": "publisher", "first-page": "415", "journal-title": "J. Infect. Dis.", "key": "1249_CR294", "unstructured": "Zhou, S. et al. beta-d-N4-hydroxycytidine inhibits SARS-CoV-2 through lethal mutagenesis but is also mutagenic to mammalian cells. J. Infect. Dis. 224, 415–419 (2021).", "volume": "224", "year": "2021" }, { "DOI": "10.3389/fonc.2022.820647", "author": "D Fayzullina", "doi-asserted-by": "publisher", "first-page": "820647", "journal-title": "Front. Oncol.", "key": "1249_CR295", "unstructured": "Fayzullina, D. et al. FNC: an advanced anticancer therapeutic or just an underdog? Front. Oncol. 12, 820647 (2022).", "volume": "12", "year": "2022" }, { "DOI": "10.1021/acs.accounts.1c00697", "author": "J Chang", "doi-asserted-by": "publisher", "first-page": "565", "journal-title": "Acc. Chem. Res.", "key": "1249_CR296", "unstructured": "Chang, J. 4’-Modified nucleosides for antiviral drug discovery: achievements and perspectives. Acc. Chem. Res. 55, 565–578 (2022).", "volume": "55", "year": "2022" }, { "DOI": "10.1038/s41392-021-00835-6", "author": "JL Zhang", "doi-asserted-by": "publisher", "first-page": "414", "journal-title": "Signal Transduct. Target Ther.", "key": "1249_CR297", "unstructured": "Zhang, J. L. et al. Azvudine is a thymus-homing anti-SARS-CoV-2 drug effective in treating COVID-19 patients. Signal Transduct. Target Ther. 6, 414 (2021).", "volume": "6", "year": "2021" }, { "DOI": "10.1002/ctm2.284", "author": "S Su", "doi-asserted-by": "publisher", "journal-title": "Clin. Transl. Med.", "key": "1249_CR298", "unstructured": "Su, S., Wang, Q. & Jiang, S. Facing the challenge of viral mutations in the age of pandemic: developing highly potent, broad-spectrum, and safe COVID-19 vaccines and therapeutics. Clin. Transl. Med. 11, e284 (2021).", "volume": "11", "year": "2021" }, { "DOI": "10.3851/IMP2564", "author": "A Krajczyk", "doi-asserted-by": "publisher", "first-page": "161", "journal-title": "Antivir. Chem. Chemother.", "key": "1249_CR299", "unstructured": "Krajczyk, A. et al. Antivirally active ribavirin analogues–4,5-disubstituted 1,2,3-triazole nucleosides: biological evaluation against certain respiratory viruses and computational modelling. Antivir. Chem. Chemother. 23, 161–171 (2014).", "volume": "23", "year": "2014" }, { "DOI": "10.1053/jhep.2002.32672", "author": "JY Lau", "doi-asserted-by": "publisher", "first-page": "1002", "journal-title": "Hepatology", "key": "1249_CR300", "unstructured": "Lau, J. Y., Tam, R. C., Liang, T. J. & Hong, Z. Mechanism of action of ribavirin in the combination treatment of chronic HCV infection. Hepatology 35, 1002–1009 (2002).", "volume": "35", "year": "2002" }, { "DOI": "10.1093/jac/dkaa331", "author": "G Eslami", "doi-asserted-by": "publisher", "first-page": "3366", "journal-title": "J. Antimicrob. Chemother.", "key": "1249_CR301", "unstructured": "Eslami, G. et al. The impact of sofosbuvir/daclatasvir or ribavirin in patients with severe COVID-19. J. Antimicrob. Chemother. 75, 3366–3372 (2020).", "volume": "75", "year": "2020" }, { "DOI": "10.1016/j.ijid.2020.11.008", "author": "F Khamis", "doi-asserted-by": "publisher", "first-page": "538", "journal-title": "Int J. Infect. Dis.", "key": "1249_CR302", "unstructured": "Khamis, F. et al. Randomized controlled open label trial on the use of favipiravir combined with inhaled interferon beta-1b in hospitalized patients with moderate to severe COVID-19 pneumonia. Int J. Infect. Dis. 102, 538–543 (2021).", "volume": "102", "year": "2021" }, { "DOI": "10.1021/acsptsci.0c00216", "author": "M Kuzikov", "doi-asserted-by": "publisher", "first-page": "1096", "journal-title": "ACS Pharm. Transl. Sci.", "key": "1249_CR303", "unstructured": "Kuzikov, M. et al. Identification of inhibitors of SARS-CoV-2 3CL-pro enzymatic activity using a small molecule in vitro repurposing screen. ACS Pharm. Transl. Sci. 4, 1096–1110 (2021).", "volume": "4", "year": "2021" }, { "DOI": "10.2147/IDR.S289037", "author": "AR Abubakar", "doi-asserted-by": "publisher", "first-page": "4673", "journal-title": "Infect. Drug Resist.", "key": "1249_CR304", "unstructured": "Abubakar, A. R. et al. Systematic review on the therapeutic options for COVID-19: clinical evidence of drug efficacy and implications. Infect. Drug Resist. 13, 4673–4695 (2020).", "volume": "13", "year": "2020" }, { "DOI": "10.1016/j.eng.2020.08.011", "author": "X Wu", "doi-asserted-by": "publisher", "first-page": "1185", "journal-title": "Engineering", "key": "1249_CR305", "unstructured": "Wu, X. et al. Efficacy and safety of triazavirin therapy for coronavirus disease 2019: a pilot randomized controlled trial. Engineering 6, 1185–1191 (2020).", "volume": "6", "year": "2020" }, { "DOI": "10.1021/acs.jafc.1c02050", "author": "S Hong", "doi-asserted-by": "publisher", "first-page": "5948", "journal-title": "J. Agric. Food Chem.", "key": "1249_CR306", "unstructured": "Hong, S. et al. Epigallocatechin gallate inhibits the uridylate-specific endoribonuclease Nsp15 and efficiently neutralizes the SARS-CoV-2 strain. J. Agric. Food Chem. 69, 5948–5954 (2021).", "volume": "69", "year": "2021" }, { "DOI": "10.1056/NEJMoa1306218", "author": "MS Sulkowski", "doi-asserted-by": "publisher", "first-page": "211", "journal-title": "N. Engl. J. Med.", "key": "1249_CR307", "unstructured": "Sulkowski, M. S. et al. Daclatasvir plus sofosbuvir for previously treated or untreated chronic HCV infection. N. Engl. J. Med. 370, 211–221 (2014).", "volume": "370", "year": "2014" }, { "DOI": "10.1016/j.antiviral.2020.104859", "author": "NR Gardinali", "doi-asserted-by": "publisher", "first-page": "104859", "journal-title": "Antivir. Res.", "key": "1249_CR308", "unstructured": "Gardinali, N. R. et al. Sofosbuvir shows a protective effect against vertical transmission of Zika virus and the associated congenital syndrome in rhesus monkeys. Antivir. Res. 182, 104859 (2020).", "volume": "182", "year": "2020" }, { "DOI": "10.1016/j.ijantimicag.2019.07.010", "author": "Y Lin", "doi-asserted-by": "publisher", "first-page": "502", "journal-title": "Int. J. Antimicrob. Agents", "key": "1249_CR309", "unstructured": "Lin, Y. et al. Identification and characterization of Zika virus NS5 RNA-dependent RNA polymerase inhibitors. Int. J. Antimicrob. Agents 54, 502–506 (2019).", "volume": "54", "year": "2019" }, { "DOI": "10.1016/j.antiviral.2021.105224", "author": "S Leumi", "doi-asserted-by": "publisher", "first-page": "105224", "journal-title": "Antivir. Res.", "key": "1249_CR310", "unstructured": "Leumi, S. et al. Identification of a novel replication-competent hepatitis C virus variant that confers the sofosbuvir resistance. Antivir. Res. 197, 105224 (2022).", "volume": "197", "year": "2022" }, { "DOI": "10.1021/acs.jproteome.0c00392", "author": "M Chien", "doi-asserted-by": "publisher", "first-page": "4690", "journal-title": "J. Proteome Res.", "key": "1249_CR311", "unstructured": "Chien, M. et al. Nucleotide analogues as inhibitors of SARS-CoV-2 polymerase, a key drug target for COVID-19. J. Proteome Res. 19, 4690–4697 (2020).", "volume": "19", "year": "2020" }, { "DOI": "10.1080/14787210.2021.1950532", "author": "M El-Bendary", "doi-asserted-by": "publisher", "first-page": "291", "journal-title": "Expert Rev. Anti Infect. Ther.", "key": "1249_CR312", "unstructured": "El-Bendary, M. et al. Efficacy of combined Sofosbuvir and Daclatasvir in the treatment of COVID-19 patients with pneumonia: a multicenter Egyptian study. Expert Rev. Anti Infect. Ther. 20, 291–295 (2022).", "volume": "20", "year": "2022" }, { "DOI": "10.1080/14787210.2022.2000861", "author": "CS Kow", "doi-asserted-by": "publisher", "first-page": "567", "journal-title": "Expert Rev. Anti Infect. Ther.", "key": "1249_CR313", "unstructured": "Kow, C. S., Javed, A., Ramachandram, D. & Hasan, S. S. Clinical outcomes of sofosbuvir-based antivirals in patients with COVID-19: a systematic review and meta-analysis of randomized trials. Expert Rev. Anti Infect. Ther. 20, 567–575 (2022).", "volume": "20", "year": "2022" }, { "DOI": "10.1016/j.antiviral.2020.104708", "author": "F Dragoni", "doi-asserted-by": "publisher", "first-page": "104708", "journal-title": "Antivir. Res.", "key": "1249_CR314", "unstructured": "Dragoni, F. et al. Evaluation of sofosbuvir activity and resistance profile against West Nile virus in vitro. Antivir. Res. 175, 104708 (2020).", "volume": "175", "year": "2020" }, { "DOI": "10.2183/pjab.93.027", "author": "Y Furuta", "doi-asserted-by": "publisher", "first-page": "449", "journal-title": "Proc. Jpn Acad. Ser. B Phys. Biol. Sci.", "key": "1249_CR315", "unstructured": "Furuta, Y., Komeno, T. & Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 93, 449–463 (2017).", "volume": "93", "year": "2017" }, { "DOI": "10.1016/j.eng.2020.03.007", "author": "Q Cai", "doi-asserted-by": "publisher", "first-page": "1192", "journal-title": "Engineering", "key": "1249_CR316", "unstructured": "Cai, Q. et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering 6, 1192–1198 (2020).", "volume": "6", "year": "2020" }, { "DOI": "10.1038/s41598-021-85227-0", "author": "HM Dabbous", "doi-asserted-by": "publisher", "journal-title": "Sci. Rep.", "key": "1249_CR317", "unstructured": "Dabbous, H. M. et al. Safety and efficacy of favipiravir versus hydroxychloroquine in management of COVID-19: A randomised controlled trial. Sci. Rep. 11, 7282 (2021).", "volume": "11", "year": "2021" }, { "DOI": "10.1016/j.intimp.2021.107831", "author": "AM Rabie", "doi-asserted-by": "publisher", "first-page": "107831", "journal-title": "Int. Immunopharmacol.", "key": "1249_CR318", "unstructured": "Rabie, A. M. Cyanorona-20: the first potent anti-SARS-CoV-2 agent. Int. Immunopharmacol. 98, 107831 (2021).", "volume": "98", "year": "2021" }, { "DOI": "10.1056/NEJMoa2031994", "author": "AC Kalil", "doi-asserted-by": "publisher", "first-page": "795", "journal-title": "N. Engl. J. Med.", "key": "1249_CR319", "unstructured": "Kalil, A. C. et al. Baricitinib plus Remdesivir for hospitalized adults with covid-19. N. Engl. J. Med. 384, 795–807 (2021).", "volume": "384", "year": "2021" }, { "DOI": "10.1101/2022.01.13.476088", "doi-asserted-by": "crossref", "key": "1249_CR320", "unstructured": "Patel, N. M. et al. Inhibition of the JAK/STAT pathway with baricitinib reduces the multiple organ dysfunction caused by hemorrhagic shock in rats. Ann. Surg. (2022)." }, { "DOI": "10.1172/JCI141772", "author": "V Bronte", "doi-asserted-by": "publisher", "first-page": "6409", "journal-title": "J. Clin. Invest.", "key": "1249_CR321", "unstructured": "Bronte, V. et al. Baricitinib restrains the immune dysregulation in patients with severe COVID-19. J. Clin. Invest. 130, 6409–6416 (2020).", "volume": "130", "year": "2020" }, { "DOI": "10.1016/S2213-2600(21)00331-3", "author": "VC Marconi", "doi-asserted-by": "publisher", "first-page": "1407", "journal-title": "Lancet Respir. Med.", "key": "1249_CR322", "unstructured": "Marconi, V. C. et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir. Med. 9, 1407–1418 (2021).", "volume": "9", "year": "2021" }, { "DOI": "10.1007/s13721-021-00341-3", "author": "N Alizadehmohajer", "doi-asserted-by": "publisher", "first-page": "11", "journal-title": "Netw. Model Anal. Health Inf. Bioinform.", "key": "1249_CR323", "unstructured": "Alizadehmohajer, N. et al. Screening of potential inhibitors of COVID-19 with repurposing approach via molecular docking. Netw. Model Anal. Health Inf. Bioinform. 11, 11 (2022).", "volume": "11", "year": "2022" }, { "DOI": "10.3390/ph15050618", "doi-asserted-by": "crossref", "key": "1249_CR324", "unstructured": "Huntington, K. E. et al. Integrin/TGF-beta1 inhibitor GLPG-0187 blocks SARS-CoV-2 delta and omicron pseudovirus infection of airway epithelial cells in vitro, which could attenuate disease severity. Pharmaceuticals (Basel) 15, 618 (2022)." }, { "DOI": "10.1016/j.jiph.2020.10.015", "author": "P Indu", "doi-asserted-by": "publisher", "first-page": "1856", "journal-title": "J. Infect. Public Health", "key": "1249_CR325", "unstructured": "Indu, P. et al. Raltegravir, Indinavir, Tipranavir, Dolutegravir, and Etravirine against main protease and RNA-dependent RNA polymerase of SARS-CoV-2: a molecular docking and drug repurposing approach. J. Infect. Public Health 13, 1856–1861 (2020).", "volume": "13", "year": "2020" }, { "DOI": "10.1016/j.xcrm.2020.100145", "author": "N Tabassum", "doi-asserted-by": "publisher", "first-page": "100145", "journal-title": "Cell Rep. Med.", "key": "1249_CR326", "unstructured": "Tabassum, N., Zhang, H. & Stebbing, J. Repurposing fostamatinib to combat SARS-CoV-2-induced acute lung injury. Cell Rep. Med. 1, 100145 (2020).", "volume": "1", "year": "2020" }, { "DOI": "10.3390/cells10010030", "doi-asserted-by": "crossref", "key": "1249_CR327", "unstructured": "Baranov, M. V., Bianchi, F. & van den Bogaart, G. The PIKfyve inhibitor apilimod: a double-edged sword against COVID-19. Cells 10, 30 (2020)." }, { "DOI": "10.1016/j.lfs.2012.05.008", "author": "JJ Maguire", "doi-asserted-by": "publisher", "first-page": "681", "journal-title": "Life Sci.", "key": "1249_CR328", "unstructured": "Maguire, J. J., Kuc, R. E. & Davenport, A. P. Defining the affinity and receptor sub-type selectivity of four classes of endothelin antagonists in clinically relevant human cardiovascular tissues. Life Sci. 91, 681–686 (2012).", "volume": "91", "year": "2012" }, { "DOI": "10.1016/j.addr.2019.07.008", "author": "T Seya", "doi-asserted-by": "publisher", "first-page": "37", "journal-title": "Adv. Drug Deliv. Rev.", "key": "1249_CR329", "unstructured": "Seya, T., Takeda, Y. & Matsumoto, M. A Toll-like receptor 3 (TLR3) agonist ARNAX for therapeutic immunotherapy. Adv. Drug Deliv. Rev. 147, 37–43 (2019).", "volume": "147", "year": "2019" }, { "DOI": "10.1023/A:1006458232384", "author": "BJ Giantonio", "doi-asserted-by": "publisher", "first-page": "89", "journal-title": "Invest. N. Drugs", "key": "1249_CR330", "unstructured": "Giantonio, B. J. et al. Toxicity and response evaluation of the interferon inducer poly ICLC administered at low dose in advanced renal carcinoma and relapsed or refractory lymphoma: a report of two clinical trials of the Eastern Cooperative Oncology Group. Invest. N. Drugs 19, 89–92 (2001).", "volume": "19", "year": "2001" }, { "DOI": "10.1016/j.foodchem.2013.07.104", "author": "MJ Ko", "doi-asserted-by": "publisher", "first-page": "147", "journal-title": "Food Chem.", "key": "1249_CR331", "unstructured": "Ko, M. J., Cheigh, C. I. & Chung, M. S. Relationship analysis between flavonoids structure and subcritical water extraction (SWE). Food Chem. 143, 147–155 (2014).", "volume": "143", "year": "2014" }, { "DOI": "10.1017/jns.2016.41", "author": "AN Panche", "doi-asserted-by": "publisher", "first-page": "e47", "journal-title": "J. Nutr. Sci.", "key": "1249_CR332", "unstructured": "Panche, A. N., Diwan, A. D. & Chandra, S. R. Flavonoids: an overview. J. Nutr. Sci. 5, e47 (2016).", "volume": "5", "year": "2016" }, { "DOI": "10.1016/j.biopha.2021.111430", "author": "A Liskova", "doi-asserted-by": "publisher", "first-page": "111430", "journal-title": "Biomed. Pharmacother.", "key": "1249_CR333", "unstructured": "Liskova, A. et al. Flavonoids against the SARS-CoV-2 induced inflammatory storm. Biomed. Pharmacother. 138, 111430 (2021).", "volume": "138", "year": "2021" }, { "DOI": "10.1016/j.ijantimicag.2005.09.002", "author": "TP Cushnie", "doi-asserted-by": "publisher", "first-page": "343", "journal-title": "Int. J. Antimicrob. Agents", "key": "1249_CR334", "unstructured": "Cushnie, T. P. & Lamb, A. J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26, 343–356 (2005).", "volume": "26", "year": "2005" }, { "DOI": "10.3390/molecules27082494", "doi-asserted-by": "crossref", "key": "1249_CR335", "unstructured": "Nguyen, T. L. A. & Bhattacharya, D. Antimicrobial activity of quercetin: an approach to its mechanistic principle. Molecules 27, 2494 (2022)." }, { "DOI": "10.1016/j.csbj.2020.11.010", "author": "B Pan", "doi-asserted-by": "publisher", "first-page": "3518", "journal-title": "Comput. Struct. Biotechnol. J.", "key": "1249_CR336", "unstructured": "Pan, B. et al. Chinese herbal compounds against SARS-CoV-2: Puerarin and quercetin impair the binding of viral S-protein to ACE2 receptor. Comput. Struct. Biotechnol. J. 18, 3518–3527 (2020).", "volume": "18", "year": "2020" }, { "DOI": "10.1002/ptr.6887", "author": "G Derosa", "doi-asserted-by": "publisher", "first-page": "1230", "journal-title": "Phytother. Res.", "key": "1249_CR337", "unstructured": "Derosa, G., Maffioli, P., D’Angelo, A. & Di Pierro, F. A role for quercetin in coronavirus disease 2019 (COVID-19). Phytother. Res. 35, 1230–1236 (2021).", "volume": "35", "year": "2021" }, { "DOI": "10.1080/07391102.2020.1798813", "doi-asserted-by": "crossref", "key": "1249_CR338", "unstructured": "Chikhale, R. V. et al. Identification of potential anti-TMPRSS2 natural products through homology modelling, virtual screening and molecular dynamics simulation studies. J. Biomol. Struct. Dyn. 1–16 (2020)." }, { "DOI": "10.1080/07391102.2020.1784291", "author": "M Kandeel", "doi-asserted-by": "publisher", "first-page": "5129", "journal-title": "J. Biomol. Struct. Dyn.", "key": "1249_CR339", "unstructured": "Kandeel, M. et al. Repurposing of FDA-approved antivirals, antibiotics, anthelmintics, antioxidants, and cell protectives against SARS-CoV-2 papain-like protease. J. Biomol. Struct. Dyn. 39, 5129–5136 (2021).", "volume": "39", "year": "2021" }, { "DOI": "10.1080/07391102.2021.1979427", "doi-asserted-by": "crossref", "key": "1249_CR340", "unstructured": "Rakshit, M., Muduli, S., Srivastav, P. P. & Mishra, S. Pomegranate peel polyphenols prophylaxis against SARS-CoV-2 main protease by in-silico docking and molecular dynamics study. J. Biomol. Struct. Dyn. 1–15 (2021)." }, { "DOI": "10.3390/ijms21134730", "doi-asserted-by": "crossref", "key": "1249_CR341", "unstructured": "Drouet, S., Tungmunnithum, D., Laine, E. & Hano, C. Gene expression analysis and metabolite profiling of silymarin biosynthesis during milk thistle (Silybum marianum (L.) Gaertn.) fruit ripening. Int. J. Mol. Sci. 21, 4730 (2020)." }, { "DOI": "10.1002/ptr.7084", "author": "P Palit", "doi-asserted-by": "publisher", "first-page": "4246", "journal-title": "Phytother. Res.", "key": "1249_CR342", "unstructured": "Palit, P., Mukhopadhyay, A. & Chattopadhyay, D. Phyto-pharmacological perspective of Silymarin: A potential prophylactic or therapeutic agent for COVID-19, based on its promising immunomodulatory, anti-coagulant and anti-viral property. Phytother. Res. 35, 4246–4257 (2021).", "volume": "35", "year": "2021" }, { "DOI": "10.1007/s12325-020-01251-y", "author": "A Gillessen", "doi-asserted-by": "publisher", "first-page": "1279", "journal-title": "Adv. Ther.", "key": "1249_CR343", "unstructured": "Gillessen, A. & Schmidt, H. H. Silymarin as supportive treatment in liver diseases: a narrative review. Adv. Ther. 37, 1279–1301 (2020).", "volume": "37", "year": "2020" }, { "DOI": "10.1016/j.ijbiomac.2021.12.073", "author": "NAN Hanafy", "doi-asserted-by": "publisher", "first-page": "101", "journal-title": "Int. J. Biol. Macromol.", "key": "1249_CR344", "unstructured": "Hanafy, N. A. N. & El-Kemary, M. A. Silymarin/curcumin loaded albumin nanoparticles coated by chitosan as muco-inhalable delivery system observing anti-inflammatory and anti COVID-19 characterizations in oleic acid triggered lung injury and in vitro COVID-19 experiment. Int. J. Biol. Macromol. 198, 101–110 (2022).", "volume": "198", "year": "2022" }, { "DOI": "10.1016/j.biopha.2019.108612", "author": "M Imran", "doi-asserted-by": "publisher", "first-page": "108612", "journal-title": "Biomed. Pharmacother.", "key": "1249_CR345", "unstructured": "Imran, M. et al. Luteolin, a flavonoid, as an anticancer agent: a review. Biomed. Pharmacother. 112, 108612 (2019).", "volume": "112", "year": "2019" }, { "DOI": "10.1007/s13337-020-00598-8", "author": "VK Maurya", "doi-asserted-by": "publisher", "first-page": "179", "journal-title": "Virus Dis.", "key": "1249_CR346", "unstructured": "Maurya, V. K., Kumar, S., Prasad, A. K., Bhatt, M. L. B. & Saxena, S. K. Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. Virus Dis. 31, 179–193 (2020).", "volume": "31", "year": "2020" }, { "DOI": "10.1039/D0RA05126H", "author": "E Shawky", "doi-asserted-by": "publisher", "first-page": "27961", "journal-title": "RSC Adv.", "key": "1249_CR347", "unstructured": "Shawky, E., Nada, A. A. & Ibrahim, R. S. Potential role of medicinal plants and their constituents in the mitigation of SARS-CoV-2: identifying related therapeutic targets using network pharmacology and molecular docking analyses. RSC Adv. 10, 27961–27983 (2020).", "volume": "10", "year": "2020" }, { "DOI": "10.3389/fimmu.2021.769011", "author": "YZ Xie", "doi-asserted-by": "publisher", "first-page": "769011", "journal-title": "Front. Immunol.", "key": "1249_CR348", "unstructured": "Xie, Y. Z. et al. A practical strategy for exploring the pharmacological mechanism of luteolin against COVID-19/asthma comorbidity: findings of system pharmacology and bioinformatics analysis. Front. Immunol. 12, 769011 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.2174/0929867328666210726094955", "author": "L da Cunha", "doi-asserted-by": "publisher", "first-page": "2530", "journal-title": "Curr. Med. Chem.", "key": "1249_CR349", "unstructured": "da Cunha, L. et al. Natural products with tandem anti-inflammatory, immunomodulatory and anti-sars-cov/2 effects: a drug discovery perspective against SARS-CoV-2. Curr. Med. Chem. 29, 2530–2564 (2022).", "volume": "29", "year": "2022" }, { "DOI": "10.1007/s11655-021-3504-5", "author": "R Hossain", "doi-asserted-by": "publisher", "first-page": "249", "journal-title": "Chin. J. Integr. Med.", "key": "1249_CR350", "unstructured": "Hossain, R. et al. In silico screening of natural products as potential inhibitors of SARS-CoV-2 using molecular docking simulation. Chin. J. Integr. Med. 28, 249–256 (2022).", "volume": "28", "year": "2022" }, { "DOI": "10.1016/j.sajb.2022.02.009", "doi-asserted-by": "crossref", "key": "1249_CR351", "unstructured": "Ristovski, J. T., Matin, M. M., Kong, R., Kusturica, M. P. & Zhang, H. In vitro testing and computational analysis of specific phytochemicals with antiviral activities considering their possible applications against COVID-19. S. Afr. J. Bot. (2022)." }, { "DOI": "10.3390/microorganisms9050893", "doi-asserted-by": "crossref", "key": "1249_CR352", "unstructured": "Zandi, K. et al. Baicalein and baicalin inhibit SARS-CoV-2 RNA-dependent-RNA polymerase. Microorganisms 9, 893 (2021)." }, { "DOI": "10.3389/fphar.2021.732891", "author": "SC Bachar", "doi-asserted-by": "publisher", "first-page": "732891", "journal-title": "Front. Pharm.", "key": "1249_CR353", "unstructured": "Bachar, S. C., Mazumder, K., Bachar, R., Aktar, A. & Al Mahtab, M. A review of medicinal plants with antiviral activity available in Bangladesh and mechanistic insight into their bioactive metabolites on SARS-CoV-2, HIV and HBV. Front. Pharm. 12, 732891 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.2174/1568026622666220127112056", "author": "EF da Silva-Junior", "doi-asserted-by": "publisher", "first-page": "1485", "journal-title": "Curr. Top. Med. Chem.", "key": "1249_CR354", "unstructured": "da Silva-Junior, E. F. & Silva, L. R. Multi-target approaches of epigallocatechin-3-O-gallate (EGCG) and its derivatives against influenza viruses. Curr. Top. Med. Chem. 22, 1485–1500 (2022).", "volume": "22", "year": "2022" }, { "DOI": "10.3390/molecules26133962", "doi-asserted-by": "crossref", "key": "1249_CR355", "unstructured": "Wang, Y. Q., Li, Q. S., Zheng, X. Q., Lu, J. L. & Liang, Y. R. Antiviral effects of green tea EGCG and its potential application against COVID-19. Molecules 26, 3962 (2021)." }, { "DOI": "10.1016/j.tifs.2021.05.023", "author": "Z Zhang", "doi-asserted-by": "publisher", "first-page": "11", "journal-title": "Trends Food Sci. Technol.", "key": "1249_CR356", "unstructured": "Zhang, Z. et al. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends Food Sci. Technol. 114, 11–24 (2021).", "volume": "114", "year": "2021" }, { "DOI": "10.1155/2020/5630838", "author": "M Jang", "doi-asserted-by": "publisher", "first-page": "5630838", "journal-title": "Evid. Based Complement Altern. Med.", "key": "1249_CR357", "unstructured": "Jang, M. et al. Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Evid. Based Complement Altern. Med. 2020, 5630838 (2020).", "volume": "2020", "year": "2020" }, { "DOI": "10.1016/j.bbrc.2020.12.106", "author": "WC Chiou", "doi-asserted-by": "publisher", "first-page": "130", "journal-title": "Biochem. Biophys. Res. Commun.", "key": "1249_CR358", "unstructured": "Chiou, W. C. et al. The inhibitory effects of PGG and EGCG against the SARS-CoV-2 3C-like protease. Biochem. Biophys. Res. Commun. 591, 130–136 (2022).", "volume": "591", "year": "2022" }, { "DOI": "10.2174/1871520620666201123101002", "author": "MN Arif", "doi-asserted-by": "publisher", "first-page": "197", "journal-title": "Comb. Chem. High. Throughput Screen", "key": "1249_CR359", "unstructured": "Arif, M. N. Catechin derivatives as inhibitor of COVID-19 main protease (Mpro): molecular docking studies unveil an opportunity against CORONA. Comb. Chem. High. Throughput Screen 25, 197–203 (2022).", "volume": "25", "year": "2022" }, { "DOI": "10.3390/biology10070589", "doi-asserted-by": "crossref", "key": "1249_CR360", "unstructured": "Mahmud, S. et al. Plant-based phytochemical screening by targeting main protease of SARS-CoV-2 to design effective potent inhibitors. Biology (Basel) 10, 589 (2021)." }, { "DOI": "10.3390/molecules26216744", "doi-asserted-by": "crossref", "key": "1249_CR361", "unstructured": "Montone, C. M. et al. Characterization of the trans-epithelial transport of green tea (C. sinensis) catechin extracts with in vitro inhibitory effect against the SARS-CoV-2 papain-like protease activity. Molecules 26, 6744 (2021)." }, { "DOI": "10.3390/biomedicines10051170", "doi-asserted-by": "crossref", "key": "1249_CR362", "unstructured": "Jin, Y. H. et al. Natural polyphenols, 1,2,3,4,6-O-pentagalloyglucose and proanthocyanidins, as broad-spectrum anticoronaviral inhibitors targeting Mpro and RdRp of SARS-CoV-2. Biomedicines 10, 1170 (2022)." }, { "DOI": "10.1111/jipb.13054", "author": "NQ Dong", "doi-asserted-by": "publisher", "first-page": "180", "journal-title": "J. Integr. Plant Biol.", "key": "1249_CR363", "unstructured": "Dong, N. Q. & Lin, H. X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant Biol. 63, 180–209 (2021).", "volume": "63", "year": "2021" }, { "DOI": "10.1038/s41401-021-00620-9", "author": "CY Fang", "doi-asserted-by": "publisher", "first-page": "1951", "journal-title": "Acta Pharm. Sin.", "key": "1249_CR364", "unstructured": "Fang, C. Y. et al. Natural products: potential treatments for cisplatin-induced nephrotoxicity. Acta Pharm. Sin. 42, 1951–1969 (2021).", "volume": "42", "year": "2021" }, { "DOI": "10.1016/j.foodchem.2019.05.058", "author": "J Xiang", "doi-asserted-by": "publisher", "first-page": "214", "journal-title": "Food Chem.", "key": "1249_CR365", "unstructured": "Xiang, J., Zhang, M., Apea-Bah, F. B. & Beta, T. Hydroxycinnamic acid amide (HCAA) derivatives, flavonoid C-glycosides, phenolic acids and antioxidant properties of foxtail millet. Food Chem. 295, 214–223 (2019).", "volume": "295", "year": "2019" }, { "DOI": "10.1016/j.antiviral.2009.05.002", "author": "GF Wang", "doi-asserted-by": "publisher", "first-page": "186", "journal-title": "Antivir. Res.", "key": "1249_CR366", "unstructured": "Wang, G. F. et al. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antivir. Res. 83, 186–190 (2009).", "volume": "83", "year": "2009" }, { "DOI": "10.3109/13880209.2010.519390", "author": "B Ozcelik", "doi-asserted-by": "publisher", "first-page": "396", "journal-title": "Pharm. Biol.", "key": "1249_CR367", "unstructured": "Ozcelik, B., Kartal, M. & Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol. 49, 396–402 (2011).", "volume": "49", "year": "2011" }, { "DOI": "10.3389/fphar.2021.619373", "author": "FS Youssef", "doi-asserted-by": "publisher", "first-page": "619373", "journal-title": "Front. Pharm.", "key": "1249_CR368", "unstructured": "Youssef, F. S., Altyar, A. E., Omar, A. M. & Ashour, M. L. Phytoconstituents, in vitro anti-infective activity of Buddleja indica Lam., and in silico evaluation of its SARS-CoV-2 inhibitory potential. Front. Pharm. 12, 619373 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.1016/j.meegid.2020.104451", "author": "D Bhowmik", "doi-asserted-by": "publisher", "first-page": "104451", "journal-title": "Infect. Genet. Evol.", "key": "1249_CR369", "unstructured": "Bhowmik, D. et al. Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. Infect. Genet. Evol. 84, 104451 (2020).", "volume": "84", "year": "2020" }, { "DOI": "10.1039/C5FO01412C", "author": "M Gamaleldin Elsadig Karar", "doi-asserted-by": "publisher", "first-page": "2052", "journal-title": "Food Funct.", "key": "1249_CR370", "unstructured": "Gamaleldin Elsadig Karar, M., Matei, M. F., Jaiswal, R., Illenberger, S. & Kuhnert, N. Neuraminidase inhibition of Dietary chlorogenic acids and derivatives—potential antivirals from dietary sources. Food Funct. 7, 2052–2059 (2016).", "volume": "7", "year": "2016" }, { "DOI": "10.1016/j.jff.2020.104016", "author": "JW Yu", "doi-asserted-by": "publisher", "first-page": "104016", "journal-title": "J. Funct. Foods", "key": "1249_CR371", "unstructured": "Yu, J. W., Wang, L. & Bao, L. D. Exploring the active compounds of traditional Mongolian medicine in intervention of novel coronavirus (COVID-19) based on molecular docking method. J. Funct. Foods 71, 104016 (2020).", "volume": "71", "year": "2020" }, { "DOI": "10.3390/molecules26195844", "doi-asserted-by": "crossref", "key": "1249_CR372", "unstructured": "El Gizawy, H. A. et al. Pimenta dioica (L.) Merr. bioactive constituents exert anti-SARS-CoV-2 and anti-inflammatory activities: molecular docking and dynamics, in vitro, and in vivo studies. Molecules 26, 5844 (2021)." }, { "DOI": "10.1016/j.apsb.2020.10.002", "author": "X Chen", "doi-asserted-by": "publisher", "first-page": "222", "journal-title": "Acta Pharm. Sin. B", "key": "1249_CR373", "unstructured": "Chen, X. et al. Identifying potential anti-COVID-19 pharmacological components of traditional Chinese medicine Lianhuaqingwen capsule based on human exposure and ACE2 biochromatography screening. Acta Pharm. Sin. B 11, 222–236 (2021).", "volume": "11", "year": "2021" }, { "DOI": "10.1080/10934529.2021.2020029", "author": "M Akdad", "doi-asserted-by": "publisher", "first-page": "1512", "journal-title": "J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng.", "key": "1249_CR374", "unstructured": "Akdad, M., Moujane, S., Bouadid, I., Benlyas, M. & Eddouks, M. Phytocompounds from Anvillea radiata as promising anti-Covid-19 drugs: in silico studies and in vivo safety assessment. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng. 56, 1512–1523 (2021).", "volume": "56", "year": "2021" }, { "DOI": "10.1080/07391102.2021.1872419", "author": "S Shah", "doi-asserted-by": "publisher", "first-page": "5643", "journal-title": "J. Biomol. Struct. Dyn.", "key": "1249_CR375", "unstructured": "Shah, S. et al. Prospecting for Cressa cretica to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2. J. Biomol. Struct. Dyn. 40, 5643–5652 (2022).", "volume": "40", "year": "2022" }, { "DOI": "10.3389/fphar.2020.572373", "author": "Z Xiao", "doi-asserted-by": "publisher", "first-page": "572373", "journal-title": "Front. Pharm.", "key": "1249_CR376", "unstructured": "Xiao, Z. et al. Pharmacological effects of salvianolic acid B against oxidative damage. Front. Pharm. 11, 572373 (2020).", "volume": "11", "year": "2020" }, { "DOI": "10.1002/jmv.26874", "author": "S Hu", "doi-asserted-by": "publisher", "first-page": "3143", "journal-title": "J. Med. Virol.", "key": "1249_CR377", "unstructured": "Hu, S. et al. Three salvianolic acids inhibit 2019-nCoV spike pseudovirus viropexis by binding to both its RBD and receptor ACE2. J. Med. Virol. 93, 3143–3151 (2021).", "volume": "93", "year": "2021" }, { "DOI": "10.1038/s41401-021-00714-4", "author": "W Wang", "doi-asserted-by": "publisher", "first-page": "771", "journal-title": "Acta Pharm. Sin.", "key": "1249_CR378", "unstructured": "Wang, W. et al. Danshensu alleviates pseudo-typed SARS-CoV-2 induced mouse acute lung inflammation. Acta Pharm. Sin. 43, 771–780 (2022).", "volume": "43", "year": "2022" }, { "DOI": "10.1038/s41392-020-00325-1", "author": "C Yang", "doi-asserted-by": "publisher", "first-page": "220", "journal-title": "Signal Transduct. Target Ther.", "key": "1249_CR379", "unstructured": "Yang, C. et al. Salvianolic acid C potently inhibits SARS-CoV-2 infection by blocking the formation of six-helix bundle core of spike protein. Signal Transduct. Target Ther. 5, 220 (2020).", "volume": "5", "year": "2020" }, { "DOI": "10.1016/j.phrs.2021.105690", "author": "L Gong", "doi-asserted-by": "publisher", "first-page": "105690", "journal-title": "Pharm. Res.", "key": "1249_CR380", "unstructured": "Gong, L. et al. A review of pharmacological and pharmacokinetic properties of Forsythiaside A. Pharm. Res. 169, 105690 (2021).", "volume": "169", "year": "2021" }, { "DOI": "10.1016/j.jep.2017.08.040", "author": "Z Wang", "doi-asserted-by": "publisher", "first-page": "318", "journal-title": "J. Ethnopharmacol.", "key": "1249_CR381", "unstructured": "Wang, Z. et al. Phytochemistry, pharmacology, quality control and future research of Forsythia suspensa (Thunb.) Vahl: a review. J. Ethnopharmacol. 210, 318–339 (2018).", "volume": "210", "year": "2018" }, { "DOI": "10.1016/j.biopha.2022.113185", "author": "K Fu", "doi-asserted-by": "publisher", "first-page": "113185", "journal-title": "Biomed. Pharmacother.", "key": "1249_CR382", "unstructured": "Fu, K. et al. Forsythiaside A alleviated carbon tetrachloride-induced liver fibrosis by modulating gut microbiota composition to increase short-chain fatty acids and restoring bile acids metabolism disorder. Biomed. Pharmacother. 151, 113185 (2022).", "volume": "151", "year": "2022" }, { "DOI": "10.1016/j.ijbiomac.2022.03.145", "author": "Y Fu", "doi-asserted-by": "publisher", "first-page": "715", "journal-title": "Int J. Biol. Macromol.", "key": "1249_CR383", "unstructured": "Fu, Y. et al. Interfering effects on the bioactivities of several key proteins of COVID-19/variants in diabetes by compounds from Lianqiao leaves: In silico and in vitro analyses. Int J. Biol. Macromol. 207, 715–729 (2022).", "volume": "207", "year": "2022" }, { "DOI": "10.1016/j.ejphar.2022.174867", "author": "B Rostom", "doi-asserted-by": "publisher", "first-page": "174867", "journal-title": "Eur. J. Pharm.", "key": "1249_CR384", "unstructured": "Rostom, B., Karaky, R., Kassab, I. & Sylla-Iyarreta Veitia, M. Coumarins derivatives and inflammation: review of their effects on the inflammatory signaling pathways. Eur. J. Pharm. 922, 174867 (2022).", "volume": "922", "year": "2022" }, { "DOI": "10.1016/j.antiviral.2022.105365", "author": "M Zhou", "doi-asserted-by": "publisher", "first-page": "105365", "journal-title": "Antivir. Res.", "key": "1249_CR385", "unstructured": "Zhou, M. et al. Bergamottin, a bioactive component of bergamot, inhibits SARS-CoV-2 infection in golden Syrian hamsters. Antivir. Res. 204, 105365 (2022).", "volume": "204", "year": "2022" }, { "DOI": "10.1007/s11101-021-09758-0", "author": "XY Xu", "doi-asserted-by": "publisher", "first-page": "239", "journal-title": "Phytochem. Rev.", "key": "1249_CR386", "unstructured": "Xu, X. Y., Wang, D. Y., Li, Y. P., Deyrup, S. T. & Zhang, H. J. Plant-derived lignans as potential antiviral agents: a systematic review. Phytochem. Rev. 21, 239–289 (2022).", "volume": "21", "year": "2022" }, { "DOI": "10.1016/j.phymed.2020.153296", "author": "Q Ma", "doi-asserted-by": "publisher", "first-page": "153296", "journal-title": "Phytomedicine", "key": "1249_CR387", "unstructured": "Ma, Q. et al. Phillyrin (KD-1) exerts anti-viral and anti-inflammatory activities against novel coronavirus (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) by suppressing the nuclear factor kappa B (NF-kappaB) signaling pathway. Phytomedicine 78, 153296 (2020).", "volume": "78", "year": "2020" }, { "DOI": "10.3389/fphar.2021.754241", "author": "Y Lai", "doi-asserted-by": "publisher", "first-page": "754241", "journal-title": "Front. Pharm.", "key": "1249_CR388", "unstructured": "Lai, Y. et al. Phillyrin for COVID-19 anD Influenza Co-infection: A Potential Therapeutic Strategy Targeting Host Based on Bioinformatics analysis. Front. Pharm. 12, 754241 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.1002/med.21484", "author": "S Xiao", "doi-asserted-by": "publisher", "first-page": "951", "journal-title": "Med. Res. Rev.", "key": "1249_CR389", "unstructured": "Xiao, S. et al. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med. Res. Rev. 38, 951–976 (2018).", "volume": "38", "year": "2018" }, { "DOI": "10.1016/j.bioorg.2022.105817", "author": "J Ge", "doi-asserted-by": "publisher", "first-page": "105817", "journal-title": "Bioorg. Chem.", "key": "1249_CR390", "unstructured": "Ge, J. et al. Natural terpenoids with anti-inflammatory activities: potential leads for anti-inflammatory drug discovery. Bioorg. Chem. 124, 105817 (2022).", "volume": "124", "year": "2022" }, { "DOI": "10.3389/fcimb.2021.680127", "author": "Y Hu", "doi-asserted-by": "publisher", "first-page": "680127", "journal-title": "Front. Cell Infect. Microbiol.", "key": "1249_CR391", "unstructured": "Hu, Y. et al. Artemether, artesunate, arteannuin B, echinatin, licochalcone B and andrographolide effectively inhibit SARS-CoV-2 and related viruses in vitro. Front. Cell Infect. Microbiol. 11, 680127 (2021).", "volume": "11", "year": "2021" }, { "DOI": "10.1016/S0140-6736(18)30324-6", "author": "EA Ashley", "doi-asserted-by": "publisher", "first-page": "1608", "journal-title": "Lancet", "key": "1249_CR392", "unstructured": "Ashley, E. A., Pyae Phyo, A. & Woodrow, C. J. Malaria. Lancet 391, 1608–1621 (2018).", "volume": "391", "year": "2018" }, { "DOI": "10.1016/j.pharmthera.2020.107658", "author": "N Ma", "doi-asserted-by": "publisher", "first-page": "107658", "journal-title": "Pharm. Ther.", "key": "1249_CR393", "unstructured": "Ma, N., Zhang, Z., Liao, F., Jiang, T. & Tu, Y. The birth of artemisinin. Pharm. Ther. 216, 107658 (2020).", "volume": "216", "year": "2020" }, { "DOI": "10.1016/j.biotechadv.2018.01.001", "author": "T Efferth", "doi-asserted-by": "publisher", "first-page": "1730", "journal-title": "Biotechnol. Adv.", "key": "1249_CR394", "unstructured": "Efferth, T. Beyond malaria: the inhibition of viruses by artemisinin-type compounds. Biotechnol. Adv. 36, 1730–1737 (2018).", "volume": "36", "year": "2018" }, { "DOI": "10.1086/591195", "author": "T Efferth", "doi-asserted-by": "publisher", "first-page": "804", "journal-title": "Clin. Infect. Dis.", "key": "1249_CR395", "unstructured": "Efferth, T. et al. The antiviral activities of artemisinin and artesunate. Clin. Infect. Dis. 47, 804–811 (2008).", "volume": "47", "year": "2008" }, { "DOI": "10.1002/anie.201601967", "author": "Y Tu", "doi-asserted-by": "publisher", "first-page": "10210", "journal-title": "Angew. Chem. Int. Ed. Engl.", "key": "1249_CR396", "unstructured": "Tu, Y. Artemisinin-A Gift from Traditional Chinese Medicine to the World (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 55, 10210–10226 (2016).", "volume": "55", "year": "2016" }, { "DOI": "10.1007/s40495-021-00259-4", "author": "R Rolta", "doi-asserted-by": "publisher", "first-page": "135", "journal-title": "Curr. Pharm. Rep.", "key": "1249_CR397", "unstructured": "Rolta, R. et al. Phytocompounds of Rheum emodi, Thymus serpyllum, and Artemisia annua inhibit spike protein of SARS-CoV-2 binding to ACE2 receptor: in silico approach. Curr. Pharm. Rep. 7, 135–149 (2021).", "volume": "7", "year": "2021" }, { "DOI": "10.1021/acsinfecdis.0c00522", "author": "R Cao", "doi-asserted-by": "publisher", "first-page": "2524", "journal-title": "ACS Infect. Dis.", "key": "1249_CR398", "unstructured": "Cao, R. et al. Anti-SARS-CoV-2 potential of artemisinins in vitro. ACS Infect. Dis. 6, 2524–2531 (2020).", "volume": "6", "year": "2020" }, { "DOI": "10.1016/j.jep.2021.114016", "author": "MS Nair", "doi-asserted-by": "publisher", "first-page": "114016", "journal-title": "J. Ethnopharmacol.", "key": "1249_CR399", "unstructured": "Nair, M. S. et al. Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. J. Ethnopharmacol. 274, 114016 (2021).", "volume": "274", "year": "2021" }, { "DOI": "10.1016/j.ijantimicag.2020.106216", "author": "G Li", "doi-asserted-by": "publisher", "first-page": "106216", "journal-title": "Int. J. Antimicrob. Agents", "key": "1249_CR400", "unstructured": "Li, G. et al. Safety and efficacy of artemisinin-piperaquine for treatment of COVID-19: an open-label, non-randomised and controlled trial. Int. J. Antimicrob. Agents 57, 106216 (2021).", "volume": "57", "year": "2021" }, { "DOI": "10.1080/07391102.2020.1758790", "author": "I Aanouz", "doi-asserted-by": "publisher", "first-page": "2971", "journal-title": "J. Biomol. Struct. Dyn.", "key": "1249_CR401", "unstructured": "Aanouz, I. et al. Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: computational investigations. J. Biomol. Struct. Dyn. 39, 2971–2979 (2021).", "volume": "39", "year": "2021" }, { "DOI": "10.3389/fmolb.2020.613401", "author": "S Vincent", "doi-asserted-by": "publisher", "first-page": "613401", "journal-title": "Front. Mol. Biosci.", "key": "1249_CR402", "unstructured": "Vincent, S., Arokiyaraj, S., Saravanan, M. & Dhanraj, M. Molecular docking studies on the anti-viral effects of compounds from Kabasura Kudineer on SARS-CoV-2 3CL(pro). Front. Mol. Biosci. 7, 613401 (2020).", "volume": "7", "year": "2020" }, { "DOI": "10.3390/molecules26175230", "doi-asserted-by": "crossref", "key": "1249_CR403", "unstructured": "Zubair, M. S. et al. GC-MS, LC-MS/MS, docking and molecular dynamics approaches to identify potential SARS-CoV-2 3-chymotrypsin-like protease inhibitors from Zingiber officinale Roscoe. Molecules 26, 5230 (2021)." }, { "DOI": "10.5455/javar.2021.h481", "author": "D Dey", "doi-asserted-by": "publisher", "first-page": "24", "journal-title": "J. Adv. Vet. Anim. Res", "key": "1249_CR404", "unstructured": "Dey, D. et al. Molecular optimization, docking, and dynamic simulation profiling of selective aromatic phytochemical ligands in blocking the SARS-CoV-2 S protein attachment to ACE2 receptor: an in silico approach of targeted drug designing. J. Adv. Vet. Anim. Res 8, 24–35 (2021).", "volume": "8", "year": "2021" }, { "author": "B Pattanaik", "first-page": "269", "journal-title": "Life (Basel)", "key": "1249_CR405", "unstructured": "Pattanaik, B. & Lindberg, P. Terpenoids and their biosynthesis in cyanobacteria. Life (Basel) 5, 269–293 (2015).", "volume": "5", "year": "2015" }, { "DOI": "10.1080/10408398.2018.1501657", "author": "Y Dai", "doi-asserted-by": "publisher", "first-page": "S17", "journal-title": "Crit. Rev. Food Sci. Nutr.", "key": "1249_CR406", "unstructured": "Dai, Y. et al. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit. Rev. Food Sci. Nutr. 59, S17–S29 (2019).", "volume": "59", "year": "2019" }, { "DOI": "10.1186/s12896-021-00680-z", "author": "M Adhami", "doi-asserted-by": "publisher", "journal-title": "BMC Biotechnol.", "key": "1249_CR407", "unstructured": "Adhami, M., Sadeghi, B., Rezapour, A., Haghdoost, A. A. & MotieGhader, H. Repurposing novel therapeutic candidate drugs for coronavirus disease-19 based on protein-protein interaction network analysis. BMC Biotechnol. 21, 22 (2021).", "volume": "21", "year": "2021" }, { "DOI": "10.1080/07391102.2021.2002719", "doi-asserted-by": "crossref", "key": "1249_CR408", "unstructured": "Pingali, M. S. et al. Docking and molecular dynamics simulation for therapeutic repurposing in small cell lung cancer (SCLC) patients infected with COVID-19. J. Biomol. Struct. Dyn. 1–10 (2021)." }, { "DOI": "10.1159/000011873", "author": "K Fujimori", "doi-asserted-by": "publisher", "first-page": "340", "journal-title": "Oncology", "key": "1249_CR409", "unstructured": "Fujimori, K., Yokoyama, A., Kurita, Y., Uno, K. & Saijo, N. Paclitaxel-induced cell-mediated hypersensitivity pneumonitis. Diagnosis using leukocyte migration test, bronchoalveolar lavage and transbronchial lung biopsy. Oncology 55, 340–344 (1998).", "volume": "55", "year": "1998" }, { "DOI": "10.1056/NEJMc1505197", "author": "M Nishino", "doi-asserted-by": "publisher", "first-page": "288", "journal-title": "N. Engl. J. Med.", "key": "1249_CR410", "unstructured": "Nishino, M., Sholl, L. M., Hodi, F. S., Hatabu, H. & Ramaiya, N. H. Anti-PD-1-related pneumonitis during cancer immunotherapy. N. Engl. J. Med. 373, 288–290 (2015).", "volume": "373", "year": "2015" }, { "author": "WY Chen", "first-page": "3122", "journal-title": "Eur. Rev. Med. Pharm. Sci.", "key": "1249_CR411", "unstructured": "Chen, W. Y. et al. Prediction of potential therapeutic drugs against SARS-CoV-2 by using Connectivity Map based on transcriptome data. Eur. Rev. Med. Pharm. Sci. 25, 3122–3131 (2021).", "volume": "25", "year": "2021" }, { "DOI": "10.1002/smsc.202100124", "author": "B Zhong", "doi-asserted-by": "publisher", "first-page": "2100124", "journal-title": "Small Sci.", "key": "1249_CR412", "unstructured": "Zhong, B. et al. Oridonin inhibits SARS-CoV-2 by targeting Its 3C-like protease. Small Sci. 2, 2100124 (2022).", "volume": "2", "year": "2022" }, { "DOI": "10.1002/anie.202201684", "author": "YF Zhou", "doi-asserted-by": "publisher", "first-page": "e202201684", "journal-title": "Angew. Chem. Int. Ed. Engl.", "key": "1249_CR413", "unstructured": "Zhou, Y. F. et al. Harnessing natural products by a pharmacophore-oriented semisynthesis approach for the discovery of potential anti-SARS-CoV-2 agents. Angew. Chem. Int. Ed. Engl. 61, e202201684 (2022).", "volume": "61", "year": "2022" }, { "DOI": "10.1016/j.freeradbiomed.2021.05.033", "author": "JM McCord", "doi-asserted-by": "publisher", "first-page": "56", "journal-title": "Free Radic. Biol. Med.", "key": "1249_CR414", "unstructured": "McCord, J. M., Hybertson, B. M., Cota-Gomez, A. & Gao, B. Nrf2 activator PB125(R) as a carnosic acid-based therapeutic agent against respiratory viral diseases, including COVID-19. Free Radic. Biol. Med. 175, 56–64 (2021).", "volume": "175", "year": "2021" }, { "DOI": "10.3390/antiox11010124", "doi-asserted-by": "crossref", "key": "1249_CR415", "unstructured": "Satoh, T., Trudler, D., Oh, C. K. & Lipton, S. A. Potential therapeutic use of the rosemary diterpene carnosic acid for Alzheimer’s Disease, Parkinson’s Disease, and long-COVID through NRF2 activation to counteract the NLRP3 inflammasome. Antioxidants (Basel). 11, 124 (2022)." }, { "DOI": "10.2174/1389557519666190119111125", "author": "ZG Sun", "doi-asserted-by": "publisher", "first-page": "826", "journal-title": "Mini Rev. Med. Chem.", "key": "1249_CR416", "unstructured": "Sun, Z. G., Zhao, T. T., Lu, N., Yang, Y. A. & Zhu, H. L. Research progress of glycyrrhizic acid on antiviral activity. Mini Rev. Med. Chem. 19, 826–832 (2019).", "volume": "19", "year": "2019" }, { "DOI": "10.1021/acsami.1c02755", "author": "Z Zhao", "doi-asserted-by": "publisher", "first-page": "20995", "journal-title": "ACS Appl. Mater. Interfaces", "key": "1249_CR417", "unstructured": "Zhao, Z. et al. Glycyrrhizic acid nanoparticles as antiviral and anti-inflammatory agents for COVID-19 treatment. ACS Appl. Mater. Interfaces 13, 20995–21006 (2021).", "volume": "13", "year": "2021" }, { "DOI": "10.1016/j.tips.2020.07.003", "author": "A Cuadrado", "doi-asserted-by": "publisher", "first-page": "598", "journal-title": "Trends Pharm. Sci.", "key": "1249_CR418", "unstructured": "Cuadrado, A. et al. Can activation of NRF2 be a strategy against COVID-19? Trends Pharm. Sci. 41, 598–610 (2020).", "volume": "41", "year": "2020" }, { "DOI": "10.1038/s41392-021-00628-x", "author": "Q Sun", "doi-asserted-by": "publisher", "first-page": "212", "journal-title": "Signal Transduct. Target Ther.", "key": "1249_CR419", "unstructured": "Sun, Q. et al. Bardoxolone and bardoxolone methyl, two Nrf2 activators in clinical trials, inhibit SARS-CoV-2 replication and its 3C-like protease. Signal Transduct. Target Ther. 6, 212 (2021).", "volume": "6", "year": "2021" }, { "DOI": "10.1007/s12010-021-03790-8", "author": "A Baig", "doi-asserted-by": "publisher", "first-page": "1051", "journal-title": "Appl. Biochem. Biotechnol.", "key": "1249_CR420", "unstructured": "Baig, A. & Srinivasan, H. SARS-CoV-2 inhibitors from Nigella sativa. Appl. Biochem. Biotechnol. 194, 1051–1090 (2022).", "volume": "194", "year": "2022" }, { "DOI": "10.1016/j.sjbs.2021.09.002", "author": "SA Mir", "doi-asserted-by": "publisher", "first-page": "394", "journal-title": "Saudi J. Biol. Sci.", "key": "1249_CR421", "unstructured": "Mir, S. A. et al. Identification of SARS-CoV-2 RNA-dependent RNA polymerase inhibitors from the major phytochemicals of Nigella sativa: an in silico approach. Saudi J. Biol. Sci. 29, 394–401 (2022).", "volume": "29", "year": "2022" }, { "DOI": "10.1016/j.plipres.2018.04.004", "author": "M Rodriguez-Concepcion", "doi-asserted-by": "publisher", "first-page": "62", "journal-title": "Prog. Lipid Res.", "key": "1249_CR422", "unstructured": "Rodriguez-Concepcion, M. et al. A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 70, 62–93 (2018).", "volume": "70", "year": "2018" }, { "DOI": "10.3390/antiox11040795", "doi-asserted-by": "crossref", "key": "1249_CR423", "unstructured": "Saini, R. K. et al. Carotenoids: dietary sources, extraction, encapsulation, bioavailability, and health benefits—a review of recent advancements. Antioxidants (Basel). 11, 795 (2022)." }, { "DOI": "10.3389/fphar.2021.745683", "author": "ZL Guo", "doi-asserted-by": "publisher", "first-page": "745683", "journal-title": "Front. Pharm.", "key": "1249_CR424", "unstructured": "Guo, Z. L. et al. Crocetin: a systematic review. Front. Pharm. 12, 745683 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.1016/j.heliyon.2020.e05681", "author": "A Kordzadeh", "doi-asserted-by": "publisher", "first-page": "e05681", "journal-title": "Heliyon", "key": "1249_CR425", "unstructured": "Kordzadeh, A., Ramazani Saadatabadi, A. & Hadi, A. Investigation on penetration of saffron components through lipid bilayer bound to spike protein of SARS-CoV-2 using steered molecular dynamics simulation. Heliyon 6, e05681 (2020).", "volume": "6", "year": "2020" }, { "DOI": "10.1016/j.jconrel.2021.06.033", "author": "PM Mertes", "doi-asserted-by": "publisher", "first-page": "252", "journal-title": "J. Control Release", "key": "1249_CR426", "unstructured": "Mertes, P. M. et al. Liposomal encapsulation of trans-crocetin enhances oxygenation in patients with COVID-19-related ARDS receiving mechanical ventilation. J. Control Release 336, 252–261 (2021).", "volume": "336", "year": "2021" }, { "DOI": "10.1002/biof.1557", "author": "S Korani", "doi-asserted-by": "publisher", "first-page": "835", "journal-title": "Biofactors", "key": "1249_CR427", "unstructured": "Korani, S., Korani, M., Sathyapalan, T. & Sahebkar, A. Therapeutic effects of Crocin in autoimmune diseases: a review. Biofactors 45, 835–843 (2019).", "volume": "45", "year": "2019" }, { "DOI": "10.1016/j.csbj.2020.10.019", "author": "T Liu", "doi-asserted-by": "publisher", "first-page": "3278", "journal-title": "Comput. Struct. Biotechnol. J.", "key": "1249_CR428", "unstructured": "Liu, T. et al. Prospects and progress on crocin biosynthetic pathway and metabolic engineering. Comput. Struct. Biotechnol. J. 18, 3278–3286 (2020).", "volume": "18", "year": "2020" }, { "DOI": "10.1111/jfbc.13718", "author": "M Ghasemnejad-Berenji", "doi-asserted-by": "publisher", "first-page": "e13718", "journal-title": "J. Food Biochem.", "key": "1249_CR429", "unstructured": "Ghasemnejad-Berenji, M. Immunomodulatory and anti-inflammatory potential of crocin in COVID-19 treatment. J. Food Biochem. 45, e13718 (2021).", "volume": "45", "year": "2021" }, { "DOI": "10.1080/07391102.2021.1897682", "doi-asserted-by": "crossref", "key": "1249_CR430", "unstructured": "Stalin, A. et al. An in-silico approach to identify the potential hot spots in SARS-CoV-2 spike RBD to block the interaction with ACE2 receptor. J. Biomol. Struct. Dyn. 1–16 (2021)." }, { "DOI": "10.3390/antiox10020257", "doi-asserted-by": "crossref", "key": "1249_CR431", "unstructured": "Pincemail, J. et al. Oxidative stress status in COVID-19 patients hospitalized in intensive care unit for severe pneumonia. a pilot study. Antioxidants (Basel). 10, 257 (2021)." }, { "DOI": "10.1111/cpr.12949", "author": "QD Xia", "doi-asserted-by": "publisher", "first-page": "e12949", "journal-title": "Cell Prolif.", "key": "1249_CR432", "unstructured": "Xia, Q. D. et al. Network pharmacology and molecular docking analyses on Lianhua Qingwen capsule indicate Akt1 is a potential target to treat and prevent COVID-19. Cell Prolif. 53, e12949 (2020).", "volume": "53", "year": "2020" }, { "author": "AR Ahmadi", "first-page": "434", "journal-title": "Iran. J. Microbiol.", "key": "1249_CR433", "unstructured": "Ahmadi, A. R. & Ayazi-Nasrabadi, R. Astaxanthin protective barrier and its ability to improve the health in patients with COVID-19. Iran. J. Microbiol. 13, 434–441 (2021).", "volume": "13", "year": "2021" }, { "DOI": "10.1080/14786419.2021.1914032", "author": "A Alesci", "doi-asserted-by": "publisher", "first-page": "2672", "journal-title": "Nat. Prod. Res.", "key": "1249_CR434", "unstructured": "Alesci, A., Aragona, M., Cicero, N. & Lauriano, E. R. Can nutraceuticals assist treatment and improve covid-19 symptoms? Nat. Prod. Res. 36, 2672–2691 (2022).", "volume": "36", "year": "2022" }, { "DOI": "10.1080/07391102.2022.2046640", "doi-asserted-by": "crossref", "key": "1249_CR435", "unstructured": "Mohammed Ali, H. S. H. et al. In silico screening of the effectiveness of natural compounds from algae as SARS-CoV-2 inhibitors: molecular docking, ADMT profile and molecular dynamic studies. J. Biomol. Struct. Dyn. 1–16 (2022)." }, { "DOI": "10.1093/jn/nxz142", "author": "AR Aluisio", "doi-asserted-by": "publisher", "first-page": "1757", "journal-title": "J. Nutr.", "key": "1249_CR436", "unstructured": "Aluisio, A. R. et al. Vitamin A supplementation was associated with reduced mortality in patients with Ebola virus disease during the West African outbreak. J. Nutr. 149, 1757–1765 (2019).", "volume": "149", "year": "2019" }, { "author": "A Imdad", "first-page": "CD008524", "journal-title": "Cochrane Database Syst. Rev.", "key": "1249_CR437", "unstructured": "Imdad, A. et al. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database Syst. Rev. 3, CD008524 (2022).", "volume": "3", "year": "2022" }, { "DOI": "10.1007/s40265-018-0996-1", "author": "AI Fraguas-Sanchez", "doi-asserted-by": "publisher", "first-page": "1665", "journal-title": "Drugs", "key": "1249_CR438", "unstructured": "Fraguas-Sanchez, A. I. & Torres-Suarez, A. I. Medical use of cannabinoids. Drugs 78, 1665–1703 (2018).", "volume": "78", "year": "2018" }, { "DOI": "10.3390/ijms22041986", "doi-asserted-by": "crossref", "key": "1249_CR439", "unstructured": "Malinowska, B., Baranowska-Kuczko, M., Kicman, A. & Schlicker, E. Opportunities, challenges and pitfalls of using cannabidiol as an adjuvant drug in COVID-19. Int. J. Mol. Sci. 22, 1986 (2021)." }, { "DOI": "10.1038/s41582-019-0284-z", "author": "L Cristino", "doi-asserted-by": "publisher", "first-page": "9", "journal-title": "Nat. Rev. Neurol.", "key": "1249_CR440", "unstructured": "Cristino, L., Bisogno, T. & Di Marzo, V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol. 16, 9–29 (2020).", "volume": "16", "year": "2020" }, { "DOI": "10.1056/NEJMoa1611618", "author": "O Devinsky", "doi-asserted-by": "publisher", "first-page": "2011", "journal-title": "N. Engl. J. Med.", "key": "1249_CR441", "unstructured": "Devinsky, O. et al. Trial of Cannabidiol for drug-resistant seizures in the Dravet syndrome. N. Engl. J. Med. 376, 2011–2020 (2017).", "volume": "376", "year": "2017" }, { "DOI": "10.1007/s40265-018-0992-5", "author": "S Lattanzi", "doi-asserted-by": "publisher", "first-page": "1791", "journal-title": "Drugs", "key": "1249_CR442", "unstructured": "Lattanzi, S. et al. Efficacy and safety of cannabidiol in epilepsy: a systematic review and meta-analysis. Drugs 78, 1791–1804 (2018).", "volume": "78", "year": "2018" }, { "DOI": "10.1016/j.ijbiomac.2020.12.020", "author": "V Raj", "doi-asserted-by": "publisher", "first-page": "474", "journal-title": "Int. J. Biol. Macromol.", "key": "1249_CR443", "unstructured": "Raj, V. et al. Assessment of antiviral potencies of cannabinoids against SARS-CoV-2 using computational and in vitro approaches. Int. J. Biol. Macromol. 168, 474–485 (2021).", "volume": "168", "year": "2021" }, { "DOI": "10.1126/sciadv.abi6110", "author": "LC Nguyen", "doi-asserted-by": "publisher", "first-page": "eabi6110", "journal-title": "Sci. Adv.", "key": "1249_CR444", "unstructured": "Nguyen, L. C. et al. Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses. Sci. Adv. 8, eabi6110 (2022).", "volume": "8", "year": "2022" }, { "DOI": "10.3390/ijms21176244", "doi-asserted-by": "crossref", "key": "1249_CR445", "unstructured": "Mohammed, A. et al. Delta9-tetrahydrocannabinol prevents mortality from acute respiratory distress syndrome through the induction of apoptosis in immune cells, leading to cytokine storm suppression. Int. J. Mol. Sci. 21, 6244 (2020)." }, { "DOI": "10.1055/a-1581-3707", "doi-asserted-by": "crossref", "key": "1249_CR446", "unstructured": "Pitakbut, T., Nguyen, G. N. & Kayser, O. Activity of THC, CBD, and CBN on Human ACE2 and SARS-CoV1/2 main protease to understand antiviral defense mechanism. Planta Med. 88, 1047–1059 (2021)." }, { "DOI": "10.1016/j.siny.2019.05.005", "author": "TJ Cole", "doi-asserted-by": "publisher", "first-page": "170", "journal-title": "Semin. Fetal Neonatal Med.", "key": "1249_CR447", "unstructured": "Cole, T. J., Short, K. L. & Hooper, S. B. The science of steroids. Semin. Fetal Neonatal Med. 24, 170–175 (2019).", "volume": "24", "year": "2019" }, { "DOI": "10.1001/jamacardio.2018.2695", "author": "ARA Abutaleb", "doi-asserted-by": "publisher", "first-page": "1006", "journal-title": "JAMA Cardiol.", "key": "1249_CR448", "unstructured": "Abutaleb, A. R. A. et al. Myocarditis in duchenne muscular dystrophy after changing steroids. JAMA Cardiol. 3, 1006–1010 (2018).", "volume": "3", "year": "2018" }, { "DOI": "10.3390/cancers12030546", "doi-asserted-by": "crossref", "key": "1249_CR449", "unstructured": "Petrelli, F. et al. Association of steroids use with survival in patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Cancers (Basel). 12, 546 (2020)." }, { "DOI": "10.1016/j.mayocp.2020.05.013", "author": "RA Al-Lami", "doi-asserted-by": "publisher", "first-page": "1710", "journal-title": "Mayo Clin. Proc.", "key": "1249_CR450", "unstructured": "Al-Lami, R. A., Urban, R. J., Volpi, E., Algburi, A. M. A. & Baillargeon, J. Sex hormones and novel corona virus infectious disease (COVID-19). Mayo Clin. Proc. 95, 1710–1714 (2020).", "volume": "95", "year": "2020" }, { "DOI": "10.1038/s41591-021-01643-9", "author": "FL van de Veerdonk", "doi-asserted-by": "publisher", "first-page": "39", "journal-title": "Nat. Med.", "key": "1249_CR451", "unstructured": "van de Veerdonk, F. L. et al. A guide to immunotherapy for COVID-19. Nat. Med. 28, 39–50 (2022).", "volume": "28", "year": "2022" }, { "DOI": "10.1186/s12967-020-02488-5", "author": "Y Xu", "doi-asserted-by": "publisher", "journal-title": "J. Transl. Med.", "key": "1249_CR452", "unstructured": "Xu, Y. et al. The importance of vitamin d metabolism as a potential prophylactic, immunoregulatory and neuroprotective treatment for COVID-19. J. Transl. Med. 18, 322 (2020).", "volume": "18", "year": "2020" }, { "DOI": "10.1093/cid/ciaa601", "author": "R Fadel", "doi-asserted-by": "publisher", "first-page": "2114", "journal-title": "Clin. Infect. Dis.", "key": "1249_CR453", "unstructured": "Fadel, R. et al. Early short-course corticosteroids in hospitalized patients With COVID-19. Clin. Infect. Dis. 71, 2114–2120 (2020).", "volume": "71", "year": "2020" }, { "DOI": "10.1001/jama.2020.1585", "author": "D Wang", "doi-asserted-by": "publisher", "first-page": "1061", "journal-title": "J. Am. Med. Assoc.", "key": "1249_CR454", "unstructured": "Wang, D. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. J. Am. Med. Assoc. 323, 1061–1069 (2020).", "volume": "323", "year": "2020" }, { "DOI": "10.1055/a-1300-2550", "author": "VI Alexaki", "doi-asserted-by": "publisher", "first-page": "9", "journal-title": "Horm. Metab. Res.", "key": "1249_CR455", "unstructured": "Alexaki, V. I. & Henneicke, H. The role of glucocorticoids in the management of COVID-19. Horm. Metab. Res. 53, 9–15 (2021).", "volume": "53", "year": "2021" }, { "DOI": "10.1056/NEJMoa2021436", "author": "RC Group", "doi-asserted-by": "publisher", "first-page": "693", "journal-title": "N. Engl. J. Med.", "key": "1249_CR456", "unstructured": "Group, R. C. et al. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 384, 693–704 (2021).", "volume": "384", "year": "2021" }, { "DOI": "10.1001/jama.2020.17021", "author": "BM Tomazini", "doi-asserted-by": "publisher", "first-page": "1307", "journal-title": "J. Am. Med. Assoc.", "key": "1249_CR457", "unstructured": "Tomazini, B. M. et al. Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: the CoDEX randomized clinical trial. J. Am. Med. Assoc. 324, 1307–1316 (2020).", "volume": "324", "year": "2020" }, { "DOI": "10.1371/journal.pone.0252057", "author": "MA Pinzon", "doi-asserted-by": "publisher", "first-page": "e0252057", "journal-title": "PLoS ONE", "key": "1249_CR458", "unstructured": "Pinzon, M. A. et al. Dexamethasone vs methylprednisolone high dose for Covid-19 pneumonia. PLoS ONE 16, e0252057 (2021).", "volume": "16", "year": "2021" }, { "DOI": "10.1001/jamainternmed.2020.0994", "author": "C Wu", "doi-asserted-by": "publisher", "first-page": "934", "journal-title": "China JAMA Intern. Med.", "key": "1249_CR459", "unstructured": "Wu, C. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan. China JAMA Intern. Med. 180, 934–943 (2020).", "volume": "180", "year": "2020" }, { "DOI": "10.1038/s41392-020-0158-2", "author": "Y Wang", "doi-asserted-by": "publisher", "first-page": "57", "journal-title": "Signal Transduct. Target Ther.", "key": "1249_CR460", "unstructured": "Wang, Y. et al. A retrospective cohort study of methylprednisolone therapy in severe patients with COVID-19 pneumonia. Signal Transduct. Target Ther. 5, 57 (2020).", "volume": "5", "year": "2020" }, { "DOI": "10.1093/cid/ciaa829", "author": "S Li", "doi-asserted-by": "publisher", "first-page": "1297", "journal-title": "Clin. Infect. Dis.", "key": "1249_CR461", "unstructured": "Li, S., Hu, Z. & Song, X. High-dose But Not Low-dose Corticosteroids Potentially Delay Viral Shedding of Patients with COVID-19. Clin. Infect. Dis. 72, 1297–1298 (2021).", "volume": "72", "year": "2021" }, { "DOI": "10.3390/nu12072097", "doi-asserted-by": "crossref", "key": "1249_CR462", "unstructured": "Charoenngam, N. & Holick, M. F. Immunologic effects of vitamin D on human health and disease. Nutrients. 12, 2097 (2020)." }, { "DOI": "10.1016/j.clnu.2020.12.025", "author": "F de la Guia-Galipienso", "doi-asserted-by": "publisher", "first-page": "2946", "journal-title": "Clin. Nutr.", "key": "1249_CR463", "unstructured": "de la Guia-Galipienso, F. et al. Vitamin D and cardiovascular health. Clin. Nutr. 40, 2946–2957 (2021).", "volume": "40", "year": "2021" }, { "author": "SM Jeon", "first-page": "1", "journal-title": "Exp. Mol. Med.", "key": "1249_CR464", "unstructured": "Jeon, S. M. & Shin, E. A. Exploring vitamin D metabolism and function in cancer. Exp. Mol. Med. 50, 1–14 (2018).", "volume": "50", "year": "2018" }, { "DOI": "10.1016/j.fertnstert.2020.12.027", "author": "AM Klimczak", "doi-asserted-by": "publisher", "first-page": "590", "journal-title": "Fertil. Steril.", "key": "1249_CR465", "unstructured": "Klimczak, A. M. & Franasiak, J. M. Vitamin D in human reproduction: some answers and many more questions. Fertil. Steril. 115, 590–591 (2021).", "volume": "115", "year": "2021" }, { "DOI": "10.1136/bmj.i6583", "author": "AR Martineau", "doi-asserted-by": "publisher", "first-page": "i6583", "journal-title": "Br. Med. J.", "key": "1249_CR466", "unstructured": "Martineau, A. R. et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. Br. Med. J. 356, i6583 (2017).", "volume": "356", "year": "2017" }, { "DOI": "10.1007/s40618-020-01370-x", "author": "GE Carpagnano", "doi-asserted-by": "publisher", "first-page": "765", "journal-title": "J. Endocrinol. Invest.", "key": "1249_CR467", "unstructured": "Carpagnano, G. E. et al. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J. Endocrinol. Invest. 44, 765–771 (2021).", "volume": "44", "year": "2021" }, { "DOI": "10.3390/nu14081625", "doi-asserted-by": "crossref", "key": "1249_CR468", "unstructured": "Barrea, L. et al. Vitamin D: a role also in long COVID-19? Nutrients. 14, 1625 (2022)." }, { "DOI": "10.3390/nu13072170", "doi-asserted-by": "crossref", "key": "1249_CR469", "unstructured": "Sabico, S. et al. Effects of a 2-Week 5000 IU versus 1000 IU Vitamin D3 supplementation on recovery of symptoms in patients with mild to moderate Covid-19: a randomized clinical trial. Nutrients. 13, 2170 (2021)." }, { "DOI": "10.1016/j.jsbmb.2020.105751", "author": "M Entrenas Castillo", "doi-asserted-by": "publisher", "first-page": "105751", "journal-title": "J. Steroid Biochem. Mol. Biol.", "key": "1249_CR470", "unstructured": "Entrenas Castillo, M. et al. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: a pilot randomized clinical study. J. Steroid Biochem. Mol. Biol. 203, 105751 (2020).", "volume": "203", "year": "2020" }, { "DOI": "10.3390/nu13061760", "doi-asserted-by": "crossref", "key": "1249_CR471", "unstructured": "Alcala-Diaz, J. F. et al. Calcifediol treatment and hospital mortality due to COVID-19: a cohort study. Nutrients 13, 1760 (2021)." }, { "DOI": "10.1016/j.eprac.2021.09.016", "author": "Z Maghbooli", "doi-asserted-by": "publisher", "first-page": "1242", "journal-title": "Endocr. Pract.", "key": "1249_CR472", "unstructured": "Maghbooli, Z. et al. Treatment with 25-hydroxyvitamin D3 (Calcifediol) is associated with a reduction in the blood neutrophil-to-lymphocyte ratio marker of disease severity in hospitalized patients with COVID-19: a pilot multicenter, randomized, placebo-controlled, double-blinded clinical trial. Endocr. Pract. 27, 1242–1251 (2021).", "volume": "27", "year": "2021" }, { "author": "N Khan", "first-page": "38", "journal-title": "J. Allergy Infect. Dis.", "key": "1249_CR473", "unstructured": "Khan, N. Possible protective role of 17beta-estradiol against COVID-19. J. Allergy Infect. Dis. 1, 38–48 (2020).", "volume": "1", "year": "2020" }, { "DOI": "10.1038/s41467-020-19741-6", "author": "H Peckham", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR474", "unstructured": "Peckham, H. et al. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 11, 6317 (2020).", "volume": "11", "year": "2020" }, { "DOI": "10.1210/endocr/bqaa127", "doi-asserted-by": "crossref", "key": "1249_CR475", "unstructured": "Mauvais-Jarvis, F., Klein, S. L. & Levin, E. R. Estradiol, Progesterone, Immunomodulation, and COVID-19 Outcomes. Endocrinology. 161, bqaa127 (2020)." }, { "DOI": "10.1016/j.redox.2021.102099", "author": "JY Youn", "doi-asserted-by": "publisher", "first-page": "102099", "journal-title": "Redox Biol.", "key": "1249_CR476", "unstructured": "Youn, J. Y., Zhang, Y., Wu, Y., Cannesson, M. & Cai, H. Therapeutic application of estrogen for COVID-19: Attenuation of SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1 upregulation in endothelial cells. Redox Biol. 46, 102099 (2021).", "volume": "46", "year": "2021" }, { "DOI": "10.1002/ddr.21923", "author": "G Baristaite", "doi-asserted-by": "publisher", "first-page": "961", "journal-title": "Drug Dev. Res.", "key": "1249_CR477", "unstructured": "Baristaite, G. & Gurwitz, D. Estradiol reduces ACE2 and TMPRSS2 mRNA levels in A549 human lung epithelial cells. Drug Dev. Res. 83, 961–966 (2022).", "volume": "83", "year": "2022" }, { "DOI": "10.1038/s41392-022-00981-5", "author": "S Su", "doi-asserted-by": "publisher", "first-page": "137", "journal-title": "Signal Transduct. Target Ther.", "key": "1249_CR478", "unstructured": "Su, S. et al. Modulation of innate immune response to viruses including SARS-CoV-2 by progesterone. Signal Transduct. Target Ther. 7, 137 (2022).", "volume": "7", "year": "2022" }, { "DOI": "10.1038/s41392-021-00860-5", "author": "L Yuan", "doi-asserted-by": "publisher", "first-page": "47", "journal-title": "Signal Transduct. Target Ther.", "key": "1249_CR479", "unstructured": "Yuan, L. et al. Female sex hormone, progesterone, ameliorates the severity of SARS-CoV-2-caused pneumonia in the Syrian hamster model. Signal Transduct. Target Ther. 7, 47 (2022).", "volume": "7", "year": "2022" }, { "DOI": "10.1016/j.chest.2021.02.024", "author": "S Ghandehari", "doi-asserted-by": "publisher", "first-page": "74", "journal-title": "Chest", "key": "1249_CR480", "unstructured": "Ghandehari, S. et al. Progesterone in addition to standard of care vs standard of care alone in the treatment of men hospitalized with moderate to severe COVID-19: a randomized, controlled pilot trial. Chest 160, 74–84 (2021).", "volume": "160", "year": "2021" }, { "DOI": "10.1097/QCO.0000000000000611", "author": "J Lindsay", "doi-asserted-by": "publisher", "first-page": "538", "journal-title": "Curr. Opin. Infect. Dis.", "key": "1249_CR481", "unstructured": "Lindsay, J., Teh, B. W., Micklethwaite, K. & Slavin, M. Azole antifungals and new targeted therapies for hematological malignancy. Curr. Opin. Infect. Dis. 32, 538–545 (2019).", "volume": "32", "year": "2019" }, { "DOI": "10.1016/j.bioorg.2018.02.009", "author": "MJ Nanjan", "doi-asserted-by": "publisher", "first-page": "548", "journal-title": "Bioorg. Chem.", "key": "1249_CR482", "unstructured": "Nanjan, M. J., Mohammed, M., Prashantha Kumar, B. R. & Chandrasekar, M. J. N. Thiazolidinediones as antidiabetic agents: a critical review. Bioorg. Chem. 77, 548–567 (2018).", "volume": "77", "year": "2018" }, { "DOI": "10.1016/j.bioorg.2020.104240", "author": "M Shafiei", "doi-asserted-by": "publisher", "first-page": "104240", "journal-title": "Bioorg. Chem.", "key": "1249_CR483", "unstructured": "Shafiei, M., Peyton, L., Hashemzadeh, M. & Foroumadi, A. History of the development of antifungal azoles: a review on structures, SAR, and mechanism of action. Bioorg. Chem. 104, 104240 (2020).", "volume": "104", "year": "2020" }, { "DOI": "10.1021/acsinfecdis.0c00478", "author": "AV Stachulski", "doi-asserted-by": "publisher", "first-page": "1317", "journal-title": "ACS Infect. Dis.", "key": "1249_CR484", "unstructured": "Stachulski, A. V. et al. Therapeutic potential of nitazoxanide: an appropriate choice for repurposing versus SARS-CoV-2? ACS Infect. Dis. 7, 1317–1331 (2021).", "volume": "7", "year": "2021" }, { "DOI": "10.1016/j.antiviral.2014.07.014", "author": "JF Rossignol", "doi-asserted-by": "publisher", "first-page": "94", "journal-title": "Antivir. Res.", "key": "1249_CR485", "unstructured": "Rossignol, J. F. Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antivir. Res. 110, 94–103 (2014).", "volume": "110", "year": "2014" }, { "DOI": "10.1007/s00018-022-04246-w", "author": "A Riccio", "doi-asserted-by": "publisher", "first-page": "227", "journal-title": "Cell Mol. Life Sci.", "key": "1249_CR486", "unstructured": "Riccio, A. et al. Impairment of SARS-CoV-2 spike glycoprotein maturation and fusion activity by nitazoxanide: an effect independent of spike variants emergence. Cell Mol. Life Sci. 79, 227 (2022).", "volume": "79", "year": "2022" }, { "DOI": "10.1101/2022.02.08.479634", "doi-asserted-by": "publisher", "key": "1249_CR487", "unstructured": "Miorin, L. et al. The oral drug nitazoxanide restricts SARS-CoV-2 infection and attenuates disease pathogenesis in Syrian hamsters. Preprint at bioRxiv https://doi.org/10.1101/2022.02.08.479634 (2022)." }, { "key": "1249_CR488", "unstructured": "Rocco, P. R. M. et al. Early use of nitazoxanide in mild COVID-19 disease: randomised, placebo-controlled trial. Eur. Respir. J. 58, 2003725 (2021)." }, { "DOI": "10.1016/j.eclinm.2021.100981", "author": "VF Blum", "doi-asserted-by": "publisher", "first-page": "100981", "journal-title": "EClinicalMedicine", "key": "1249_CR489", "unstructured": "Blum, V. F. et al. Nitazoxanide superiority to placebo to treat moderate COVID-19—a pilot prove of concept randomized double-blind clinical trial. EClinicalMedicine 37, 100981 (2021).", "volume": "37", "year": "2021" }, { "DOI": "10.1016/j.ejmech.2017.12.044", "author": "HZ Zhang", "doi-asserted-by": "publisher", "first-page": "444", "journal-title": "Eur. J. Med. Chem.", "key": "1249_CR490", "unstructured": "Zhang, H. Z., Zhao, Z. L. & Zhou, C. H. Recent advance in oxazole-based medicinal chemistry. Eur. J. Med. Chem. 144, 444–492 (2018).", "volume": "144", "year": "2018" }, { "DOI": "10.1080/13543784.2016.1175434", "author": "G Santini", "doi-asserted-by": "publisher", "first-page": "639", "journal-title": "Expert Opin. Investig. Drugs", "key": "1249_CR491", "unstructured": "Santini, G. et al. Investigational prostaglandin D2 receptor antagonists for airway inflammation. Expert Opin. Investig. Drugs 25, 639–652 (2016).", "volume": "25", "year": "2016" }, { "DOI": "10.1038/s41586-022-04630-3", "author": "LR Wong", "doi-asserted-by": "publisher", "first-page": "146", "journal-title": "Nature", "key": "1249_CR492", "unstructured": "Wong, L. R. et al. Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19. Nature 605, 146–151 (2022).", "volume": "605", "year": "2022" }, { "author": "FA Cadegiani", "first-page": "e20691", "journal-title": "Cureus", "key": "1249_CR493", "unstructured": "Cadegiani, F. A. et al. Final results of a randomized, placebo-controlled, two-arm, parallel clinical trial of proxalutamide for hospitalized COVID-19 patients: a multiregional, joint analysis of the proxa-rescue AndroCoV trial. Cureus 13, e20691 (2021).", "volume": "13", "year": "2021" }, { "DOI": "10.1016/j.bioorg.2021.105363", "author": "LH Al-Wahaibi", "doi-asserted-by": "publisher", "first-page": "105363", "journal-title": "Bioorg. Chem.", "key": "1249_CR494", "unstructured": "Al-Wahaibi, L. H. et al. Discovery of novel oxazole-based macrocycles as anti-coronaviral agents targeting SARS-CoV-2 main protease. Bioorg. Chem. 116, 105363 (2021).", "volume": "116", "year": "2021" }, { "DOI": "10.1055/s-0040-1715798", "author": "GT Gerotziafas", "doi-asserted-by": "publisher", "first-page": "1597", "journal-title": "Thromb. Haemost.", "key": "1249_CR495", "unstructured": "Gerotziafas, G. T. et al. Guidance for the management of patients with vascular disease or cardiovascular risk factors and COVID-19: position paper from VAS-European independent foundation in angiology/vascular medicine. Thromb. Haemost. 120, 1597–1628 (2020).", "volume": "120", "year": "2020" }, { "DOI": "10.2165/00003495-200161001-00003", "author": "K De Beule", "doi-asserted-by": "publisher", "first-page": "27", "journal-title": "Drugs", "key": "1249_CR496", "unstructured": "De Beule, K. & Van Gestel, J. Pharmacology of itraconazole. Drugs 61, 27–37 (2001).", "volume": "61", "year": "2001" }, { "DOI": "10.1002/jmv.26917", "author": "E Van Damme", "doi-asserted-by": "publisher", "first-page": "4454", "journal-title": "J. Med. Virol.", "key": "1249_CR497", "unstructured": "Van Damme, E. et al. In vitro activity of itraconazole against SARS-CoV-2. J. Med. Virol. 93, 4454–4460 (2021).", "volume": "93", "year": "2021" }, { "DOI": "10.1002/adtp.202000224", "author": "C Yang", "doi-asserted-by": "publisher", "first-page": "2000224", "journal-title": "Adv. Ther.", "key": "1249_CR498", "unstructured": "Yang, C. et al. Drug repurposing of itraconazole and estradiol benzoate against COVID-19 by blocking SARS-CoV-2 spike protein-mediated membrane fusion. Adv. Ther. 4, 2000224 (2021).", "volume": "4", "year": "2021" }, { "DOI": "10.1111/bph.15418", "author": "S Schloer", "doi-asserted-by": "publisher", "first-page": "2339", "journal-title": "Br. J. Pharm.", "key": "1249_CR499", "unstructured": "Schloer, S. et al. Drug synergy of combinatory treatment with remdesivir and the repurposed drugs fluoxetine and itraconazole effectively impairs SARS-CoV-2 infection in vitro. Br. J. Pharm. 178, 2339–2350 (2021).", "volume": "178", "year": "2021" }, { "DOI": "10.1186/s13045-020-00903-4", "author": "NG Azizian", "doi-asserted-by": "publisher", "first-page": "61", "journal-title": "J. Hematol. Oncol.", "key": "1249_CR500", "unstructured": "Azizian, N. G. & Li, Y. XPO1-dependent nuclear export as a target for cancer therapy. J. Hematol. Oncol. 13, 61 (2020).", "volume": "13", "year": "2020" }, { "DOI": "10.1007/s40262-021-01016-y", "author": "JC Bader", "doi-asserted-by": "publisher", "first-page": "957", "journal-title": "Clin. Pharmacokinet.", "key": "1249_CR501", "unstructured": "Bader, J. C., Abdul Razak, A. R., Shacham, S. & Xu, H. Pharmacokinetics of selinexor: the first-in-class selective inhibitor of nuclear export. Clin. Pharmacokinet. 60, 957–969 (2021).", "volume": "60", "year": "2021" }, { "DOI": "10.1007/s40265-019-01188-9", "author": "YY Syed", "doi-asserted-by": "publisher", "first-page": "1485", "journal-title": "Drugs", "key": "1249_CR502", "unstructured": "Syed, Y. Y. Selinexor: first global approval. Drugs 79, 1485–1494 (2019).", "volume": "79", "year": "2019" }, { "DOI": "10.1186/s13578-021-00567-8", "author": "JY Zhu", "doi-asserted-by": "publisher", "first-page": "59", "journal-title": "Cell Biosci.", "key": "1249_CR503", "unstructured": "Zhu, J. Y., Lee, J. G., van de Leemput, J., Lee, H. & Han, Z. Functional analysis of SARS-CoV-2 proteins in Drosophila identifies Orf6-induced pathogenic effects with Selinexor as an effective treatment. Cell Biosci. 11, 59 (2021).", "volume": "11", "year": "2021" }, { "DOI": "10.1186/s13578-021-00568-7", "author": "JG Lee", "doi-asserted-by": "publisher", "first-page": "58", "journal-title": "Cell Biosci.", "key": "1249_CR504", "unstructured": "Lee, J. G. et al. Characterization of SARS-CoV-2 proteins reveals Orf6 pathogenicity, subcellular localization, host interactions and attenuation by Selinexor. Cell Biosci. 11, 58 (2021).", "volume": "11", "year": "2021" }, { "DOI": "10.1016/j.antiviral.2021.105115", "author": "T Kashyap", "doi-asserted-by": "publisher", "first-page": "105115", "journal-title": "Antivir. Res.", "key": "1249_CR505", "unstructured": "Kashyap, T. et al. Selinexor, a novel selective inhibitor of nuclear export, reduces SARS-CoV-2 infection and protects the respiratory system in vivo. Antivir. Res. 192, 105115 (2021).", "volume": "192", "year": "2021" }, { "DOI": "10.1021/acs.jcim.1c00524", "author": "S Banerjee", "doi-asserted-by": "publisher", "first-page": "5469", "journal-title": "J. Chem. Inf. Model.", "key": "1249_CR506", "unstructured": "Banerjee, S. et al. Drug repurposing to identify nilotinib as a potential SARS-CoV-2 main protease inhibitor: insights from a computational and in vitro study. J. Chem. Inf. Model. 61, 5469–5483 (2021).", "volume": "61", "year": "2021" }, { "DOI": "10.1136/ejhpharm-2021-002702", "doi-asserted-by": "crossref", "key": "1249_CR507", "unstructured": "Memis, H., Cakir, A., Durmus, M., Gok, S. & Bahcecioglu, O. F. Is sitagliptin effective for the treatment of COVID-19? Eur. J. Hosp. Pharm. 29, e6 (2021)." }, { "DOI": "10.2337/dc20-1521", "author": "SB Solerte", "doi-asserted-by": "publisher", "first-page": "2999", "journal-title": "Diabetes Care", "key": "1249_CR508", "unstructured": "Solerte, S. B. et al. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID-19: a multicenter, case-control, retrospective, observational study. Diabetes Care 43, 2999–3006 (2020).", "volume": "43", "year": "2020" }, { "DOI": "10.1182/blood.2021010845", "author": "P Langerbeins", "doi-asserted-by": "publisher", "first-page": "177", "journal-title": "Blood", "key": "1249_CR509", "unstructured": "Langerbeins, P. et al. The CLL12 trial: ibrutinib vs placebo in treatment-naive, early-stage chronic lymphocytic leukemia. Blood 139, 177–187 (2022).", "volume": "139", "year": "2022" }, { "DOI": "10.1056/NEJMoa1306220", "author": "ML Wang", "doi-asserted-by": "publisher", "first-page": "507", "journal-title": "N. Engl. J. Med.", "key": "1249_CR510", "unstructured": "Wang, M. L. et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 369, 507–516 (2013).", "volume": "369", "year": "2013" }, { "DOI": "10.1016/j.ijsu.2020.10.018", "author": "CV Haritha", "doi-asserted-by": "publisher", "first-page": "53", "journal-title": "Int. J. Surg.", "key": "1249_CR511", "unstructured": "Haritha, C. V., Sharun, K. & Jose, B. Ebselen, a new candidate therapeutic against SARS-CoV-2. Int. J. Surg. 84, 53–56 (2020).", "volume": "84", "year": "2020" }, { "DOI": "10.1016/j.csbj.2020.12.028", "author": "A Kumar", "doi-asserted-by": "publisher", "first-page": "424", "journal-title": "Comput. Struct. Biotechnol. J.", "key": "1249_CR512", "unstructured": "Kumar, A., Loharch, S., Kumar, S., Ringe, R. P. & Parkesh, R. Exploiting cheminformatic and machine learning to navigate the available chemical space of potential small molecule inhibitors of SARS-CoV-2. Comput. Struct. Biotechnol. J. 19, 424–438 (2021).", "volume": "19", "year": "2021" }, { "DOI": "10.3390/molecules25235615", "doi-asserted-by": "crossref", "key": "1249_CR513", "unstructured": "Ramirez-Salinas, G. L., Martinez-Archundia, M., Correa-Basurto, J. & Garcia-Machorro, J. Repositioning of Ligands that target the spike glycoprotein as potential drugs for SARS-CoV-2 in an in silico study. Molecules. 25, 5615 (2020)." }, { "DOI": "10.1039/D1CC05508A", "author": "WG Byun", "doi-asserted-by": "publisher", "first-page": "12476", "journal-title": "Chem. Commun.", "key": "1249_CR514", "unstructured": "Byun, W. G., Lee, J., Kim, S. & Park, S. B. Harnessing stress granule formation by small molecules to inhibit the cellular replication of SARS-CoV-2. Chem. Commun. 57, 12476–12479 (2021).", "volume": "57", "year": "2021" }, { "DOI": "10.3390/molecules27103335", "doi-asserted-by": "crossref", "key": "1249_CR515", "unstructured": "Xu, Y. et al. Design, synthesis, bioactivity evaluation, crystal structures, and in silico studies of new alpha-amino amide derivatives as potential histone deacetylase 6 inhibitors. Molecules. 27, 3335 (2022)." }, { "DOI": "10.2147/DDDT.S359009", "author": "J Zhu", "doi-asserted-by": "publisher", "first-page": "1067", "journal-title": "Drug Des. Dev. Ther.", "key": "1249_CR516", "unstructured": "Zhu, J. et al. Progress on SARS-CoV-2 3CLpro inhibitors: inspiration from SARS-CoV 3CLpro peptidomimetics and small-molecule anti-inflammatory compounds. Drug Des. Dev. Ther. 16, 1067–1082 (2022).", "volume": "16", "year": "2022" }, { "DOI": "10.1136/bmj.o1037", "author": "A Extance", "doi-asserted-by": "publisher", "first-page": "o1037", "journal-title": "Br. Med. J.", "key": "1249_CR517", "unstructured": "Extance, A. Covid-19: what is the evidence for the antiviral Paxlovid? Br. Med. J. 377, o1037 (2022).", "volume": "377", "year": "2022" }, { "DOI": "10.1136/bmj.n2713", "author": "E Mahase", "doi-asserted-by": "publisher", "first-page": "n2713", "journal-title": "Br. Med. J.", "key": "1249_CR518", "unstructured": "Mahase, E. Covid-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. Br. Med. J. 375, n2713 (2021).", "volume": "375", "year": "2021" }, { "DOI": "10.1056/NEJMoa2118542", "author": "J Hammond", "doi-asserted-by": "publisher", "first-page": "1397", "journal-title": "N. Engl. J. Med.", "key": "1249_CR519", "unstructured": "Hammond, J. et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N. Engl. J. Med. 386, 1397–1408 (2022).", "volume": "386", "year": "2022" }, { "DOI": "10.1016/S2352-3018(19)30336-4", "author": "JM Molina", "doi-asserted-by": "publisher", "first-page": "e16", "journal-title": "Lancet HIV", "key": "1249_CR520", "unstructured": "Molina, J. M. et al. Doravirine versus ritonavir-boosted darunavir in antiretroviral-naive adults with HIV-1 (DRIVE-FORWARD): 96-week results of a randomised, double-blind, non-inferiority, phase 3 trial. Lancet HIV 7, e16–e26 (2020).", "volume": "7", "year": "2020" }, { "DOI": "10.1002/cpt.2603", "author": "RSP Singh", "doi-asserted-by": "publisher", "first-page": "101", "journal-title": "Clin. Pharm. Ther.", "key": "1249_CR521", "unstructured": "Singh, R. S. P. et al. Innovative randomized phase I study and dosing regimen selection to accelerate and inform pivotal COVID-19 trial of nirmatrelvir. Clin. Pharm. Ther. 112, 101–111 (2022).", "volume": "112", "year": "2022" }, { "DOI": "10.1016/j.antiviral.2022.105252", "author": "L Vangeel", "doi-asserted-by": "publisher", "first-page": "105252", "journal-title": "Antivir. Res.", "key": "1249_CR522", "unstructured": "Vangeel, L. et al. Remdesivir, molnupiravir and nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antivir. Res. 198, 105252 (2022).", "volume": "198", "year": "2022" }, { "DOI": "10.1101/2022.06.07.495116", "doi-asserted-by": "publisher", "key": "1249_CR523", "unstructured": "Jochmans, D. et al. The substitutions L50F, E166A and L167F in SARS-CoV-2 3CLpro are selected by a protease inhibitor in vitro and confer resistance to nirmatrelvir. Preprint at bioRxiv https://doi.org/10.1101/2022.06.07.495116 (2022)." }, { "DOI": "10.1101/2022.06.06.494921", "doi-asserted-by": "publisher", "key": "1249_CR524", "unstructured": "Zhou, Y. et al. Nirmatrelvir resistant SARS-CoV-2 variants with high fitness in vitro. Preprint at BioRxiv https://doi.org/10.1101/2022.06.06.494921 (2022)." }, { "DOI": "10.1126/science.add8037", "author": "RF Service", "doi-asserted-by": "publisher", "first-page": "138", "journal-title": "Science", "key": "1249_CR525", "unstructured": "Service, R. F. Bad news for Paxlovid? Resistance may be coming. Science 377, 138–139 (2022).", "volume": "377", "year": "2022" }, { "DOI": "10.1101/2022.07.31.502215", "doi-asserted-by": "publisher", "key": "1249_CR526", "unstructured": "de Oliveira, V. M., Ibrahim, M. F., Sun, X., Hilgenfeld, R. & Shen, J. H172Y mutation perturbs the S1 pocket and nirmatrelvir binding of SARS-CoV-2 main protease through a nonnative hydrogen bond. Preprint at bioRxiv https://doi.org/10.1101/2022.07.31.502215 (2022)." }, { "DOI": "10.1101/2022.08.07.503099", "doi-asserted-by": "publisher", "key": "1249_CR527", "unstructured": "Moghadasi, S. A. et al. Transmissible SARS-CoV-2 variants with resistance to clinical protease inhibitors. Preprint at bioRxiv https://doi.org/10.1101/2022.08.07.503099 (2022)." }, { "DOI": "10.1021/acsptsci.1c00099", "author": "Z Xia", "doi-asserted-by": "publisher", "first-page": "1408", "journal-title": "ACS Pharm. Transl. Sci.", "key": "1249_CR528", "unstructured": "Xia, Z. et al. Rational design of hybrid SARS-CoV-2 main protease inhibitors guided by the superimposed cocrystal structures with the peptidomimetic inhibitors GC-376, telaprevir, and boceprevir. ACS Pharm. Transl. Sci. 4, 1408–1421 (2021).", "volume": "4", "year": "2021" }, { "DOI": "10.3390/biom11040607", "doi-asserted-by": "crossref", "key": "1249_CR529", "unstructured": "Citarella, A., Scala, A., Piperno, A. & Micale, N. SARS-CoV-2 M(pro): a potential target for peptidomimetics and small-molecule inhibitors. Biomolecules. 11, 607 (2021)." }, { "DOI": "10.1128/aac.02125-21", "author": "AYJ Park", "doi-asserted-by": "publisher", "first-page": "e0212521", "journal-title": "Antimicrob. Agents Chemother.", "key": "1249_CR530", "unstructured": "Park, A. Y. J. et al. Preclinical pharmacokinetics and safety of intravenous RTD-1. Antimicrob. Agents Chemother. 66, e0212521 (2022).", "volume": "66", "year": "2022" }, { "DOI": "10.1016/j.bj.2020.11.005", "author": "P Magro", "doi-asserted-by": "publisher", "first-page": "43", "journal-title": "Biomed. J.", "key": "1249_CR531", "unstructured": "Magro, P., Zanella, I., Pescarolo, M., Castelli, F. & Quiros-Roldan, E. Lopinavir/ritonavir: repurposing an old drug for HIV infection in COVID-19 treatment. Biomed. J. 44, 43–53 (2021).", "volume": "44", "year": "2021" }, { "DOI": "10.1016/j.antiviral.2020.104786", "author": "KT Choy", "doi-asserted-by": "publisher", "first-page": "104786", "journal-title": "Antivir. Res", "key": "1249_CR532", "unstructured": "Choy, K. T. et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antivir. Res 178, 104786 (2020).", "volume": "178", "year": "2020" }, { "DOI": "10.1111/bph.15843", "author": "S Singh", "doi-asserted-by": "publisher", "first-page": "3250", "journal-title": "Br. J. Pharm.", "key": "1249_CR533", "unstructured": "Singh, S. et al. Niclosamide—a promising treatment for COVID-19. Br. J. Pharm. 179, 3250–3267 (2022).", "volume": "179", "year": "2022" }, { "DOI": "10.1016/j.ejphar.2020.173748", "author": "AS Lokhande", "doi-asserted-by": "publisher", "first-page": "173748", "journal-title": "Eur. J. Pharm.", "key": "1249_CR534", "unstructured": "Lokhande, A. S. & Devarajan, P. V. A review on possible mechanistic insights of Nitazoxanide for repurposing in COVID-19. Eur. J. Pharm. 891, 173748 (2021).", "volume": "891", "year": "2021" }, { "DOI": "10.1038/s41586-021-03491-6", "author": "L Braga", "doi-asserted-by": "publisher", "first-page": "88", "journal-title": "Nature", "key": "1249_CR535", "unstructured": "Braga, L. et al. Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia. Nature 594, 88–93 (2021).", "volume": "594", "year": "2021" }, { "DOI": "10.1016/j.ejmech.2022.114295", "author": "YP Juang", "doi-asserted-by": "publisher", "first-page": "114295", "journal-title": "Eur. J. Med. Chem.", "key": "1249_CR536", "unstructured": "Juang, Y. P. et al. Design, synthesis and biological evaluations of niclosamide analogues against SARS-CoV-2. Eur. J. Med. Chem. 235, 114295 (2022).", "volume": "235", "year": "2022" }, { "DOI": "10.1002/ctm2.790", "author": "A Weiss", "doi-asserted-by": "publisher", "journal-title": "Clin. Transl. Med.", "key": "1249_CR537", "unstructured": "Weiss, A. et al. Topical niclosamide (ATx201) reduces Staphylococcus aureus colonization and increases Shannon diversity of the skin microbiome in atopic dermatitis patients in a randomized, double-blind, placebo-controlled Phase 2 trial. Clin. Transl. Med. 12, e790 (2022).", "volume": "12", "year": "2022" }, { "DOI": "10.1016/j.ijpharm.2021.120701", "author": "MO Jara", "doi-asserted-by": "publisher", "first-page": "120701", "journal-title": "Int J. Pharm.", "key": "1249_CR538", "unstructured": "Jara, M. O. et al. Niclosamide inhalation powder made by thin-film freezing: multi-dose tolerability and exposure in rats and pharmacokinetics in hamsters. Int J. Pharm. 603, 120701 (2021).", "volume": "603", "year": "2021" }, { "DOI": "10.1007/s40265-018-0934-2", "author": "ED Deeks", "doi-asserted-by": "publisher", "first-page": "1013", "journal-title": "Drugs", "key": "1249_CR539", "unstructured": "Deeks, E. D. Darunavir/cobicistat/emtricitabine/tenofovir alafenamide: a review in HIV-1 infection. Drugs 78, 1013–1024 (2018).", "volume": "78", "year": "2018" }, { "DOI": "10.1021/acs.jcim.0c00491", "author": "ST Ngo", "doi-asserted-by": "publisher", "first-page": "5771", "journal-title": "J. Chem. Inf. Model", "key": "1249_CR540", "unstructured": "Ngo, S. T., Quynh Anh Pham, N., Thi Le, L., Pham, D. H. & Vu, V. V. Computational determination of potential inhibitors of SARS-CoV-2 main protease. J. Chem. Inf. Model 60, 5771–5780 (2020).", "volume": "60", "year": "2020" }, { "DOI": "10.1016/j.jacc.2018.10.072", "author": "J Armitage", "doi-asserted-by": "publisher", "first-page": "477", "journal-title": "J. Am. Coll. Cardiol.", "key": "1249_CR541", "unstructured": "Armitage, J., Holmes, M. V. & Preiss, D. Cholesteryl ester transfer protein inhibition for preventing cardiovascular events: JACC review topic of the week. J. Am. Coll. Cardiol. 73, 477–487 (2019).", "volume": "73", "year": "2019" }, { "DOI": "10.1096/fj.202100560R", "author": "M Mancek-Keber", "doi-asserted-by": "publisher", "first-page": "e21651", "journal-title": "FASEB J.", "key": "1249_CR542", "unstructured": "Mancek-Keber, M. et al. Disruption of disulfides within RBD of SARS-CoV-2 spike protein prevents fusion and represents a target for viral entry inhibition by registered drugs. FASEB J. 35, e21651 (2021).", "volume": "35", "year": "2021" }, { "DOI": "10.1021/acsomega.1c01797", "author": "EJ Niesor", "doi-asserted-by": "publisher", "first-page": "16584", "journal-title": "ACS Omega", "key": "1249_CR543", "unstructured": "Niesor, E. J. et al. Inhibition of the 3CL protease and SARS-CoV-2 replication by dalcetrapib. ACS Omega 6, 16584–16591 (2021).", "volume": "6", "year": "2021" }, { "DOI": "10.3390/molecules26113374", "doi-asserted-by": "crossref", "key": "1249_CR544", "unstructured": "Bhambhani, S., Kondhare, K. R. & Giri, A. P. Diversity in chemical structures and biological properties of plant alkaloids. Molecules. 26, 3374 (2021)." }, { "DOI": "10.1039/D0RA03774E", "author": "ADS Antonio", "doi-asserted-by": "publisher", "first-page": "23379", "journal-title": "RSC Adv.", "key": "1249_CR545", "unstructured": "Antonio, A. D. S., Wiedemann, L. S. M. & Veiga-Junior, V. F. Natural products’ role against COVID-19. RSC Adv. 10, 23379–23393 (2020).", "volume": "10", "year": "2020" }, { "DOI": "10.1002/ptr.6873", "author": "M Boozari", "doi-asserted-by": "publisher", "first-page": "864", "journal-title": "Phytother. Res.", "key": "1249_CR546", "unstructured": "Boozari, M. & Hosseinzadeh, H. Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother. Res. 35, 864–876 (2021).", "volume": "35", "year": "2021" }, { "DOI": "10.1016/j.ejmech.2018.10.035", "author": "XM Chu", "doi-asserted-by": "publisher", "first-page": "101", "journal-title": "Eur. J. Med. Chem.", "key": "1249_CR547", "unstructured": "Chu, X. M. et al. Quinoline and quinolone dimers and their biological activities: an overview. Eur. J. Med. Chem. 161, 101–117 (2019).", "volume": "161", "year": "2019" }, { "DOI": "10.2174/1389557521666210210155908", "author": "LFE Moor", "doi-asserted-by": "publisher", "first-page": "2209", "journal-title": "Mini Rev. Med. Chem.", "key": "1249_CR548", "unstructured": "Moor, L. F. E., Vasconcelos, T. R. A., da, R. R. R., Pinto, L. S. S. & da Costa, T. M. Quinoline: an attractive scaffold in drug design. Mini Rev. Med. Chem. 21, 2209–2226 (2021).", "volume": "21", "year": "2021" }, { "DOI": "10.1016/S0140-6736(13)60024-0", "author": "NJ White", "doi-asserted-by": "publisher", "first-page": "723", "journal-title": "Lancet", "key": "1249_CR549", "unstructured": "White, N. J. et al. Malaria. Lancet 383, 723–735 (2014).", "volume": "383", "year": "2014" }, { "DOI": "10.1016/j.ejmech.2021.113220", "author": "R Kaur", "doi-asserted-by": "publisher", "first-page": "113220", "journal-title": "Eur. J. Med. Chem.", "key": "1249_CR550", "unstructured": "Kaur, R. & Kumar, K. Synthetic and medicinal perspective of quinolines as antiviral agents. Eur. J. Med. Chem. 215, 113220 (2021).", "volume": "215", "year": "2021" }, { "DOI": "10.1038/s41584-020-0372-x", "author": "E Schrezenmeier", "doi-asserted-by": "publisher", "first-page": "155", "journal-title": "Nat. Rev. Rheumatol.", "key": "1249_CR551", "unstructured": "Schrezenmeier, E. & Dorner, T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat. Rev. Rheumatol. 16, 155–166 (2020).", "volume": "16", "year": "2020" }, { "DOI": "10.1128/JVI.01218-20", "doi-asserted-by": "crossref", "key": "1249_CR552", "unstructured": "Weston, S. et al. Broad anti-coronavirus activity of food and drug administration-approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo. J. Virol. 94, e01218–20 (2020)." }, { "DOI": "10.1038/s41422-020-0282-0", "author": "M Wang", "doi-asserted-by": "publisher", "first-page": "269", "journal-title": "Cell Res.", "key": "1249_CR553", "unstructured": "Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30, 269–271 (2020).", "volume": "30", "year": "2020" }, { "DOI": "10.5582/bst.2020.01047", "author": "J Gao", "doi-asserted-by": "publisher", "first-page": "72", "journal-title": "Biosci. Trends", "key": "1249_CR554", "unstructured": "Gao, J., Tian, Z. & Yang, X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends 14, 72–73 (2020).", "volume": "14", "year": "2020" }, { "DOI": "10.1038/s41421-020-0156-0", "author": "J Liu", "doi-asserted-by": "publisher", "first-page": "16", "journal-title": "Cell Discov.", "key": "1249_CR555", "unstructured": "Liu, J. et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 6, 16 (2020).", "volume": "6", "year": "2020" }, { "DOI": "10.1016/j.tmaid.2020.101663", "author": "P Gautret", "doi-asserted-by": "publisher", "first-page": "101663", "journal-title": "Travel Med. Infect. Dis.", "key": "1249_CR556", "unstructured": "Gautret, P. et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: a pilot observational study. Travel Med. Infect. Dis. 34, 101663 (2020).", "volume": "34", "year": "2020" }, { "DOI": "10.1016/j.bmc.2020.115973", "author": "BS Matada", "doi-asserted-by": "publisher", "first-page": "115973", "journal-title": "Bioorg. Med. Chem.", "key": "1249_CR557", "unstructured": "Matada, B. S., Pattanashettar, R. & Yernale, N. G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem. 32, 115973 (2021).", "volume": "32", "year": "2021" }, { "DOI": "10.1002/med.21466", "author": "XF Shang", "doi-asserted-by": "publisher", "first-page": "775", "journal-title": "Med. Res. Rev.", "key": "1249_CR558", "unstructured": "Shang, X. F. et al. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev. 38, 775–828 (2018).", "volume": "38", "year": "2018" }, { "DOI": "10.1002/med.21492", "author": "XF Shang", "doi-asserted-by": "publisher", "first-page": "1614", "journal-title": "Med. Res. Rev.", "key": "1249_CR559", "unstructured": "Shang, X. F. et al. Biologically active quinoline and quinazoline alkaloids part II. Med. Res. Rev. 38, 1614–1660 (2018).", "volume": "38", "year": "2018" }, { "DOI": "10.1021/jm201758g", "author": "MY Cha", "doi-asserted-by": "publisher", "first-page": "2846", "journal-title": "J. Med. Chem.", "key": "1249_CR560", "unstructured": "Cha, M. Y. et al. Synthesis and biological evaluation of pyrimidine-based dual inhibitors of human epidermal growth factor receptor 1 (HER-1) and HER-2 tyrosine kinases. J. Med. Chem. 55, 2846–2857 (2012).", "volume": "55", "year": "2012" }, { "DOI": "10.1016/j.virol.2021.11.008", "author": "MH Raymonda", "doi-asserted-by": "publisher", "first-page": "60", "journal-title": "Virology", "key": "1249_CR561", "unstructured": "Raymonda, M. H. et al. Pharmacologic profiling reveals lapatinib as a novel antiviral against SARS-CoV-2 in vitro. Virology 566, 60–68 (2022).", "volume": "566", "year": "2022" }, { "DOI": "10.3390/biomedicines9040437", "doi-asserted-by": "crossref", "key": "1249_CR562", "unstructured": "Gilham, D. et al. Bromodomain and extraterminal protein inhibitor, apabetalone (RVX-208), reduces ACE2 expression and attenuates SARS-Cov-2 infection in vitro. Biomedicines. 9, 437 (2021)." }, { "DOI": "10.1016/j.phrs.2022.106126", "author": "E Plazas", "doi-asserted-by": "publisher", "first-page": "106126", "journal-title": "Pharm. Res.", "key": "1249_CR563", "unstructured": "Plazas, E., Avila, M. M., Munoz, D. R. & Cuca, S. L. Natural isoquinoline alkaloids: pharmacological features and multi-target potential for complex diseases. Pharm. Res. 177, 106126 (2022).", "volume": "177", "year": "2022" }, { "DOI": "10.1080/07391102.2021.1946715", "doi-asserted-by": "crossref", "key": "1249_CR564", "unstructured": "Snoussi, M. et al. Emetine, a potent alkaloid for the treatment of SARS-CoV-2 targeting papain-like protease and non-structural proteins: pharmacokinetics, molecular docking and dynamic studies. J. Biomol. Struct. Dyn. 1–14 (2021)." }, { "DOI": "10.1016/j.antiviral.2017.06.006", "author": "N Khandelwal", "doi-asserted-by": "publisher", "first-page": "196", "journal-title": "Antivir. Res.", "key": "1249_CR565", "unstructured": "Khandelwal, N. et al. Emetine inhibits replication of RNA and DNA viruses without generating drug-resistant virus variants. Antivir. Res. 144, 196–204 (2017).", "volume": "144", "year": "2017" }, { "DOI": "10.1186/s43556-020-00018-9", "author": "A Wang", "doi-asserted-by": "publisher", "first-page": "14", "journal-title": "Mol. Biomed.", "key": "1249_CR566", "unstructured": "Wang, A. et al. Low dose of emetine as potential anti-SARS-CoV-2 virus therapy: preclinical in vitro inhibition and in vivo pharmacokinetic evidences. Mol. Biomed. 1, 14 (2020).", "volume": "1", "year": "2020" }, { "DOI": "10.1038/s41401-021-00668-7", "author": "PX Ren", "doi-asserted-by": "publisher", "first-page": "483", "journal-title": "Acta Pharm. Sin.", "key": "1249_CR567", "unstructured": "Ren, P. X. et al. A multi-targeting drug design strategy for identifying potent anti-SARS-CoV-2 inhibitors. Acta Pharm. Sin. 43, 483–493 (2022).", "volume": "43", "year": "2022" }, { "DOI": "10.1016/0002-8703(55)90169-1", "author": "TH Brem", "doi-asserted-by": "publisher", "first-page": "476", "journal-title": "Am. Heart J.", "key": "1249_CR568", "unstructured": "Brem, T. H. & Konwaler, B. E. Fatal myocarditis due to emetine hydrochloride. Am. Heart J. 50, 476–481 (1955).", "volume": "50", "year": "1955" }, { "DOI": "10.1111/j.1476-5381.1996.tb15202.x", "author": "R Lemmens-Gruber", "doi-asserted-by": "publisher", "first-page": "377", "journal-title": "Br. J. Pharm.", "key": "1249_CR569", "unstructured": "Lemmens-Gruber, R., Karkhaneh, A., Studenik, C. & Heistracher, P. Cardiotoxicity of emetine dihydrochloride by calcium channel blockade in isolated preparations and ventricular myocytes of guinea-pig hearts. Br. J. Pharm. 117, 377–383 (1996).", "volume": "117", "year": "1996" }, { "DOI": "10.1021/acsptsci.2c00045", "author": "M Valipour", "doi-asserted-by": "publisher", "first-page": "387", "journal-title": "ACS Pharm. Transl. Sci.", "key": "1249_CR570", "unstructured": "Valipour, M. Different aspects of Emetine’s capabilities as a highly potent SARS-CoV-2 inhibitor against COVID-19. ACS Pharm. Transl. Sci. 5, 387–399 (2022).", "volume": "5", "year": "2022" }, { "DOI": "10.1007/s43440-020-00132-z", "author": "M Rogosnitzky", "doi-asserted-by": "publisher", "first-page": "1509", "journal-title": "Pharm. Rep.", "key": "1249_CR571", "unstructured": "Rogosnitzky, M., Okediji, P. & Koman, I. Cepharanthine: a review of the antiviral potential of a Japanese-approved alopecia drug in COVID-19. Pharm. Rep. 72, 1509–1516 (2020).", "volume": "72", "year": "2020" }, { "DOI": "10.1016/j.phymed.2019.152956", "author": "C Bailly", "doi-asserted-by": "publisher", "first-page": "152956", "journal-title": "Phytomedicine", "key": "1249_CR572", "unstructured": "Bailly, C. Cepharanthine: an update of its mode of action, pharmacological properties and medical applications. Phytomedicine 62, 152956 (2019).", "volume": "62", "year": "2019" }, { "DOI": "10.1016/j.isci.2021.102367", "author": "H Ohashi", "doi-asserted-by": "publisher", "first-page": "102367", "journal-title": "iScience", "key": "1249_CR573", "unstructured": "Ohashi, H. et al. Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment. iScience 24, 102367 (2021).", "volume": "24", "year": "2021" }, { "DOI": "10.1002/rmv.2109", "author": "G Anderson", "doi-asserted-by": "publisher", "first-page": "e2109", "journal-title": "Rev. Med. Virol.", "key": "1249_CR574", "unstructured": "Anderson, G. & Reiter, R. J. Melatonin: roles in influenza, Covid-19, and other viral infections. Rev. Med. Virol. 30, e2109 (2020).", "volume": "30", "year": "2020" }, { "DOI": "10.1016/j.pharmthera.2021.107825", "author": "S Mehrzadi", "doi-asserted-by": "publisher", "first-page": "107825", "journal-title": "Pharm. Ther.", "key": "1249_CR575", "unstructured": "Mehrzadi, S., Karimi, M. Y., Fatemi, A., Reiter, R. J. & Hosseinzadeh, A. SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control: beneficial effects of melatonin. Pharm. Ther. 224, 107825 (2021).", "volume": "224", "year": "2021" }, { "DOI": "10.1111/jpi.12732", "author": "JL Reynolds", "doi-asserted-by": "publisher", "first-page": "e12732", "journal-title": "J. Pineal Res.", "key": "1249_CR576", "unstructured": "Reynolds, J. L. & Dubocovich, M. L. Melatonin multifaceted pharmacological actions on melatonin receptors converging to abrogate COVID-19. J. Pineal Res. 71, e12732 (2021).", "volume": "71", "year": "2021" }, { "DOI": "10.1111/jpi.12754", "author": "X Zhai", "doi-asserted-by": "publisher", "first-page": "e12754", "journal-title": "J. Pineal Res.", "key": "1249_CR577", "unstructured": "Zhai, X. et al. Melatonin and other indoles show antiviral activities against swine coronaviruses in vitro at pharmacological concentrations. J. Pineal Res. 71, e12754 (2021).", "volume": "71", "year": "2021" }, { "DOI": "10.1111/jpi.12772", "author": "E Cecon", "doi-asserted-by": "publisher", "first-page": "e12772", "journal-title": "J. Pineal Res.", "key": "1249_CR578", "unstructured": "Cecon, E. et al. Therapeutic potential of melatonin and melatonergic drugs on K18-hACE2 mice infected with SARS-CoV-2. J. Pineal Res. 72, e12772 (2022).", "volume": "72", "year": "2022" }, { "DOI": "10.7150/ijms.48053", "author": "EL Feitosa", "doi-asserted-by": "publisher", "first-page": "2133", "journal-title": "Int J. Med Sci.", "key": "1249_CR579", "unstructured": "Feitosa, E. L. et al. COVID-19: rational discovery of the therapeutic potential of melatonin as a SARS-CoV-2 main Protease Inhibitor. Int J. Med Sci. 17, 2133–2146 (2020).", "volume": "17", "year": "2020" }, { "DOI": "10.1002/jcp.26081", "author": "A Amanullah", "doi-asserted-by": "publisher", "first-page": "1685", "journal-title": "J. Cell Physiol.", "key": "1249_CR580", "unstructured": "Amanullah, A. et al. Indomethacin elicits proteasomal dysfunctions develops apoptosis through mitochondrial abnormalities. J. Cell Physiol. 233, 1685–1699 (2018).", "volume": "233", "year": "2018" }, { "DOI": "10.1111/cmi.12446", "author": "C Amici", "doi-asserted-by": "publisher", "first-page": "1391", "journal-title": "Cell Microbiol.", "key": "1249_CR581", "unstructured": "Amici, C. et al. Inhibition of viral protein translation by indomethacin in vesicular stomatitis virus infection: role of eIF2alpha kinase PKR. Cell Microbiol. 17, 1391–1404 (2015).", "volume": "17", "year": "2015" }, { "DOI": "10.3390/v13040558", "doi-asserted-by": "crossref", "key": "1249_CR582", "unstructured": "Kiani, P. et al. In vitro assessment of the antiviral activity of ketotifen, indomethacin and naproxen, alone and in combination, against SARS-CoV-2. Viruses. 13, 558 (2021)." }, { "DOI": "10.1038/s41598-022-10370-1", "author": "R Ravichandran", "doi-asserted-by": "publisher", "journal-title": "Sci. Rep.", "key": "1249_CR583", "unstructured": "Ravichandran, R. et al. An open label randomized clinical trial of Indomethacin for mild and moderate hospitalised Covid-19 patients. Sci. Rep. 12, 6413 (2022).", "volume": "12", "year": "2022" }, { "DOI": "10.1038/s41467-021-26239-2", "author": "B Boras", "doi-asserted-by": "publisher", "journal-title": "Nat. Commun.", "key": "1249_CR584", "unstructured": "Boras, B. et al. Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19. Nat. Commun. 12, 6055 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.1016/j.virusres.2020.198246", "author": "J Luban", "doi-asserted-by": "publisher", "first-page": "198246", "journal-title": "Virus Res.", "key": "1249_CR585", "unstructured": "Luban, J. et al. The DHODH inhibitor PTC299 arrests SARS-CoV-2 replication and suppresses induction of inflammatory cytokines. Virus Res. 292, 198246 (2021).", "volume": "292", "year": "2021" }, { "DOI": "10.1016/j.phymed.2020.153440", "author": "YH Jin", "doi-asserted-by": "publisher", "first-page": "153440", "journal-title": "Phytomedicine", "key": "1249_CR586", "unstructured": "Jin, Y. H. et al. Lycorine, a non-nucleoside RNA dependent RNA polymerase inhibitor, as potential treatment for emerging coronavirus infections. Phytomedicine 86, 153440 (2021).", "volume": "86", "year": "2021" }, { "DOI": "10.1080/22221751.2020.1772676", "author": "YN Zhang", "doi-asserted-by": "publisher", "first-page": "1170", "journal-title": "Emerg. Microbes Infect.", "key": "1249_CR587", "unstructured": "Zhang, Y. N. et al. Gemcitabine, lycorine and oxysophoridine inhibit novel coronavirus (SARS-CoV-2) in cell culture. Emerg. Microbes Infect. 9, 1170–1173 (2020).", "volume": "9", "year": "2020" }, { "DOI": "10.1021/acs.jmedchem.6b00975", "author": "KM Nelson", "doi-asserted-by": "publisher", "first-page": "1620", "journal-title": "J. Med. Chem.", "key": "1249_CR588", "unstructured": "Nelson, K. M. et al. The essential medicinal chemistry of curcumin. J. Med. Chem. 60, 1620–1637 (2017).", "volume": "60", "year": "2017" }, { "DOI": "10.1002/ptr.6738", "author": "F Zahedipour", "doi-asserted-by": "publisher", "first-page": "2911", "journal-title": "Phytother. Res.", "key": "1249_CR589", "unstructured": "Zahedipour, F. et al. Potential effects of curcumin in the treatment of COVID-19 infection. Phytother. Res. 34, 2911–2920 (2020).", "volume": "34", "year": "2020" }, { "author": "SZ Moghadamtousi", "first-page": "186864", "journal-title": "Biomed. Res. Int.", "key": "1249_CR590", "unstructured": "Moghadamtousi, S. Z. et al. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed. Res. Int. 2014, 186864 (2014).", "volume": "2014", "year": "2014" }, { "DOI": "10.3390/v13101914", "doi-asserted-by": "crossref", "key": "1249_CR591", "unstructured": "Bormann, M. et al. Turmeric root and its bioactive ingredient curcumin effectively neutralize SARS-CoV-2 in vitro. Viruses. 13, 1914 (2021)." }, { "DOI": "10.1002/ptr.7294", "author": "M Hassaniazad", "doi-asserted-by": "publisher", "first-page": "6417", "journal-title": "Phytother. Res.", "key": "1249_CR592", "unstructured": "Hassaniazad, M. et al. A triple-blind, placebo-controlled, randomized clinical trial to evaluate the effect of curcumin-containing nanomicelles on cellular immune responses subtypes and clinical outcome in COVID-19 patients. Phytother. Res. 35, 6417–6427 (2021).", "volume": "35", "year": "2021" }, { "DOI": "10.1186/s13063-020-04824-y", "author": "M Hassaniazad", "doi-asserted-by": "publisher", "journal-title": "Trials", "key": "1249_CR593", "unstructured": "Hassaniazad, M. et al. The clinical effect of Nano micelles containing curcumin as a therapeutic supplement in patients with COVID-19 and the immune responses balance changes following treatment: a structured summary of a study protocol for a randomised controlled trial. Trials 21, 876 (2020).", "volume": "21", "year": "2020" }, { "DOI": "10.1016/j.mehy.2020.110354", "author": "M Ghasemnejad-Berenji", "doi-asserted-by": "publisher", "first-page": "110354", "journal-title": "Med Hypotheses", "key": "1249_CR594", "unstructured": "Ghasemnejad-Berenji, M., Pashapour, S. & Ghasemnejad-Berenji, H. Therapeutic potential for clomiphene, a selective estrogen receptor modulator, in the treatment of COVID-19. Med Hypotheses 145, 110354 (2020).", "volume": "145", "year": "2020" }, { "DOI": "10.1016/j.ejmech.2017.11.056", "author": "Shagufta", "doi-asserted-by": "publisher", "first-page": "515", "journal-title": "Eur. J. Med. Chem.", "key": "1249_CR595", "unstructured": "Shagufta & Ahmad, I. Tamoxifen a pioneering drug: an update on the therapeutic potential of tamoxifen derivatives. Eur. J. Med. Chem. 143, 515–531 (2018).", "volume": "143", "year": "2018" }, { "DOI": "10.1038/s41392-021-00853-4", "author": "S Zu", "doi-asserted-by": "publisher", "first-page": "435", "journal-title": "Signal Transduct. Target Ther.", "key": "1249_CR596", "unstructured": "Zu, S. et al. Tamoxifen and clomiphene inhibit SARS-CoV-2 infection by suppressing viral entry. Signal Transduct. Target Ther. 6, 435 (2021).", "volume": "6", "year": "2021" }, { "DOI": "10.1097/MJT.0000000000001402", "author": "A Bryant", "doi-asserted-by": "publisher", "first-page": "e434", "journal-title": "Am. J. Ther.", "key": "1249_CR597", "unstructured": "Bryant, A. et al. Ivermectin for prevention and treatment of COVID-19 infection: a systematic review, meta-analysis, and trial sequential analysis to inform clinical guidelines. Am. J. Ther. 28, e434–e460 (2021).", "volume": "28", "year": "2021" }, { "DOI": "10.1016/j.antiviral.2020.104787", "author": "L Caly", "doi-asserted-by": "publisher", "first-page": "104787", "journal-title": "Antivir. Res", "key": "1249_CR598", "unstructured": "Caly, L., Druce, J. D., Catton, M. G., Jans, D. A. & Wagstaff, K. M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir. Res. 178, 104787 (2020).", "volume": "178", "year": "2020" }, { "DOI": "10.3390/ijms222413202", "doi-asserted-by": "crossref", "key": "1249_CR599", "unstructured": "Froba, M. et al. Iota-carrageenan inhibits replication of SARS-CoV-2 and the respective variants of concern alpha, beta, gamma and delta. Int. J. Mol. Sci. 22, 13202 (2021)." }, { "DOI": "10.1152/ajplung.00552.2020", "author": "D Schutz", "doi-asserted-by": "publisher", "first-page": "L750", "journal-title": "Am. J. Physiol. Lung Cell Mol. Physiol.", "key": "1249_CR600", "unstructured": "Schutz, D. et al. Carrageenan-containing over-the-counter nasal and oral sprays inhibit SARS-CoV-2 infection of airway epithelial cultures. Am. J. Physiol. Lung Cell Mol. Physiol. 320, L750–L756 (2021).", "volume": "320", "year": "2021" }, { "DOI": "10.1016/j.virol.2020.05.002", "author": "HA Rothan", "doi-asserted-by": "publisher", "first-page": "7", "journal-title": "Virology", "key": "1249_CR601", "unstructured": "Rothan, H. A. et al. The FDA-approved gold drug auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells. Virology 547, 7–11 (2020).", "volume": "547", "year": "2020" }, { "DOI": "10.1002/chem.202004112", "author": "M Gil-Moles", "doi-asserted-by": "publisher", "first-page": "15140", "journal-title": "Chemistry", "key": "1249_CR602", "unstructured": "Gil-Moles, M. et al. Gold metallodrugs to target coronavirus proteins: inhibitory effects on the spike-ACE2 interaction and on PLpro protease activity by auranofin and gold organometallics*. Chemistry 26, 15140–15144 (2020).", "volume": "26", "year": "2020" }, { "DOI": "10.1016/j.cplett.2021.139294", "doi-asserted-by": "crossref", "key": "1249_CR603", "unstructured": "Liang, J. J. et al. Investigation of small molecule inhibitors of the SARS-CoV-2 papain-like protease by all-atom microsecond modelling, PELE Monte Carlo simulations, and in vitro activity inhibition. Chem. Phys. Lett. 139294 (2021)." }, { "DOI": "10.1016/j.jmgm.2021.107851", "author": "E Pitsillou", "doi-asserted-by": "publisher", "first-page": "107851", "journal-title": "J. Mol. Graph Model", "key": "1249_CR604", "unstructured": "Pitsillou, E., Liang, J., Ververis, K., Hung, A. & Karagiannis, T. C. Interaction of small molecules with the SARS-CoV-2 papain-like protease: In silico studies and in vitro validation of protease activity inhibition using an enzymatic inhibition assay. J. Mol. Graph Model 104, 107851 (2021).", "volume": "104", "year": "2021" }, { "DOI": "10.1128/JVI.00861-21", "author": "G Sun", "doi-asserted-by": "publisher", "first-page": "e0086121", "journal-title": "J. Virol.", "key": "1249_CR605", "unstructured": "Sun, G. et al. Structural basis of covalent inhibitory mechanism of TMPRSS2-related serine proteases by camostat. J. Virol. 95, e0086121 (2021).", "volume": "95", "year": "2021" }, { "DOI": "10.1016/j.cell.2020.02.052", "author": "M Hoffmann", "doi-asserted-by": "publisher", "first-page": "271", "journal-title": "Cell", "key": "1249_CR606", "unstructured": "Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is Blocked by A Clinically Proven Protease Inhibitor. Cell 181, 271–280e278 (2020).", "volume": "181", "year": "2020" }, { "DOI": "10.1007/s00134-021-06395-1", "author": "Y Sakr", "doi-asserted-by": "publisher", "first-page": "707", "journal-title": "Intensive Care Med.", "key": "1249_CR607", "unstructured": "Sakr, Y. et al. Camostat mesylate therapy in critically ill patients with COVID-19 pneumonia. Intensive Care Med. 47, 707–709 (2021).", "volume": "47", "year": "2021" }, { "DOI": "10.1101/2022.01.28.22270035", "doi-asserted-by": "crossref", "key": "1249_CR608", "unstructured": "Chupp, G. et al. A Phase 2 Randomized, Double-Blind, Placebo-controlled Trial of Oral Camostat Mesylate for Early Treatment of COVID-19 Outpatients Showed Shorter Illness Course and Attenuation of Loss of Smell and Taste. medRxiv (2022)." }, { "DOI": "10.1111/jth.14858", "author": "H Asakura", "doi-asserted-by": "publisher", "first-page": "1521", "journal-title": "J. Thromb. Haemost.", "key": "1249_CR609", "unstructured": "Asakura, H. & Ogawa, H. Potential of heparin and nafamostat combination therapy for COVID-19. J. Thromb. Haemost. 18, 1521–1522 (2020).", "volume": "18", "year": "2020" }, { "DOI": "10.1128/mBio.00970-21", "author": "K Li", "doi-asserted-by": "publisher", "first-page": "e0097021", "journal-title": "mBio", "key": "1249_CR610", "unstructured": "Li, K., Meyerholz, D. K., Bartlett, J. A. & McCray, P. B. Jr The TMPRSS2 inhibitor nafamostat reduces SARS-CoV-2 pulmonary infection in mouse models of COVID-19. mBio 12, e0097021 (2021).", "volume": "12", "year": "2021" }, { "DOI": "10.1016/j.ebiom.2022.103856", "author": "TM Quinn", "doi-asserted-by": "publisher", "first-page": "103856", "journal-title": "EBioMedicine", "key": "1249_CR611", "unstructured": "Quinn, T. M. et al. Randomised controlled trial of intravenous nafamostat mesylate in COVID pneumonitis: phase 1b/2a experimental study to investigate safety, pharmacokinetics and pharmacodynamics. EBioMedicine 76, 103856 (2022).", "volume": "76", "year": "2022" }, { "DOI": "10.1016/j.ijantimicag.2020.106004", "author": "SP Smieszek", "doi-asserted-by": "publisher", "first-page": "106004", "journal-title": "Int J. Antimicrob. Agents", "key": "1249_CR612", "unstructured": "Smieszek, S. P., Przychodzen, B. P. & Polymeropoulos, M. H. Amantadine disrupts lysosomal gene expression: a hypothesis for COVID19 treatment. Int J. Antimicrob. Agents 55, 106004 (2020).", "volume": "55", "year": "2020" }, { "DOI": "10.3390/v13040539", "doi-asserted-by": "crossref", "key": "1249_CR613", "unstructured": "Fink, K. et al. Amantadine inhibits SARS-CoV-2 in vitro. Viruses. 13, 539 (2021)." }, { "DOI": "10.1016/j.arcmed.2020.06.009", "author": "R Araujo", "doi-asserted-by": "publisher", "first-page": "739", "journal-title": "Arch. Med. Res.", "key": "1249_CR614", "unstructured": "Araujo, R., Aranda-Martinez, J. D. & Aranda-Abreu, G. E. Amantadine treatment for people with COVID-19. Arch. Med. Res. 51, 739–740 (2020).", "volume": "51", "year": "2020" }, { "DOI": "10.1016/S1474-4422(21)00356-2", "author": "R Pahwa", "doi-asserted-by": "publisher", "first-page": "975", "journal-title": "Lancet Neurol.", "key": "1249_CR615", "unstructured": "Pahwa, R. Amantadine: an old drug reborn. Lancet Neurol. 20, 975–977 (2021).", "volume": "20", "year": "2021" }, { "DOI": "10.1002/jmv.27616", "author": "Y Hu", "doi-asserted-by": "publisher", "first-page": "2188", "journal-title": "J. Med Virol.", "key": "1249_CR616", "unstructured": "Hu, Y., Jo, H., DeGrado, W. F. & Wang, J. Brilacidin, a COVID-19 drug candidate, demonstrates broad-spectrum antiviral activity against human coronaviruses OC43, 229E, and NL63 through targeting both the virus and the host cell. J. Med Virol. 94, 2188–2200 (2022).", "volume": "94", "year": "2022" }, { "author": "C Xu", "first-page": "1", "journal-title": "EC Microbiol", "key": "1249_CR617", "unstructured": "Xu, C. et al. Brilacidin, a non-peptide defensin-mimetic molecule, inhibits SARS-CoV-2 infection by blocking viral entry. EC Microbiol 18, 1–12 (2022).", "volume": "18", "year": "2022" }, { "DOI": "10.3390/v13020271", "doi-asserted-by": "crossref", "key": "1249_CR618", "unstructured": "Bakovic, A. et al. Brilacidin demonstrates inhibition of SARS-CoV-2 in cell culture. Viruses. 13, 271 (2021)." }, { "DOI": "10.3390/ph15050618", "doi-asserted-by": "crossref", "key": "1249_CR619", "unstructured": "Huntington, K. E. et al. Integrin/TGF-beta1 inhibitor GLPG-0187 blocks SARS-CoV-2 Delta and Omicron pseudovirus infection of airway epithelial cells which could attenuate disease severity. Pharmaceuticals (Basel). 15, 618 (2022)." }, { "DOI": "10.1021/acs.jcim.1c00684", "author": "A Manandhar", "doi-asserted-by": "publisher", "first-page": "4745", "journal-title": "J. Chem. Inf. Model", "key": "1249_CR620", "unstructured": "Manandhar, A. et al. Discovery of novel small-molecule inhibitors of SARS-CoV-2 main protease as potential leads for COVID-19 treatment. J. Chem. Inf. Model 61, 4745–4757 (2021).", "volume": "61", "year": "2021" }, { "DOI": "10.1016/j.biopha.2021.112107", "author": "S Mouffak", "doi-asserted-by": "publisher", "first-page": "112107", "journal-title": "Biomed. Pharmacother.", "key": "1249_CR621", "unstructured": "Mouffak, S., Shubbar, Q., Saleh, E. & El-Awady, R. Recent advances in management of COVID-19: a review. Biomed. Pharmacother. 143, 112107 (2021).", "volume": "143", "year": "2021" }, { "DOI": "10.1136/bmj.o1695", "author": "JH Tanne", "doi-asserted-by": "publisher", "first-page": "o1695", "journal-title": "Br. Med. J.", "key": "1249_CR622", "unstructured": "Tanne, J. H. Covid-19: FDA authorises pharmacists to prescribe Paxlovid. Br. Med. J. 378, o1695 (2022).", "volume": "378", "year": "2022" }, { "DOI": "10.15585/mmwr.mm7125e1", "author": "JAW Gold", "doi-asserted-by": "publisher", "first-page": "825", "journal-title": "MMWR Morb. Mortal. Wkly Rep.", "key": "1249_CR623", "unstructured": "Gold, J. A. W. et al. Dispensing of Oral Antiviral Drugs for Treatment of COVID-19 by Zip Code-Level Social Vulnerability—United States, December 23, 2021-May 21, 2022. MMWR Morb. Mortal. Wkly Rep. 71, 825–829 (2022).", "volume": "71", "year": "2022" }, { "DOI": "10.1001/jama.2020.16349", "author": "CD Spinner", "doi-asserted-by": "publisher", "first-page": "1048", "journal-title": "J. Am. Med. Assoc.", "key": "1249_CR624", "unstructured": "Spinner, C. D. et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. J. Am. Med. Assoc. 324, 1048–1057 (2020).", "volume": "324", "year": "2020" }, { "DOI": "10.1056/NEJMoa2015301", "author": "JD Goldman", "doi-asserted-by": "publisher", "first-page": "1827", "journal-title": "N. Engl. J. Med.", "key": "1249_CR625", "unstructured": "Goldman, J. D. et al. Remdesivir for 5 or 10 days in patients with severe covid-19. N. Engl. J. Med. 383, 1827–1837 (2020).", "volume": "383", "year": "2020" }, { "DOI": "10.1056/NEJMoa2116846", "author": "RL Gottlieb", "doi-asserted-by": "publisher", "first-page": "305", "journal-title": "N. Engl. J. Med.", "key": "1249_CR626", "unstructured": "Gottlieb, R. L. et al. Early remdesivir to prevent progression to severe Covid-19 in outpatients. N. Engl. J. Med. 386, 305–315 (2022).", "volume": "386", "year": "2022" }, { "DOI": "10.1016/S1473-3099(21)00485-0", "author": "F Ader", "doi-asserted-by": "publisher", "first-page": "209", "journal-title": "Lancet Infect. Dis.", "key": "1249_CR627", "unstructured": "Ader, F. et al. Remdesivir plus standard of care versus standard of care alone for the treatment of patients admitted to hospital with COVID-19 (DisCoVeRy): a phase 3, randomised, controlled, open-label trial. Lancet Infect. Dis. 22, 209–221 (2022).", "volume": "22", "year": "2022" }, { "DOI": "10.1016/S1473-3099(22)00295-X", "author": "F Ader", "doi-asserted-by": "publisher", "first-page": "764", "journal-title": "Lancet Infect. Dis.", "key": "1249_CR628", "unstructured": "Ader, F. et al. Final results of the DisCoVeRy trial of remdesivir for patients admitted to hospital with COVID-19. Lancet Infect. Dis. 22, 764–765 (2022).", "volume": "22", "year": "2022" }, { "DOI": "10.1016/S0140-6736(20)31022-9", "author": "Y Wang", "doi-asserted-by": "publisher", "first-page": "1569", "journal-title": "Lancet", "key": "1249_CR629", "unstructured": "Wang, Y. et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395, 1569–1578 (2020).", "volume": "395", "year": "2020" }, { "DOI": "10.1016/S1473-3099(20)30262-0", "author": "EG Favalli", "doi-asserted-by": "publisher", "first-page": "1012", "journal-title": "Lancet Infect. Dis.", "key": "1249_CR630", "unstructured": "Favalli, E. G., Biggioggero, M., Maioli, G. & Caporali, R. Baricitinib for COVID-19: a suitable treatment? Lancet Infect. Dis. 20, 1012–1013 (2020).", "volume": "20", "year": "2020" }, { "DOI": "10.1016/S2213-2600(22)00006-6", "author": "EW Ely", "doi-asserted-by": "publisher", "first-page": "327", "journal-title": "Lancet Respir. Med.", "key": "1249_CR631", "unstructured": "Ely, E. W. et al. Efficacy and safety of baricitinib plus standard of care for the treatment of critically ill hospitalised adults with COVID-19 on invasive mechanical ventilation or extracorporeal membrane oxygenation: an exploratory, randomised, placebo-controlled trial. Lancet Respir. Med. 10, 327–336 (2022).", "volume": "10", "year": "2022" }, { "DOI": "10.1093/cid/ciac180", "doi-asserted-by": "crossref", "key": "1249_CR632", "unstructured": "Saravolatz, L. D., Depcinski, S. & Sharma, M. Molnupiravir anD Nirmatrelvir-ritonavir: Oral COVID antiviral drugs. Clin. Infect. Dis. ciac180 (2022)." }, { "DOI": "10.1016/j.jbc.2021.100867", "author": "L Menendez-Arias", "doi-asserted-by": "publisher", "first-page": "100867", "journal-title": "J. Biol. Chem.", "key": "1249_CR633", "unstructured": "Menendez-Arias, L. Decoding molnupiravir-induced mutagenesis in SARS-CoV-2. J. Biol. Chem. 297, 100867 (2021).", "volume": "297", "year": "2021" }, { "DOI": "10.1126/scitranslmed.abl7430", "author": "WA Fischer 2nd", "doi-asserted-by": "publisher", "first-page": "eabl7430", "journal-title": "Sci. Transl. Med.", "key": "1249_CR634", "unstructured": "Fischer, W. A. 2nd et al. A phase 2a clinical trial of molnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious virus. Sci. Transl. Med. 14, eabl7430 (2022).", "volume": "14", "year": "2022" }, { "DOI": "10.1056/NEJMoa2116044", "author": "A Jayk Bernal", "doi-asserted-by": "publisher", "first-page": "509", "journal-title": "N. Engl. J. Med.", "key": "1249_CR635", "unstructured": "Jayk Bernal, A. et al. Molnupiravir for oral treatment of covid-19 in nonhospitalized patients. N. Engl. J. Med. 386, 509–520 (2022).", "volume": "386", "year": "2022" }, { "DOI": "10.1002/jmv.27540", "author": "Z Wang", "doi-asserted-by": "publisher", "first-page": "1766", "journal-title": "J. Med. Virol.", "key": "1249_CR636", "unstructured": "Wang, Z. & Yang, L. In the age of Omicron variant: paxlovid raises new hopes of COVID-19 recovery. J. Med. Virol. 94, 1766–1767 (2022).", "volume": "94", "year": "2022" }, { "DOI": "10.1016/S2213-2600(22)00192-8", "author": "T Burki", "doi-asserted-by": "publisher", "first-page": "e68", "journal-title": "Lancet Respir. Med.", "key": "1249_CR637", "unstructured": "Burki, T. The future of Paxlovid for COVID-19. Lancet Respir. Med. 10, e68 (2022).", "volume": "10", "year": "2022" }, { "DOI": "10.1093/cid/ciac443", "doi-asserted-by": "crossref", "key": "1249_CR638", "unstructured": "Najjar-Debbiny, R. et al. Effectiveness of paxlovid in reducing severe COVID-19 and mortality in high risk patients. Clin. Infect. Dis. ciac443 (2022)." }, { "DOI": "10.1021/acscentsci.2c00369", "author": "B Halford", "doi-asserted-by": "publisher", "first-page": "405", "journal-title": "ACS Cent. Sci.", "key": "1249_CR639", "unstructured": "Halford, B. The path to paxlovid. ACS Cent. Sci. 8, 405–407 (2022).", "volume": "8", "year": "2022" }, { "DOI": "10.1093/cid/ciaa1176", "author": "AA Ivashchenko", "doi-asserted-by": "publisher", "first-page": "531", "journal-title": "Clin. Infect. Dis.", "key": "1249_CR640", "unstructured": "Ivashchenko, A. A. et al. AVIFAVIR for treatment of patients with moderate coronavirus disease 2019 (COVID-19): Interim results of a phase II/III multicenter randomized clinical trial. Clin. Infect. Dis. 73, 531–534 (2021).", "volume": "73", "year": "2021" }, { "DOI": "10.1016/j.cmi.2021.12.026", "author": "M Bosaeed", "doi-asserted-by": "publisher", "first-page": "602", "journal-title": "Clin. Microbiol Infect.", "key": "1249_CR641", "unstructured": "Bosaeed, M. et al. Efficacy of favipiravir in adults with mild COVID-19: a randomized, double-blind, multicentre, placebo-controlled clinical trial. Clin. Microbiol Infect. 28, 602–608 (2022).", "volume": "28", "year": "2022" }, { "DOI": "10.1128/AAC.01897-20", "doi-asserted-by": "crossref", "key": "1249_CR642", "unstructured": "Doi, Y. et al. A prospective, randomized, open-label trial of early versus late favipiravir therapy in hospitalized patients with COVID-19. Antimicrob. Agents Chemother. 64, e01897–20 (2020)." }, { "DOI": "10.3389/fmed.2021.668698", "author": "J McCoy", "doi-asserted-by": "publisher", "first-page": "668698", "journal-title": "Front. Med.", "key": "1249_CR643", "unstructured": "McCoy, J. et al. Proxalutamide reduces the rate of hospitalization for COVID-19 male outpatients: a randomized double-blinded placebo-controlled trial. Front. Med. 8, 668698 (2021).", "volume": "8", "year": "2021" }, { "DOI": "10.1016/j.eururo.2021.12.013", "author": "K Welen", "doi-asserted-by": "publisher", "first-page": "285", "journal-title": "Eur. Urol.", "key": "1249_CR644", "unstructured": "Welen, K. et al. A phase 2 trial of the effect of antiandrogen therapy on COVID-19 outcome: no evidence of benefit, supported by epidemiology and in vitro data. Eur. Urol. 81, 285–293 (2022).", "volume": "81", "year": "2022" }, { "DOI": "10.1038/s41422-021-00570-1", "author": "Y Xie", "doi-asserted-by": "publisher", "first-page": "1212", "journal-title": "Cell Res.", "key": "1249_CR645", "unstructured": "Xie, Y. et al. Design and development of an oral remdesivir derivative VV116 against SARS-CoV-2. Cell Res. 31, 1212–1214 (2021).", "volume": "31", "year": "2021" }, { "DOI": "10.1016/j.eclinm.2022.101310", "author": "JF Rossignol", "doi-asserted-by": "publisher", "first-page": "101310", "journal-title": "EClinicalMedicine", "key": "1249_CR646", "unstructured": "Rossignol, J. F., Bardin, M. C., Fulgencio, J., Mogelnicki, D. & Brechot, C. A randomized double-blind placebo-controlled clinical trial of nitazoxanide for treatment of mild or moderate COVID-19. EClinicalMedicine 45, 101310 (2022).", "volume": "45", "year": "2022" }, { "DOI": "10.1111/cts.13052", "author": "J Kitagawa", "doi-asserted-by": "publisher", "first-page": "1967", "journal-title": "Clin. Transl. Sci.", "key": "1249_CR647", "unstructured": "Kitagawa, J. et al. A phase I study of high dose camostat mesylate in healthy adults provides a rationale to repurpose the TMPRSS2 inhibitor for the treatment of COVID-19. Clin. Transl. Sci. 14, 1967–1976 (2021).", "volume": "14", "year": "2021" }, { "DOI": "10.1016/j.jaip.2017.07.032", "author": "S Sonnappa", "doi-asserted-by": "publisher", "first-page": "907", "journal-title": "J. Allergy Clin. Immunol. Pract.", "key": "1249_CR648", "unstructured": "Sonnappa, S. et al. Extrafine versus fine inhaled corticosteroids in relation to asthma control: a systematic review and meta-analysis of observational real-life studies. J. Allergy Clin. Immunol. Pract. 6, 907–915e907 (2018).", "volume": "6", "year": "2018" }, { "DOI": "10.1186/s40249-020-00691-6", "author": "XY Zhang", "doi-asserted-by": "publisher", "journal-title": "Infect. Dis. Poverty", "key": "1249_CR649", "unstructured": "Zhang, X. Y. et al. Biological, clinical and epidemiological features of COVID-19, SARS and MERS and AutoDock simulation of ACE2. Infect. Dis. Poverty 9, 99 (2020).", "volume": "9", "year": "2020" }, { "DOI": "10.1136/bmj-2021-068060", "author": "N Ezer", "doi-asserted-by": "publisher", "first-page": "e068060", "journal-title": "Br. Med. J.", "key": "1249_CR650", "unstructured": "Ezer, N. et al. Inhaled and intranasal ciclesonide for the treatment of covid-19 in adult outpatients: CONTAIN phase II randomised controlled trial. Br. Med. J. 375, e068060 (2021).", "volume": "375", "year": "2021" }, { "DOI": "10.1001/jamainternmed.2021.6759", "author": "BM Clemency", "doi-asserted-by": "publisher", "first-page": "42", "journal-title": "JAMA Intern. Med.", "key": "1249_CR651", "unstructured": "Clemency, B. M. et al. Efficacy of inhaled ciclesonide for outpatient treatment of adolescents and adults with symptomatic COVID-19: a randomized clinical trial. JAMA Intern. Med. 182, 42–49 (2022).", "volume": "182", "year": "2022" }, { "DOI": "10.1016/j.jmii.2022.08.002", "doi-asserted-by": "crossref", "key": "1249_CR652", "unstructured": "Hsu, C. K., Chao, C. M. & Lai, C. C. Inhaled ciclesonide for outpatients with COVID-19: a meta-analysis. J. Microbiol. Immunol. Infect. S1684-1182(22)00112-8 (2022)." }, { "DOI": "10.1016/S0140-6736(20)32439-9", "author": "N Chan", "doi-asserted-by": "publisher", "first-page": "1767", "journal-title": "Lancet", "key": "1249_CR653", "unstructured": "Chan, N., Sobieraj-Teague, M. & Eikelboom, J. W. Direct oral anticoagulants: evidence and unresolved issues. Lancet 396, 1767–1776 (2020).", "volume": "396", "year": "2020" }, { "DOI": "10.1016/S0140-6736(21)02392-8", "author": "E Ramacciotti", "doi-asserted-by": "publisher", "first-page": "50", "journal-title": "Lancet", "key": "1249_CR654", "unstructured": "Ramacciotti, E. et al. Rivaroxaban versus no anticoagulation for post-discharge thromboprophylaxis after hospitalisation for COVID-19 (MICHELLE): an open-label, multicentre, randomised, controlled trial. Lancet 399, 50–59 (2022).", "volume": "399", "year": "2022" }, { "DOI": "10.1016/j.ahj.2021.04.005", "author": "RD Lopes", "doi-asserted-by": "publisher", "first-page": "1", "journal-title": "Am. Heart J.", "key": "1249_CR655", "unstructured": "Lopes, R. D. et al. Randomized clinical trial to evaluate a routine full anticoagulation Strategy in Patients with Coronavirus Infection (SARS-CoV2) admitted to hospital: rationale and design of the ACTION (AntiCoagulaTlon cOroNavirus)-Coalition IV trial. Am. Heart J. 238, 1–11 (2021).", "volume": "238", "year": "2021" }, { "DOI": "10.1016/S0140-6736(21)01203-4", "author": "RD Lopes", "doi-asserted-by": "publisher", "first-page": "2253", "journal-title": "Lancet", "key": "1249_CR656", "unstructured": "Lopes, R. D. et al. Therapeutic versus prophylactic anticoagulation for patients admitted to hospital with COVID-19 and elevated D-dimer concentration (ACTION): an open-label, multicentre, randomised, controlled trial. Lancet 397, 2253–2263 (2021).", "volume": "397", "year": "2021" }, { "DOI": "10.15252/emmm.202114122", "author": "GD de Melo", "doi-asserted-by": "publisher", "first-page": "e14122", "journal-title": "EMBO Mol. Med.", "key": "1249_CR657", "unstructured": "de Melo, G. D. et al. Attenuation of clinical and immunological outcomes during SARS-CoV-2 infection by ivermectin. EMBO Mol. Med. 13, e14122 (2021).", "volume": "13", "year": "2021" }, { "DOI": "10.1038/d41586-020-02958-2", "author": "ER Mega", "doi-asserted-by": "publisher", "first-page": "481", "journal-title": "Nature", "key": "1249_CR658", "unstructured": "Mega, E. R. Latin America’s embrace of an unproven COVID treatment is hindering drug trials. Nature 586, 481–482 (2020).", "volume": "586", "year": "2020" }, { "DOI": "10.1001/jama.2021.3071", "author": "E Lopez-Medina", "doi-asserted-by": "publisher", "first-page": "1426", "journal-title": "J. Am. Med. Assoc.", "key": "1249_CR659", "unstructured": "Lopez-Medina, E. et al. Effect of ivermectin on time to resolution of symptoms among adults with mild COVID-19: a randomized clinical trial. J. Am. Med. Assoc. 325, 1426–1435 (2021).", "volume": "325", "year": "2021" }, { "DOI": "10.1001/jamainternmed.2022.0189", "author": "SCL Lim", "doi-asserted-by": "publisher", "first-page": "426", "journal-title": "JAMA Intern. Med.", "key": "1249_CR660", "unstructured": "Lim, S. C. L. et al. Efficacy of ivermectin treatment on disease progression among adults with mild to moderate COVID-19 and comorbidities: the I-TECH randomized clinical trial. JAMA Intern. Med. 182, 426–435 (2022).", "volume": "182", "year": "2022" }, { "DOI": "10.1056/NEJMoa2115869", "author": "G Reis", "doi-asserted-by": "publisher", "first-page": "1721", "journal-title": "N. Engl. J. Med.", "key": "1249_CR661", "unstructured": "Reis, G. et al. Effect of early treatment with ivermectin among patients with Covid-19. N. Engl. J. Med. 386, 1721–1731 (2022).", "volume": "386", "year": "2022" }, { "DOI": "10.1182/blood-2018-11-852491", "author": "NT Connell", "doi-asserted-by": "publisher", "first-page": "2027", "journal-title": "Blood", "key": "1249_CR662", "unstructured": "Connell, N. T. & Berliner, N. Fostamatinib for the treatment of chronic immune thrombocytopenia. Blood 133, 2027–2030 (2019).", "volume": "133", "year": "2019" }, { "DOI": "10.1093/infdis/jiaa789", "author": "JR Strich", "doi-asserted-by": "publisher", "first-page": "981", "journal-title": "J. Infect. Dis.", "key": "1249_CR663", "unstructured": "Strich, J. R. et al. Fostamatinib inhibits neutrophils extracellular traps induced by COVID-19 patient plasma: a potential therapeutic. J. Infect. Dis. 223, 981–984 (2021).", "volume": "223", "year": "2021" }, { "DOI": "10.1093/cid/ciab732", "author": "JR Strich", "doi-asserted-by": "publisher", "first-page": "e491", "journal-title": "Clin. Infect. Dis.", "key": "1249_CR664", "unstructured": "Strich, J. R. et al. Fostamatinib for the treatment of hospitalized adults with coronavirus disease 2019: a randomized trial. Clin. Infect. Dis. 75, e491–e498 (2022).", "volume": "75", "year": "2022" }, { "DOI": "10.7326/0003-4819-102-4-550", "author": "RD Pearson", "doi-asserted-by": "publisher", "first-page": "550", "journal-title": "Ann. Intern. Med.", "key": "1249_CR665", "unstructured": "Pearson, R. D. & Hewlett, E. L. Niclosamide therapy for tapeworm infections. Ann. Intern. Med. 102, 550–551 (1985).", "volume": "102", "year": "1985" }, { "DOI": "10.1001/jamanetworkopen.2021.44942", "author": "DM Cairns", "doi-asserted-by": "publisher", "first-page": "e2144942", "journal-title": "JAMA Netw. Open", "key": "1249_CR666", "unstructured": "Cairns, D. M. et al. Efficacy of niclosamide vs placebo in SARS-CoV-2 respiratory viral clearance, viral shedding, and duration of symptoms among patients with mild to moderate COVID-19: a phase 2 randomized clinical trial. JAMA Netw. Open 5, e2144942 (2022).", "volume": "5", "year": "2022" }, { "DOI": "10.1038/nbt0818-675a", "author": "S Ellis", "doi-asserted-by": "publisher", "first-page": "675", "journal-title": "Nat. Biotechnol.", "key": "1249_CR667", "unstructured": "Ellis, S. Chinese approval for Ascletis’ HCV drug is first homegrown success. Nat. Biotechnol. 36, 675–676 (2018).", "volume": "36", "year": "2018" }, { "author": "H Chen", "first-page": "e23357", "journal-title": "Medicines", "key": "1249_CR668", "unstructured": "Chen, H. et al. First clinical study using HCV protease inhibitor danoprevir to treat COVID-19 patients. Medicines 99, e23357 (2020).", "volume": "99", "year": "2020" }, { "DOI": "10.1002/jmv.26141", "author": "Z Zhang", "doi-asserted-by": "publisher", "first-page": "2631", "journal-title": "J. Med. Virol.", "key": "1249_CR669", "unstructured": "Zhang, Z. et al. A comparative study on the time to achieve negative nucleic acid testing and hospital stays between danoprevir and lopinavir/ritonavir in the treatment of patients with COVID-19. J. Med. Virol. 92, 2631–2636 (2020).", "volume": "92", "year": "2020" }, { "DOI": "10.1016/S2352-3026(20)30216-7", "author": "G Goshua", "doi-asserted-by": "publisher", "first-page": "e575", "journal-title": "Lancet Haematol.", "key": "1249_CR670", "unstructured": "Goshua, G. et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 7, e575–e582 (2020).", "volume": "7", "year": "2020" }, { "DOI": "10.1164/rccm.202009-3629ED", "author": "MA Matthay", "doi-asserted-by": "publisher", "first-page": "1489", "journal-title": "Am. J. Respir. Crit. Care Med.", "key": "1249_CR671", "unstructured": "Matthay, M. A., Leligdowicz, A. & Liu, K. D. Biological mechanisms of COVID-19 acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 202, 1489–1491 (2020).", "volume": "202", "year": "2020" }, { "DOI": "10.1038/ki.1993.172", "author": "LA Bruggeman", "doi-asserted-by": "publisher", "first-page": "1219", "journal-title": "Kidney Int.", "key": "1249_CR672", "unstructured": "Bruggeman, L. A., Pellicoro, J. A., Horigan, E. A. & Klotman, P. E. Thromboxane and prostacyclin differentially regulate murine extracellular matrix gene expression. Kidney Int. 43, 1219–1225 (1993).", "volume": "43", "year": "1993" }, { "DOI": "10.1161/ATVBAHA.109.193730", "author": "J Kawabe", "doi-asserted-by": "publisher", "first-page": "464", "journal-title": "Arterioscler. Thromb. Vasc. Biol.", "key": "1249_CR673", "unstructured": "Kawabe, J. et al. Prostaglandin I2 promotes recruitment of endothelial progenitor cells and limits vascular remodeling. Arterioscler. Thromb. Vasc. Biol. 30, 464–470 (2010).", "volume": "30", "year": "2010" }, { "DOI": "10.1186/s13063-020-04696-2", "author": "PI Johansson", "doi-asserted-by": "publisher", "journal-title": "Trials", "key": "1249_CR674", "unstructured": "Johansson, P. I. et al. The effect of prostacyclin (Iloprost) infusion at a dose of 1 ng/kg/min for 72 hours compared to placebo in mechanically ventilated patients with COVID-19: a structured summary of a study protocol for a randomized controlled trial. Trials 21, 746 (2020).", "volume": "21", "year": "2020" }, { "DOI": "10.1164/rccm.202108-1855OC", "author": "PI Johansson", "doi-asserted-by": "publisher", "first-page": "324", "journal-title": "Am. J. Respir. Crit. Care Med.", "key": "1249_CR675", "unstructured": "Johansson, P. I. et al. Prostacyclin in intubated patients with COVID-19 and severe endotheliopathy: a multicenter, randomized clinical trial. Am. J. Respir. Crit. Care Med. 205, 324–329 (2022).", "volume": "205", "year": "2022" }, { "DOI": "10.1111/cts.13123", "author": "ND Pfeifer", "doi-asserted-by": "publisher", "first-page": "2556", "journal-title": "Clin. Transl. Sci.", "key": "1249_CR676", "unstructured": "Pfeifer, N. D., Lo, A., Bourdet, D. L., Colley, K. & Singh, D. Phase I study in healthy participants to evaluate safety, tolerability, and pharmacokinetics of inhaled nezulcitinib, a potential treatment for COVID-19. Clin. Transl. Sci. 14, 2556–2565 (2021).", "volume": "14", "year": "2021" }, { "DOI": "10.3892/ijmm.2022.5084", "doi-asserted-by": "crossref", "key": "1249_CR677", "unstructured": "Guzman-Esquivel, J. et al. Efficacy of the use of mefenamic acid combined with standard medical care vs. standard medical care alone for the treatment of COVID19: a randomized doubleblind placebocontrolled trial. Int. J. Mol. Med. 49, 29 (2022)." }, { "DOI": "10.1093/cid/ciac014", "author": "A Marrone", "doi-asserted-by": "publisher", "first-page": "e403", "journal-title": "Clin. Infect. Dis.", "key": "1249_CR678", "unstructured": "Marrone, A. et al. Remdesivir plus dexamethasone versus dexamethasone alone for the treatment of coronavirus disease 2019 (Covid-19) patients requiring supplemental O2 therapy: a prospective controlled nonrandomized study. Clin. Infect. Dis. 75, e403–e409 (2022).", "volume": "75", "year": "2022" }, { "DOI": "10.1038/s41392-021-00712-2", "author": "S Xia", "doi-asserted-by": "publisher", "first-page": "288", "journal-title": "Signal Transduct. Target Ther.", "key": "1249_CR679", "unstructured": "Xia, S. et al. Structural and functional basis for pan-CoV fusion inhibitors against SARS-CoV-2 and its variants with preclinical evaluation. Signal Transduct. Target Ther. 6, 288 (2021).", "volume": "6", "year": "2021" } ], "reference-count": 679, "references-count": 679, "relation": {}, "resource": { "primary": { "URL": "https://www.nature.com/articles/s41392-022-01249-8" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [ "Cancer Research", "Genetics" ], "subtitle": [], "title": "Small molecules in the treatment of COVID-19", "type": "journal-article", "update-policy": "http://dx.doi.org/10.1007/springer_crossmark_policy", "volume": "7" }
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Submit