Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchMelatoninMelatonin (more..)
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

 

Viral mitochondriopathy in COVID-19

Chen et al., Redox Biology, doi:10.1016/j.redox.2025.103766, Sep 2025
https://c19early.org/chen45.html
Melatonin for COVID-19
11th treatment shown to reduce risk in December 2020, now with p = 0.000000047 from 19 studies.
Lower risk for mortality, ventilation, and recovery.
No treatment is 100% effective. Protocols combine treatments.
5,900+ studies for 173 treatments. c19early.org
Discussion of the role of mitochondrial dysfunction in COVID-19 pathogenesis. Authors describe how SARS-CoV-2 viral proteins disrupt mitochondrial function through multiple mechanisms, including impairing bioenergetics, altering calcium homeostasis, increasing reactive oxygen species, and disrupting mitochondrial dynamics. Mitochondrial damage contributes to systemic inflammation, metabolic reprogramming, and multi-organ dysfunction, potentially explaining both acute COVID-19 severity and persistent symptoms in long COVID. Authors suggest mitochondria-targeting therapeutics as promising interventions. Melatonin is highlighted for its ability to restore mitochondrial function by inducing Bmal1 expression and counteracting viral inhibition of the pyruvate dehydrogenase complex.
Reviews covering melatonin for COVID-19 include1-24.
Chen et al., 30 Sep 2025, peer-reviewed, 6 authors. Contact: cych13794@gmail.com, timocijeng@gmail.com, cych05825@gmail.com, hcwang@ccu.edu.tw, tsai.kf@gmail.com, vacinu@gmail.com.
Viral mitochondriopathy in COVID-19
Tsung-Hsien Chen, Tien-Hsin Jeng, Ming-Yang Lee, Hsiang-Chen Wang, Kun-Feng Tsai, Chu-Kuang Chou
Redox Biology, doi:10.1016/j.redox.2025.103766
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), disrupts cellular mitochondria, leading to widespread chronic inflammation and multi-organ dysfunction. Viral proteins cause mitochondrial bioenergetic collapse, disrupt mitochondrial dynamics, and impair ionic homeostasis, while avoiding antiviral defenses, including mitochondrial antiviral signaling. These changes drive both acute COVID-19 and its longer-term effects, known as "long COVID". This review examines new findings on the mechanisms by which SARS-CoV-2 affects mitochondria and for the impact on chronic immunity, long-term health risks, and potential treatments.
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
Ajaz, Mcphail, Singh, Mitochondrial metabolic manipulation by SARS-CoV-2 in peripheral blood mononuclear cells of patients with COVID-19, Am. J. Physiol. Cell Physiol
Akbari, Taghizadeh-Hesary, COVID-19 induced liver injury from a new perspective: Mitochondria, Mitochondrion
Al-Aly, Davis, Mccorkell, Long COVID science, research and policy, Nat. Med
Allen, Santerre, Arjona, SARS-CoV-2 causes lung inflammation through metabolic reprogramming and RAGE, Viruses
Ambrozek-Latecka, Kozlowski, Hoser, SARS-CoV-2 and its ORF3a, E and M viroporins activate inflammasome in human macrophages and induce of IL-1alpha in pulmonary epithelial and endothelial cells, Cell Death Discov
Anderson, Reiter, Melatonin: roles in influenza, Covid-19, and other viral infections, Rev. Med. Virol
Anwar, Sah, Shrestha, Disengaging the COVID-19 clutch as a discerning eye over the inflammatory circuit during SARS-CoV-2 infection, Inflammation
Archer, Dasgupta, Chen, SARS-CoV-2 mitochondriopathy in COVID-19 pneumonia exacerbates hypoxemia, Redox Biol
Berlin, Gulick, Martinez, Severe Covid-19, N. Engl. J. Med
Bhowal, Ghosh, Ghatak, De, Pathophysiological involvement of host mitochondria in SARS-CoV-2 infection that causes COVID-19: a comprehensive evidential insight, Mol. Cell. Biochem
Blanco-Melo, Nilsson-Payant, Liu, Imbalanced host response to SARS-CoV-2 drives development of COVID-19, Cell
Borella, Biasi, Paolini, Metabolic reprograming shapes neutrophil functions in severe COVID-19, Eur. J. Immunol
Brandherm, Kobas, Klohn, Phosphorylation of SARS-CoV-2 Orf9b regulates its targeting to two binding sites in TOM70 and recruitment of Hsp90, Int. J. Mol. Sci
Cai, Zhang, Zhuang, Phase-separated nucleocapsid protein of SARS-CoV-2 suppresses cGAS-DNA recognition by disrupting cGAS-G3BP1 complex, Signal Transduct, Targeted Ther
Cao, Cai, Xiao, The architecture of the SARS-CoV-2 RNA genome inside virion, Nat. Commun
Cao, Xia, Rajsbaum, Xia, Wang et al., Ubiquitination of SARS-CoV-2 ORF7a promotes antagonism of interferon response, Cell. Mol. Immunol
Chen, Chang, Hung, Possible pathogenesis and prevention of long COVID: SARS-CoV-2-induced mitochondrial disorder, Int. J. Mol. Sci
Chen, Johnson, Trahtemberg, Mitochondria and cytochrome components released into the plasma of severe COVID-19 and ICU acute respiratory distress syndrome patients, Clin. Proteom
Chen, Wu, He, Jiang, He, Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection, Signal Transduct, Targeted Ther
Conti, Younes, Coronavirus COV-19/SARS-CoV-2 affects women less than men: clinical response to viral infection, J. Biol. Regul. Homeost. Agents
Costa, Potje, Fraga-Silva, Mitochondrial DNA and TLR9 activation contribute to SARS-CoV-2-induced endothelial cell damage, Vasc. Pharmacol
De La Cruz-Enriquez, Rojas-Morales, Ruiz-Garcia, Tobon-Velasco, Jimenez-Ortega, SARS-CoV-2 induces mitochondrial dysfunction and cell death by oxidative stress/inflammation in leukocytes of COVID-19 patients, Free Radic. Res
Del Valle, Kim-Schulze, Huang, An inflammatory cytokine signature predicts COVID-19 severity and survival, Nat. Med
Essex, Pascual-Leone, Lober, Gut microbiota dysbiosis is associated with altered tryptophan metabolism and dysregulated inflammatory response in COVID-19, NPJ Biofilms Microbiomes
Faizan, Chaudhuri, Sagar, NSP4 and ORF9b of SARS-CoV-2 induce pro-inflammatory mitochondrial DNA release in inner membrane-derived vesicles, Cells
Fajgenbaum, June, Cytokine storm, N. Engl. J. Med
Fraser, Beldar, Seitova, Structure and activity of human TMPRSS2 protease implicated in SARS-CoV-2 activation, Nat. Chem. Biol
Fu, Wang, Zheng, SARS-CoV-2 membrane glycoprotein M antagonizes the MAVS-Mediated innate antiviral response, Cell. Mol. Immunol
Gao, Zhu, Qin, Olieric, Wang et al., Crystal structure of SARS-CoV-2 Orf9b in complex with human TOM70 suggests unusual virus-host interactions, Nat. Commun
Ghosh, Klein, Sex drives dimorphic immune responses to viral infections, J. Immunol
Gordon, Jang, Bouhaddou, A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature
Guarnieri, Angelin, Murdock, SARS-COV-2 viroporins activate the NLRP3-inflammasome by the mitochondrial permeability transition pore, Front. Immunol
Gupta, The lactate and the lactate dehydrogenase in inflammatory diseases and major risk factors in COVID-19 patients, Inflammation
Hartsell, Gillespie, Langley, Does acute and persistent metabolic dysregulation in COVID-19 point to novel biomarkers and future therapeutic strategies?, Eur. Respir. J
He, Huang, Nie, MAVS integrates glucose metabolism and RIG-Ilike receptor signaling, Nat. Commun
Hingorani, Bhadola, Cervantes-Arslanian, COVID-19 and the brain, Trends Cardiovasc. Med
Huynh, Rethi, Lee, Higa, Kao et al., Spike protein impairs mitochondrial function in human cardiomyocytes: mechanisms underlying cardiac injury in COVID-19, Cells
Icard, Lincet, Wu, The key role of warburg effect in SARS-CoV-2 replication and associated inflammatory response, Biochimie
Jiang, Zhang, Meng, SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70, Cell. Mol. Immunol
Jiao, Miranda, Li, Maric, Holmgren, Some aspects of the life of SARS-CoV-2 ORF3a protein in Mammalian cells, Heliyon
Kalashnyk, Lykhmus, Izmailov, Koval, Komisarenko et al., SARS-Cov-2 spike protein fragment 674-685 protects mitochondria from releasing cytochrome c in response to apoptogenic influence, Biochem. Biophys. Res. Commun
Kesheh, Hosseini, Soltani, Zandi, An overview on the seven pathogenic human coronaviruses, Rev. Med. Virol
Kloc, Ghobrial, Kubiak, The role of genetic sex and mitochondria in response to COVID-19 infection, Int. Arch. Allergy Immunol
Lage, Amaral, Hilligan, Persistent oxidative stress and inflammasome activation in CD14 high CD16monocytes from COVID-19 patients, Front. Immunol
Leavis, Van De Veerdonk, Murthy, Stimulating severe COVID-19: the potential role of GM-CSF antagonism, Lancet Respir. Med
Li, Hou, Ma, SARS-CoV-2 ORF10 suppresses the antiviral innate immune response by degrading MAVS through mitophagy, Cell. Mol. Immunol
Lin, Fu, Yin, ORF8 contributes to cytokine storm during SARS-CoV-2 infection by activating IL-17 pathway, iScience
Liu, Chen, Gao, A comparative study of the efficiency of mitochondria-targeted antioxidants MitoTEMPO and SKQ1 under oxidative stress, Free Radic. Biol. Med
Lubkowska, Pluta, Stronska, Lalko, Role of heat shock proteins (HSP70 and HSP90) in viral infection, Int. J. Mol. Sci
Madeddu, Maniga, Zaffanello, Fanos, Marcialis, The SARS-CoV2 and mitochondria: the impact on cell fate, Acta Biomed
Mahmoodpoor, Sanaie, Ostadi, Roles of mitochondrial DNA in dynamics of the immune response to COVID-19, Gene
Mando, Savasi, Anelli, Mitochondrial and oxidative unbalance in placentas from mothers with SARS-CoV-2 infection, Antioxidants
Mao, Zhang, Xiong, Zhu, Wang et al., Mitochondria-targeted antioxidant mitoquinone maintains mitochondrial homeostasis through the Sirt3-Dependent pathway to mitigate oxidative damage caused by renal ischemia/ reperfusion, Oxid. Med. Cell. Longev
Marino, Hausenloy, Andreadou, Horman, Bertrand et al., AMP-activated protein kinase: a remarkable contributor to preserve a healthy heart against ROS injury, Free Radic. Biol. Med
Mehrzadi, Karimi, Fatemi, Reiter, Hosseinzadeh, SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control: beneficial effects of melatonin, Pharmacol. Ther
Miller, Silverstein, Flores, Host mitochondrial transcriptome response to SARS-CoV-2 in multiple cell models and clinical samples, Sci. Rep
Monzel, Enriquez, Picard, Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction, Nat. Metab
Morio, Panthu, Bassot, Rieusset, Role of mitochondria in liver metabolic health and diseases, Cell Calcium
Morris, Gevezova, Sarafian, Maes, Redox regulation of the immune response, Cell. Mol. Immunol
Mosharov, Rosenberg, Monzel, A human brain map of mitochondrial respiratory capacity and diversity, Nature
Motta, Torices, Da Rosa, Human brain microvascular endothelial cells exposure to SARS-CoV-2 leads to inflammatory activation through NF-kappaB non-canonical pathway and mitochondrial remodeling, Viruses
Mubashshir, Ahmad, Negi, Therapeutic benefits of melatonin against COVID-19, Neuroimmunomodulation
Mullen, Garcia, Purkayastha, SARS-CoV-2 infection rewires host cell metabolism and is potentially susceptible to mTORC1 inhibition, Nat. Commun
Pan, Ge, Lei, SARS-CoV-2 N protein enhances the anti-apoptotic activity of MCL-1 to promote viral replication, Signal Transduct, Targeted Ther
Pileggi, Parmar, Elkhatib, The SARS-CoV-2 spike glycoprotein interacts with MAO-B and impairs mitochondrial energetics, Curr. Res. Neurobiol
Prasada Kabekkodu, Chakrabarty, Jayaram, Severe acute respiratory syndrome coronaviruses contributing to mitochondrial dysfunction: implications for post-COVID complications, Mitochondrion
Ramachandran, Maity, Muthukumar, SARS-CoV-2 infection enhances mitochondrial PTP complex activity to perturb cardiac energetics, iScience
Refolo, Vescovo, Piacentini, Fimia, Ciccosanti, Mitochondrial interactome: a focus on antiviral signaling pathways, Front. Cell Dev. Biol
Regitz-Zagrosek, Kararigas, Mechanistic pathways of sex differences in cardiovascular disease, Physiol. Rev
Romao, Teixeira, Schipper, Viral load is associated with mitochondrial dysfunction and altered monocyte phenotype in acute severe SARS-CoV-2 infection, Int. Immunopharmacol
Saleh, Peyssonnaux, Singh, Edeas, Mitochondria and microbiota dysfunction in COVID-19 pathogenesis, Mitochondrion
Sansone, De Iure, Cristina, Nicotine in combination with SARS-CoV-2 affects cells viability, inflammatory response and ultrastructural integrity, Int. J. Mol. Sci
Saxena, Sharma, Kumar, Agrawal, Sharma et al., Modulation of mitochondria by viral proteins, Life Sci
Schleiss, Letermovir and HCT: too much of a good thing?, Blood
Shang, Liu, Zhu, SARS-CoV-2 causes mitochondrial dysfunction and mitophagy impairment, Front. Microbiol
Shenoy, Coronavirus (Covid-19) sepsis: revisiting mitochondrial dysfunction in pathogenesis, aging, inflammation, and mortality, Inflamm. Res
Shin, Lee, Ku, SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics to induce robust virus propagation, Signal Transduct. Targeted Ther
Siekacz, Kumor-Kisielewska, Milkowska-Dymanowska, Oxidative biomarkers associated with the pulmonary manifestation of Post-COVID-19 complications, J. Clin. Med
Singh, Chaubey, Chen, Suravajhala, Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis, Am. J. Physiol. Cell Physiol
Singh, Mukherji, Basak, Hoffmann, Das, Dynamic Ca 2+ sensitivity stimulates the evolved SARS-CoV-2 spike strain-mediated membrane fusion for enhanced entry, Cell Rep
Stewart, Lu, O'keefe, The SARS-CoV-2 protein ORF3c is a mitochondrial modulator of innate immunity, iScience
Stukalov, Girault, Grass, Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV, Nature
Sultan, Ahuja, Motiani, Potential of targeting host cell calcium dynamics to curtail SARS-CoV-2 infection and COVID-19 pathogenesis, Cell Calcium
Tanner, Alfieri, The fatty acid lipid metabolism nexus in COVID-19, Viruses
Tian, Liu, Yu, Cao, Huang, Damage-associated molecular patterns in viral infection: potential therapeutic targets, Crit. Rev. Microbiol
Valdes-Aguayo, Garza-Veloz, Vargas-Rodriguez, Peripheral blood mitochondrial DNA levels were modulated by SARS-CoV-2 infection severity and its lessening was associated with mortality among hospitalized patients with COVID-19, Front. Cell. Infect. Microbiol
Vemuri, Sylvia, Klein, The microgenderome revealed: sex differences in bidirectional interactions between the microbiota, hormones, immunity and disease susceptibility, Semin. Immunopathol
Wang, Han, Wang, SARS-CoV-2 membrane protein induces neurodegeneration via affecting Golgi-mitochondria interaction, Transl. Neurodegener
Wu, Athwal, Kalra, Chinnadurai, COVID-19 and hepatorenal syndrome, World J. Gastroenterol
Wu, Shi, Pan, SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO, Cell Rep
Xia, Niu, Hu, More on SARS-CoV-2 variants and pediatric multisystem inflammatory syndrome, N. Engl. J. Med
Yang, Liu, Yan, SARS-CoV-2 spike protein receptor-binding domain perturbates intracellular calcium homeostasis and impairs pulmonary vascular endothelial cells, Signal Transduct, Targeted Ther
Yang, Wu, Meng, SARS-CoV-2 membrane protein causes the mitochondrial apoptosis and pulmonary edema via targeting BOK, Cell Death Differ
Yu, Yang, Han, SARS-CoV-2 nucleocapsid protein enhances the level of mitochondrial reactive oxygen species, J. Med. Virol
Yue, Hu, Li, Coronaviral ORF6 protein mediates inter-organelle contacts and modulates host cell lipid flux for virus production, EMBO J
Zekri-Nechar, Zamorano-Leon, Reche, Spike protein subunits of SARS-CoV-2 alter mitochondrial metabolism in human pulmonary microvascular endothelial cells: involvement of factor Xa, Dis. Markers
Zhang, Chen, Li, The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-iota, Proc. Natl. Acad. Sci. U. S. A
Zhou, Huang, Zhou, Structural insight reveals SARS-CoV-2 ORF7a as an immunomodulating factor for human CD14(+) monocytes, iScience
DOI record: { "DOI": "10.1016/j.redox.2025.103766", "ISSN": [ "2213-2317" ], "URL": "http://dx.doi.org/10.1016/j.redox.2025.103766", "alternative-id": [ "S2213231725002794" ], "article-number": "103766", "assertion": [ { "label": "This article is maintained by", "name": "publisher", "value": "Elsevier" }, { "label": "Article Title", "name": "articletitle", "value": "Viral mitochondriopathy in COVID-19" }, { "label": "Journal Title", "name": "journaltitle", "value": "Redox Biology" }, { "label": "CrossRef DOI link to publisher maintained version", "name": "articlelink", "value": "https://doi.org/10.1016/j.redox.2025.103766" }, { "label": "Content Type", "name": "content_type", "value": "article" }, { "label": "Copyright", "name": "copyright", "value": "© 2025 The Authors. Published by Elsevier B.V." } ], "author": [ { "ORCID": "https://orcid.org/0000-0002-1542-1495", "affiliation": [], "authenticated-orcid": false, "family": "Chen", "given": "Tsung-Hsien", "sequence": "first" }, { "affiliation": [], "family": "Jeng", "given": "Tien-Hsin", "sequence": "additional" }, { "affiliation": [], "family": "Lee", "given": "Ming-Yang", "sequence": "additional" }, { "affiliation": [], "family": "Wang", "given": "Hsiang-Chen", "sequence": "additional" }, { "affiliation": [], "family": "Tsai", "given": "Kun-Feng", "sequence": "additional" }, { "affiliation": [], "family": "Chou", "given": "Chu-Kuang", "sequence": "additional" } ], "container-title": "Redox Biology", "container-title-short": "Redox Biology", "content-domain": { "crossmark-restriction": true, "domain": [ "elsevier.com", "sciencedirect.com" ] }, "created": { "date-parts": [ [ 2025, 7, 15 ] ], "date-time": "2025-07-15T20:35:14Z", "timestamp": 1752611714000 }, "deposited": { "date-parts": [ [ 2025, 7, 24 ] ], "date-time": "2025-07-24T16:11:33Z", "timestamp": 1753373493000 }, "indexed": { "date-parts": [ [ 2025, 7, 25 ] ], "date-time": "2025-07-25T00:09:09Z", "timestamp": 1753402149554, "version": "3.41.2" }, "is-referenced-by-count": 0, "issued": { "date-parts": [ [ 2025, 9 ] ] }, "language": "en", "license": [ { "URL": "https://www.elsevier.com/tdm/userlicense/1.0/", "content-version": "tdm", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 9, 1 ] ], "date-time": "2025-09-01T00:00:00Z", "timestamp": 1756684800000 } }, { "URL": "https://www.elsevier.com/legal/tdmrep-license", "content-version": "tdm", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 9, 1 ] ], "date-time": "2025-09-01T00:00:00Z", "timestamp": 1756684800000 } }, { "URL": "http://creativecommons.org/licenses/by-nc-nd/4.0/", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 7, 11 ] ], "date-time": "2025-07-11T00:00:00Z", "timestamp": 1752192000000 } } ], "link": [ { "URL": "https://api.elsevier.com/content/article/PII:S2213231725002794?httpAccept=text/xml", "content-type": "text/xml", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://api.elsevier.com/content/article/PII:S2213231725002794?httpAccept=text/plain", "content-type": "text/plain", "content-version": "vor", "intended-application": "text-mining" } ], "member": "78", "original-title": [], "page": "103766", "prefix": "10.1016", "published": { "date-parts": [ [ 2025, 9 ] ] }, "published-print": { "date-parts": [ [ 2025, 9 ] ] }, "publisher": "Elsevier BV", "reference": [ { "DOI": "10.1038/s41564-020-0695-z", "article-title": "The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2", "doi-asserted-by": "crossref", "first-page": "536", "issue": "4", "journal-title": "Nat. Microbiol.", "key": "10.1016/j.redox.2025.103766_bib1", "volume": "5", "year": "2020" }, { "DOI": "10.1056/NEJMcp2009575", "article-title": "Severe Covid-19", "author": "Berlin", "doi-asserted-by": "crossref", "first-page": "2451", "issue": "25", "journal-title": "N. Engl. J. Med.", "key": "10.1016/j.redox.2025.103766_bib2", "volume": "383", "year": "2020" }, { "DOI": "10.1056/NEJMc2306485", "article-title": "More on SARS-CoV-2 variants and pediatric multisystem inflammatory syndrome", "author": "Xia", "doi-asserted-by": "crossref", "first-page": "287", "issue": "3", "journal-title": "N. Engl. J. Med.", "key": "10.1016/j.redox.2025.103766_bib3", "volume": "389", "year": "2023" }, { "DOI": "10.1038/s41467-021-22785-x", "article-title": "The architecture of the SARS-CoV-2 RNA genome inside virion", "author": "Cao", "doi-asserted-by": "crossref", "first-page": "3917", "issue": "1", "journal-title": "Nat. Commun.", "key": "10.1016/j.redox.2025.103766_bib4", "volume": "12", "year": "2021" }, { "DOI": "10.1002/rmv.2282", "article-title": "An overview on the seven pathogenic human coronaviruses", "author": "Kesheh", "doi-asserted-by": "crossref", "issue": "2", "journal-title": "Rev. Med. Virol.", "key": "10.1016/j.redox.2025.103766_bib5", "volume": "32", "year": "2022" }, { "DOI": "10.1038/s41586-020-2286-9", "article-title": "A SARS-CoV-2 protein interaction map reveals targets for drug repurposing", "author": "Gordon", "doi-asserted-by": "crossref", "first-page": "459", "issue": "7816", "journal-title": "Nature", "key": "10.1016/j.redox.2025.103766_bib6", "volume": "583", "year": "2020" }, { "DOI": "10.1038/s41423-020-00571-x", "article-title": "SARS-CoV-2 membrane glycoprotein M antagonizes the MAVS-Mediated innate antiviral response", "author": "Fu", "doi-asserted-by": "crossref", "first-page": "613", "issue": "3", "journal-title": "Cell. Mol. Immunol.", "key": "10.1016/j.redox.2025.103766_bib7", "volume": "18", "year": "2021" }, { "DOI": "10.1152/ajpcell.00224.2020", "article-title": "Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis", "author": "Singh", "doi-asserted-by": "crossref", "first-page": "C258", "issue": "2", "journal-title": "Am. J. Physiol. Cell Physiol.", "key": "10.1016/j.redox.2025.103766_bib8", "volume": "319", "year": "2020" }, { "DOI": "10.1016/j.isci.2021.103722", "article-title": "SARS-CoV-2 infection enhances mitochondrial PTP complex activity to perturb cardiac energetics", "author": "Ramachandran", "doi-asserted-by": "crossref", "issue": "1", "journal-title": "iScience", "key": "10.1016/j.redox.2025.103766_bib9", "volume": "25", "year": "2022" }, { "DOI": "10.1016/j.redox.2022.102508", "article-title": "SARS-CoV-2 mitochondriopathy in COVID-19 pneumonia exacerbates hypoxemia", "author": "Archer", "doi-asserted-by": "crossref", "journal-title": "Redox Biol.", "key": "10.1016/j.redox.2025.103766_bib10", "volume": "58", "year": "2022" }, { "DOI": "10.1038/s41589-022-01059-7", "article-title": "Structure and activity of human TMPRSS2 protease implicated in SARS-CoV-2 activation", "author": "Fraser", "doi-asserted-by": "crossref", "first-page": "963", "issue": "9", "journal-title": "Nat. Chem. Biol.", "key": "10.1016/j.redox.2025.103766_bib11", "volume": "18", "year": "2022" }, { "DOI": "10.3390/ijms24098034", "article-title": "Possible pathogenesis and prevention of long COVID: SARS-CoV-2-induced mitochondrial disorder", "author": "Chen", "doi-asserted-by": "crossref", "first-page": "8034", "issue": "9", "journal-title": "Int. J. Mol. Sci.", "key": "10.1016/j.redox.2025.103766_bib12", "volume": "24", "year": "2023" }, { "DOI": "10.1038/s41392-024-01836-x", "article-title": "SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics to induce robust virus propagation", "author": "Shin", "doi-asserted-by": "crossref", "first-page": "125", "issue": "1", "journal-title": "Signal Transduct. Targeted Ther.", "key": "10.1016/j.redox.2025.103766_bib13", "volume": "9", "year": "2024" }, { "DOI": "10.1186/s12014-023-09394-0", "article-title": "Mitochondria and cytochrome components released into the plasma of severe COVID-19 and ICU acute respiratory distress syndrome patients", "author": "Chen", "doi-asserted-by": "crossref", "first-page": "17", "issue": "1", "journal-title": "Clin. Proteom.", "key": "10.1016/j.redox.2025.103766_bib14", "volume": "20", "year": "2023" }, { "DOI": "10.1016/j.ceca.2022.102637", "article-title": "Potential of targeting host cell calcium dynamics to curtail SARS-CoV-2 infection and COVID-19 pathogenesis", "author": "Sultan", "doi-asserted-by": "crossref", "journal-title": "Cell Calcium", "key": "10.1016/j.redox.2025.103766_bib15", "volume": "106", "year": "2022" }, { "DOI": "10.1038/s41392-023-01556-8", "article-title": "SARS-CoV-2 spike protein receptor-binding domain perturbates intracellular calcium homeostasis and impairs pulmonary vascular endothelial cells", "author": "Yang", "doi-asserted-by": "crossref", "first-page": "276", "issue": "1", "journal-title": "Signal Transduct. Targeted Ther.", "key": "10.1016/j.redox.2025.103766_bib16", "volume": "8", "year": "2023" }, { "DOI": "10.1016/j.celrep.2022.110694", "article-title": "Dynamic Ca2+ sensitivity stimulates the evolved SARS-CoV-2 spike strain-mediated membrane fusion for enhanced entry", "author": "Singh", "doi-asserted-by": "crossref", "issue": "3", "journal-title": "Cell Rep.", "key": "10.1016/j.redox.2025.103766_bib17", "volume": "39", "year": "2022" }, { "DOI": "10.1182/blood.2021011459", "article-title": "Letermovir and HCT: too much of a good thing?", "author": "Schleiss", "doi-asserted-by": "crossref", "first-page": "1", "issue": "1", "journal-title": "Blood", "key": "10.1016/j.redox.2025.103766_bib18", "volume": "138", "year": "2021" }, { "DOI": "10.3389/fimmu.2023.1064293", "article-title": "SARS-COV-2 viroporins activate the NLRP3-inflammasome by the mitochondrial permeability transition pore", "author": "Guarnieri", "doi-asserted-by": "crossref", "journal-title": "Front. Immunol.", "key": "10.1016/j.redox.2025.103766_bib19", "volume": "14", "year": "2023" }, { "DOI": "10.1038/s41420-024-01966-9", "article-title": "SARS-CoV-2 and its ORF3a, E and M viroporins activate inflammasome in human macrophages and induce of IL-1alpha in pulmonary epithelial and endothelial cells", "author": "Ambrozek-Latecka", "doi-asserted-by": "crossref", "first-page": "191", "issue": "1", "journal-title": "Cell Death Discov.", "key": "10.1016/j.redox.2025.103766_bib20", "volume": "10", "year": "2024" }, { "DOI": "10.1038/s42255-023-00783-1", "article-title": "Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction", "author": "Monzel", "doi-asserted-by": "crossref", "first-page": "546", "issue": "4", "journal-title": "Nat. Metab.", "key": "10.1016/j.redox.2025.103766_bib21", "volume": "5", "year": "2023" }, { "DOI": "10.1016/j.ceca.2020.102336", "article-title": "Role of mitochondria in liver metabolic health and diseases", "author": "Morio", "doi-asserted-by": "crossref", "journal-title": "Cell Calcium", "key": "10.1016/j.redox.2025.103766_bib22", "volume": "94", "year": "2021" }, { "DOI": "10.1038/s41586-025-08740-6", "article-title": "A human brain map of mitochondrial respiratory capacity and diversity", "author": "Mosharov", "doi-asserted-by": "crossref", "first-page": "749", "issue": "8063", "journal-title": "Nature", "key": "10.1016/j.redox.2025.103766_bib23", "volume": "641", "year": "2025" }, { "DOI": "10.1016/j.tcm.2022.04.004", "article-title": "COVID-19 and the brain", "author": "Hingorani", "doi-asserted-by": "crossref", "first-page": "323", "issue": "6", "journal-title": "Trends Cardiovasc. Med.", "key": "10.1016/j.redox.2025.103766_bib24", "volume": "32", "year": "2022" }, { "DOI": "10.1186/s40035-024-00458-1", "article-title": "SARS-CoV-2 membrane protein induces neurodegeneration via affecting Golgi-mitochondria interaction", "author": "Wang", "doi-asserted-by": "crossref", "first-page": "68", "issue": "1", "journal-title": "Transl. Neurodegener.", "key": "10.1016/j.redox.2025.103766_bib25", "volume": "13", "year": "2024" }, { "DOI": "10.1016/j.mito.2023.04.001", "article-title": "COVID-19 induced liver injury from a new perspective: Mitochondria", "author": "Akbari", "doi-asserted-by": "crossref", "first-page": "103", "journal-title": "Mitochondrion", "key": "10.1016/j.redox.2025.103766_bib26", "volume": "70", "year": "2023" }, { "DOI": "10.3748/wjg.v28.i39.5666", "article-title": "COVID-19 and hepatorenal syndrome", "author": "Wu", "doi-asserted-by": "crossref", "first-page": "5666", "issue": "39", "journal-title": "World J. Gastroenterol.", "key": "10.1016/j.redox.2025.103766_bib27", "volume": "28", "year": "2022" }, { "DOI": "10.1016/j.mito.2023.01.005", "article-title": "Severe acute respiratory syndrome coronaviruses contributing to mitochondrial dysfunction: implications for post-COVID complications", "author": "Prasada Kabekkodu", "doi-asserted-by": "crossref", "first-page": "43", "journal-title": "Mitochondrion", "key": "10.1016/j.redox.2025.103766_bib28", "volume": "69", "year": "2023" }, { "DOI": "10.1038/s41598-020-79552-z", "article-title": "Host mitochondrial transcriptome response to SARS-CoV-2 in multiple cell models and clinical samples", "author": "Miller", "doi-asserted-by": "crossref", "first-page": "3", "issue": "1", "journal-title": "Sci. Rep.", "key": "10.1016/j.redox.2025.103766_bib29", "volume": "11", "year": "2021" }, { "DOI": "10.3390/antiox10101517", "article-title": "Mitochondrial and oxidative unbalance in placentas from mothers with SARS-CoV-2 infection", "author": "Mando", "doi-asserted-by": "crossref", "first-page": "1517", "issue": "10", "journal-title": "Antioxidants", "key": "10.1016/j.redox.2025.103766_bib30", "volume": "10", "year": "2021" }, { "DOI": "10.1002/jmv.29270", "article-title": "SARS-CoV-2 nucleocapsid protein enhances the level of mitochondrial reactive oxygen species", "author": "Yu", "doi-asserted-by": "crossref", "issue": "12", "journal-title": "J. Med. Virol.", "key": "10.1016/j.redox.2025.103766_bib31", "volume": "95", "year": "2023" }, { "DOI": "10.1038/s41392-023-01510-8", "article-title": "Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection", "author": "Chen", "doi-asserted-by": "crossref", "first-page": "237", "issue": "1", "journal-title": "Signal Transduct. Targeted Ther.", "key": "10.1016/j.redox.2025.103766_bib32", "volume": "8", "year": "2023" }, { "DOI": "10.1155/2022/1118195", "article-title": "Spike protein subunits of SARS-CoV-2 alter mitochondrial metabolism in human pulmonary microvascular endothelial cells: involvement of factor Xa", "author": "Zekri-Nechar", "doi-asserted-by": "crossref", "journal-title": "Dis. Markers", "key": "10.1016/j.redox.2025.103766_bib33", "volume": "2022", "year": "2022" }, { "DOI": "10.1016/j.biochi.2020.11.010", "article-title": "The key role of warburg effect in SARS-CoV-2 replication and associated inflammatory response", "author": "Icard", "doi-asserted-by": "crossref", "first-page": "169", "journal-title": "Biochimie", "key": "10.1016/j.redox.2025.103766_bib34", "volume": "180", "year": "2021" }, { "DOI": "10.1152/ajpcell.00426.2020", "article-title": "Mitochondrial metabolic manipulation by SARS-CoV-2 in peripheral blood mononuclear cells of patients with COVID-19", "author": "Ajaz", "doi-asserted-by": "crossref", "first-page": "C57", "issue": "1", "journal-title": "Am. J. Physiol. Cell Physiol.", "key": "10.1016/j.redox.2025.103766_bib35", "volume": "320", "year": "2021" }, { "DOI": "10.1007/s10753-022-01680-7", "article-title": "The lactate and the lactate dehydrogenase in inflammatory diseases and major risk factors in COVID-19 patients", "author": "Gupta", "doi-asserted-by": "crossref", "first-page": "2091", "issue": "6", "journal-title": "Inflammation", "key": "10.1016/j.redox.2025.103766_bib36", "volume": "45", "year": "2022" }, { "DOI": "10.3390/cells12060877", "article-title": "Spike protein impairs mitochondrial function in human cardiomyocytes: mechanisms underlying cardiac injury in COVID-19", "author": "Huynh", "doi-asserted-by": "crossref", "first-page": "877", "issue": "6", "journal-title": "Cells", "key": "10.1016/j.redox.2025.103766_bib37", "volume": "12", "year": "2023" }, { "DOI": "10.1038/s41522-024-00538-0", "article-title": "Gut microbiota dysbiosis is associated with altered tryptophan metabolism and dysregulated inflammatory response in COVID-19", "author": "Essex", "doi-asserted-by": "crossref", "first-page": "66", "issue": "1", "journal-title": "NPJ Biofilms Microbiomes", "key": "10.1016/j.redox.2025.103766_bib38", "volume": "10", "year": "2024" }, { "DOI": "10.15252/embj.2022112542", "article-title": "Coronaviral ORF6 protein mediates inter-organelle contacts and modulates host cell lipid flux for virus production", "author": "Yue", "doi-asserted-by": "crossref", "issue": "13", "journal-title": "EMBO J.", "key": "10.1016/j.redox.2025.103766_bib39", "volume": "42", "year": "2023" }, { "DOI": "10.3390/v13010090", "article-title": "The fatty acid lipid metabolism nexus in COVID-19", "author": "Tanner", "doi-asserted-by": "crossref", "first-page": "90", "issue": "1", "journal-title": "Viruses", "key": "10.1016/j.redox.2025.103766_bib40", "volume": "13", "year": "2021" }, { "DOI": "10.3390/v14050983", "article-title": "SARS-CoV-2 causes lung inflammation through metabolic reprogramming and RAGE", "author": "Allen", "doi-asserted-by": "crossref", "first-page": "983", "issue": "5", "journal-title": "Viruses", "key": "10.1016/j.redox.2025.103766_bib41", "volume": "14", "year": "2022" }, { "article-title": "Persistent oxidative stress and inflammasome activation in CD14highCD16- monocytes from COVID-19 patients", "author": "Lage", "journal-title": "Front. Immunol.", "key": "10.1016/j.redox.2025.103766_bib42", "volume": "12", "year": "2021" }, { "article-title": "SARS-CoV-2 causes mitochondrial dysfunction and mitophagy impairment", "author": "Shang", "journal-title": "Front. Microbiol.", "key": "10.1016/j.redox.2025.103766_bib43", "volume": "12", "year": "2021" }, { "DOI": "10.1038/s41591-024-03173-6", "article-title": "Long COVID science, research and policy", "author": "Al-Aly", "doi-asserted-by": "crossref", "first-page": "2148", "issue": "8", "journal-title": "Nat. Med.", "key": "10.1016/j.redox.2025.103766_bib44", "volume": "30", "year": "2024" }, { "DOI": "10.3390/v15030745", "article-title": "Human brain microvascular endothelial cells exposure to SARS-CoV-2 leads to inflammatory activation through NF-kappaB non-canonical pathway and mitochondrial remodeling", "author": "Motta", "doi-asserted-by": "crossref", "first-page": "745", "issue": "3", "journal-title": "Viruses", "key": "10.1016/j.redox.2025.103766_bib45", "volume": "15", "year": "2023" }, { "DOI": "10.3390/jcm12134253", "article-title": "Oxidative biomarkers associated with the pulmonary manifestation of Post-COVID-19 complications", "author": "Siekacz", "doi-asserted-by": "crossref", "first-page": "4253", "issue": "13", "journal-title": "J. Clin. Med.", "key": "10.1016/j.redox.2025.103766_bib46", "volume": "12", "year": "2023" }, { "DOI": "10.1016/j.heliyon.2023.e18754", "article-title": "Some aspects of the life of SARS-CoV-2 ORF3a protein in Mammalian cells", "author": "Jiao", "doi-asserted-by": "crossref", "issue": "8", "journal-title": "Heliyon", "key": "10.1016/j.redox.2025.103766_bib47", "volume": "9", "year": "2023" }, { "article-title": "The SARS-CoV2 and mitochondria: the impact on cell fate", "author": "Madeddu", "issue": "2", "journal-title": "Acta Biomed.", "key": "10.1016/j.redox.2025.103766_bib48", "volume": "93", "year": "2022" }, { "DOI": "10.1038/s41467-021-22166-4", "article-title": "SARS-CoV-2 infection rewires host cell metabolism and is potentially susceptible to mTORC1 inhibition", "author": "Mullen", "doi-asserted-by": "crossref", "first-page": "1876", "issue": "1", "journal-title": "Nat. Commun.", "key": "10.1016/j.redox.2025.103766_bib49", "volume": "12", "year": "2021" }, { "DOI": "10.1038/s41418-022-00928-x", "article-title": "SARS-CoV-2 membrane protein causes the mitochondrial apoptosis and pulmonary edema via targeting BOK", "author": "Yang", "doi-asserted-by": "crossref", "first-page": "1395", "issue": "7", "journal-title": "Cell Death Differ.", "key": "10.1016/j.redox.2025.103766_bib50", "volume": "29", "year": "2022" }, { "DOI": "10.1038/s41392-023-01459-8", "article-title": "SARS-CoV-2 N protein enhances the anti-apoptotic activity of MCL-1 to promote viral replication", "author": "Pan", "doi-asserted-by": "crossref", "first-page": "194", "issue": "1", "journal-title": "Signal Transduct. Targeted Ther.", "key": "10.1016/j.redox.2025.103766_bib51", "volume": "8", "year": "2023" }, { "DOI": "10.1016/j.bbrc.2021.05.018", "article-title": "SARS-Cov-2 spike protein fragment 674-685 protects mitochondria from releasing cytochrome c in response to apoptogenic influence", "author": "Kalashnyk", "doi-asserted-by": "crossref", "first-page": "14", "journal-title": "Biochem. Biophys. Res. Commun.", "key": "10.1016/j.redox.2025.103766_bib52", "volume": "561", "year": "2021" }, { "DOI": "10.1038/s41423-021-00807-4", "article-title": "SARS-CoV-2 ORF10 suppresses the antiviral innate immune response by degrading MAVS through mitophagy", "author": "Li", "doi-asserted-by": "crossref", "first-page": "67", "issue": "1", "journal-title": "Cell. Mol. Immunol.", "key": "10.1016/j.redox.2025.103766_bib53", "volume": "19", "year": "2022" }, { "DOI": "10.1016/j.crneur.2023.100112", "article-title": "The SARS-CoV-2 spike glycoprotein interacts with MAO-B and impairs mitochondrial energetics", "author": "Pileggi", "doi-asserted-by": "crossref", "journal-title": "Curr. Res. Neurobiol.", "key": "10.1016/j.redox.2025.103766_bib54", "volume": "5", "year": "2023" }, { "article-title": "Damage-associated molecular patterns in viral infection: potential therapeutic targets", "author": "Tian", "first-page": "1", "journal-title": "Crit. Rev. Microbiol.", "key": "10.1016/j.redox.2025.103766_bib55", "year": "2024" }, { "DOI": "10.3390/ijms22179366", "article-title": "Role of heat shock proteins (HSP70 and HSP90) in viral infection", "author": "Lubkowska", "doi-asserted-by": "crossref", "first-page": "9366", "issue": "17", "journal-title": "Int. J. Mol. Sci.", "key": "10.1016/j.redox.2025.103766_bib56", "volume": "22", "year": "2021" }, { "DOI": "10.3390/cells11192969", "article-title": "NSP4 and ORF9b of SARS-CoV-2 induce pro-inflammatory mitochondrial DNA release in inner membrane-derived vesicles", "author": "Faizan", "doi-asserted-by": "crossref", "first-page": "2969", "issue": "19", "journal-title": "Cells", "key": "10.1016/j.redox.2025.103766_bib57", "volume": "11", "year": "2022" }, { "DOI": "10.1016/j.gene.2022.146681", "article-title": "Roles of mitochondrial DNA in dynamics of the immune response to COVID-19", "author": "Mahmoodpoor", "doi-asserted-by": "crossref", "journal-title": "Gene", "key": "10.1016/j.redox.2025.103766_bib58", "volume": "836", "year": "2022" }, { "DOI": "10.3389/fcimb.2021.754708", "article-title": "Peripheral blood mitochondrial DNA levels were modulated by SARS-CoV-2 infection severity and its lessening was associated with mortality among hospitalized patients with COVID-19", "author": "Valdes-Aguayo", "doi-asserted-by": "crossref", "journal-title": "Front. Cell. Infect. Microbiol.", "key": "10.1016/j.redox.2025.103766_bib59", "volume": "11", "year": "2021" }, { "DOI": "10.1038/s41392-023-01420-9", "article-title": "Phase-separated nucleocapsid protein of SARS-CoV-2 suppresses cGAS-DNA recognition by disrupting cGAS-G3BP1 complex", "author": "Cai", "doi-asserted-by": "crossref", "first-page": "170", "issue": "1", "journal-title": "Signal Transduct. Targeted Ther.", "key": "10.1016/j.redox.2025.103766_bib60", "volume": "8", "year": "2023" }, { "DOI": "10.1007/s11010-022-04593-z", "article-title": "Pathophysiological involvement of host mitochondria in SARS-CoV-2 infection that causes COVID-19: a comprehensive evidential insight", "author": "Bhowal", "doi-asserted-by": "crossref", "first-page": "1325", "issue": "6", "journal-title": "Mol. Cell. Biochem.", "key": "10.1016/j.redox.2025.103766_bib61", "volume": "478", "year": "2023" }, { "DOI": "10.1016/j.lfs.2022.121271", "article-title": "Modulation of mitochondria by viral proteins", "author": "Saxena", "doi-asserted-by": "crossref", "journal-title": "Life Sci.", "key": "10.1016/j.redox.2025.103766_bib62", "volume": "313", "year": "2023" }, { "DOI": "10.1038/s41467-023-41028-9", "article-title": "MAVS integrates glucose metabolism and RIG-I-like receptor signaling", "author": "He", "doi-asserted-by": "crossref", "first-page": "5343", "issue": "1", "journal-title": "Nat. Commun.", "key": "10.1016/j.redox.2025.103766_bib63", "volume": "14", "year": "2023" }, { "DOI": "10.3389/fcell.2020.00008", "article-title": "Mitochondrial interactome: a focus on antiviral signaling pathways", "author": "Refolo", "doi-asserted-by": "crossref", "first-page": "8", "journal-title": "Front. Cell Dev. Biol.", "key": "10.1016/j.redox.2025.103766_bib64", "volume": "8", "year": "2020" }, { "DOI": "10.1016/j.pharmthera.2021.107825", "article-title": "SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control: beneficial effects of melatonin", "author": "Mehrzadi", "doi-asserted-by": "crossref", "journal-title": "Pharmacol. Ther.", "key": "10.1016/j.redox.2025.103766_bib65", "volume": "224", "year": "2021" }, { "DOI": "10.1016/j.isci.2023.108080", "article-title": "The SARS-CoV-2 protein ORF3c is a mitochondrial modulator of innate immunity", "author": "Stewart", "doi-asserted-by": "crossref", "issue": "11", "journal-title": "iScience", "key": "10.1016/j.redox.2025.103766_bib66", "volume": "26", "year": "2023" }, { "DOI": "10.1183/13993003.02417-2021", "article-title": "Does acute and persistent metabolic dysregulation in COVID-19 point to novel biomarkers and future therapeutic strategies?", "author": "Hartsell", "doi-asserted-by": "crossref", "issue": "2", "journal-title": "Eur. Respir. J.", "key": "10.1016/j.redox.2025.103766_bib67", "volume": "59", "year": "2022" }, { "DOI": "10.1016/j.cell.2020.04.026", "article-title": "Imbalanced host response to SARS-CoV-2 drives development of COVID-19", "author": "Blanco-Melo", "doi-asserted-by": "crossref", "first-page": "1036", "issue": "5", "journal-title": "Cell", "key": "10.1016/j.redox.2025.103766_bib68", "volume": "181", "year": "2020" }, { "DOI": "10.1038/s41586-021-03493-4", "article-title": "Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV", "author": "Stukalov", "doi-asserted-by": "crossref", "first-page": "246", "issue": "7862", "journal-title": "Nature", "key": "10.1016/j.redox.2025.103766_bib69", "volume": "594", "year": "2021" }, { "DOI": "10.1038/s41423-020-00603-6", "article-title": "Ubiquitination of SARS-CoV-2 ORF7a promotes antagonism of interferon response", "author": "Cao", "doi-asserted-by": "crossref", "first-page": "746", "issue": "3", "journal-title": "Cell. Mol. Immunol.", "key": "10.1016/j.redox.2025.103766_bib70", "volume": "18", "year": "2021" }, { "DOI": "10.1016/j.isci.2021.102187", "article-title": "Structural insight reveals SARS-CoV-2 ORF7a as an immunomodulating factor for human CD14(+) monocytes", "author": "Zhou", "doi-asserted-by": "crossref", "issue": "3", "journal-title": "iScience", "key": "10.1016/j.redox.2025.103766_bib71", "volume": "24", "year": "2021" }, { "DOI": "10.1073/pnas.2024202118", "article-title": "The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-iota", "author": "Zhang", "doi-asserted-by": "crossref", "issue": "23", "journal-title": "Proc. Natl. Acad. Sci. U. S. A.", "key": "10.1016/j.redox.2025.103766_bib72", "volume": "118", "year": "2021" }, { "DOI": "10.1016/j.isci.2021.102293", "article-title": "ORF8 contributes to cytokine storm during SARS-CoV-2 infection by activating IL-17 pathway", "author": "Lin", "doi-asserted-by": "crossref", "issue": "4", "journal-title": "iScience", "key": "10.1016/j.redox.2025.103766_bib73", "volume": "24", "year": "2021" }, { "DOI": "10.1016/j.celrep.2021.108761", "article-title": "SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO", "author": "Wu", "doi-asserted-by": "crossref", "issue": "7", "journal-title": "Cell Rep.", "key": "10.1016/j.redox.2025.103766_bib74", "volume": "34", "year": "2021" }, { "DOI": "10.1038/s41423-020-0514-8", "article-title": "SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70", "author": "Jiang", "doi-asserted-by": "crossref", "first-page": "998", "issue": "9", "journal-title": "Cell. Mol. Immunol.", "key": "10.1016/j.redox.2025.103766_bib75", "volume": "17", "year": "2020" }, { "DOI": "10.3390/ijms22179233", "article-title": "Phosphorylation of SARS-CoV-2 Orf9b regulates its targeting to two binding sites in TOM70 and recruitment of Hsp90", "author": "Brandherm", "doi-asserted-by": "crossref", "first-page": "9233", "issue": "17", "journal-title": "Int. J. Mol. Sci.", "key": "10.1016/j.redox.2025.103766_bib76", "volume": "22", "year": "2021" }, { "DOI": "10.1038/s41467-021-23118-8", "article-title": "Crystal structure of SARS-CoV-2 Orf9b in complex with human TOM70 suggests unusual virus-host interactions", "author": "Gao", "doi-asserted-by": "crossref", "first-page": "2843", "issue": "1", "journal-title": "Nat. Commun.", "key": "10.1016/j.redox.2025.103766_bib77", "volume": "12", "year": "2021" }, { "DOI": "10.1080/10715762.2021.2005247", "article-title": "SARS-CoV-2 induces mitochondrial dysfunction and cell death by oxidative stress/inflammation in leukocytes of COVID-19 patients", "author": "De la Cruz-Enriquez", "doi-asserted-by": "crossref", "first-page": "982", "issue": "9–10", "journal-title": "Free Radic. Res.", "key": "10.1016/j.redox.2025.103766_bib78", "volume": "55", "year": "2021" }, { "DOI": "10.1038/s41423-022-00902-0", "article-title": "Redox regulation of the immune response", "author": "Morris", "doi-asserted-by": "crossref", "first-page": "1079", "issue": "10", "journal-title": "Cell. Mol. Immunol.", "key": "10.1016/j.redox.2025.103766_bib79", "volume": "19", "year": "2022" }, { "DOI": "10.1056/NEJMra2026131", "article-title": "Cytokine storm", "author": "Fajgenbaum", "doi-asserted-by": "crossref", "first-page": "2255", "issue": "23", "journal-title": "N. Engl. J. Med.", "key": "10.1016/j.redox.2025.103766_bib80", "volume": "383", "year": "2020" }, { "DOI": "10.1038/s41591-020-1051-9", "article-title": "An inflammatory cytokine signature predicts COVID-19 severity and survival", "author": "Del Valle", "doi-asserted-by": "crossref", "first-page": "1636", "issue": "10", "journal-title": "Nat. Med.", "key": "10.1016/j.redox.2025.103766_bib81", "volume": "26", "year": "2020" }, { "DOI": "10.1016/j.intimp.2022.108697", "article-title": "Viral load is associated with mitochondrial dysfunction and altered monocyte phenotype in acute severe SARS-CoV-2 infection", "author": "Romao", "doi-asserted-by": "crossref", "journal-title": "Int. Immunopharmacol.", "key": "10.1016/j.redox.2025.103766_bib82", "volume": "108", "year": "2022" }, { "DOI": "10.1007/s10753-022-01674-5", "article-title": "Disengaging the COVID-19 clutch as a discerning eye over the inflammatory circuit during SARS-CoV-2 infection", "author": "Anwar", "doi-asserted-by": "crossref", "first-page": "1875", "issue": "5", "journal-title": "Inflammation", "key": "10.1016/j.redox.2025.103766_bib83", "volume": "45", "year": "2022" }, { "DOI": "10.1016/j.mito.2020.06.008", "article-title": "Mitochondria and microbiota dysfunction in COVID-19 pathogenesis", "author": "Saleh", "doi-asserted-by": "crossref", "first-page": "1", "journal-title": "Mitochondrion", "key": "10.1016/j.redox.2025.103766_bib84", "volume": "54", "year": "2020" }, { "DOI": "10.1002/eji.202149481", "article-title": "Metabolic reprograming shapes neutrophil functions in severe COVID-19", "author": "Borella", "doi-asserted-by": "crossref", "first-page": "484", "issue": "3", "journal-title": "Eur. J. Immunol.", "key": "10.1016/j.redox.2025.103766_bib85", "volume": "52", "year": "2022" }, { "DOI": "10.1016/S2213-2600(21)00539-7", "article-title": "Stimulating severe COVID-19: the potential role of GM-CSF antagonism", "author": "Leavis", "doi-asserted-by": "crossref", "first-page": "223", "issue": "3", "journal-title": "Lancet Respir. Med.", "key": "10.1016/j.redox.2025.103766_bib86", "volume": "10", "year": "2022" }, { "DOI": "10.3390/ijms23169488", "article-title": "Nicotine in combination with SARS-CoV-2 affects cells viability, inflammatory response and ultrastructural integrity", "author": "Sansone", "doi-asserted-by": "crossref", "first-page": "9488", "issue": "16", "journal-title": "Int. J. Mol. Sci.", "key": "10.1016/j.redox.2025.103766_bib87", "volume": "23", "year": "2022" }, { "DOI": "10.1016/j.vph.2021.106946", "article-title": "Mitochondrial DNA and TLR9 activation contribute to SARS-CoV-2-induced endothelial cell damage", "author": "Costa", "doi-asserted-by": "crossref", "journal-title": "Vasc. Pharmacol.", "key": "10.1016/j.redox.2025.103766_bib88", "volume": "142", "year": "2022" }, { "article-title": "Coronavirus COV-19/SARS-CoV-2 affects women less than men: clinical response to viral infection", "author": "Conti", "first-page": "339", "issue": "2", "journal-title": "J. Biol. Regul. Homeost. Agents", "key": "10.1016/j.redox.2025.103766_bib89", "volume": "34", "year": "2020" }, { "DOI": "10.4049/jimmunol.1601166", "article-title": "Sex drives dimorphic immune responses to viral infections", "author": "Ghosh", "doi-asserted-by": "crossref", "first-page": "1782", "issue": "5", "journal-title": "J. Immunol.", "key": "10.1016/j.redox.2025.103766_bib90", "volume": "198", "year": "2017" }, { "DOI": "10.1007/s00281-018-0716-7", "article-title": "The microgenderome revealed: sex differences in bidirectional interactions between the microbiota, hormones, immunity and disease susceptibility", "author": "Vemuri", "doi-asserted-by": "crossref", "first-page": "265", "issue": "2", "journal-title": "Semin. Immunopathol.", "key": "10.1016/j.redox.2025.103766_bib91", "volume": "41", "year": "2019" }, { "DOI": "10.1152/physrev.00021.2015", "article-title": "Mechanistic pathways of sex differences in cardiovascular disease", "author": "Regitz-Zagrosek", "doi-asserted-by": "crossref", "first-page": "1", "issue": "1", "journal-title": "Physiol. Rev.", "key": "10.1016/j.redox.2025.103766_bib92", "volume": "97", "year": "2017" }, { "DOI": "10.1159/000508560", "article-title": "The role of genetic sex and mitochondria in response to COVID-19 infection", "author": "Kloc", "doi-asserted-by": "crossref", "first-page": "629", "issue": "8", "journal-title": "Int. Arch. Allergy Immunol.", "key": "10.1016/j.redox.2025.103766_bib93", "volume": "181", "year": "2020" }, { "DOI": "10.1007/s00011-020-01389-z", "article-title": "Coronavirus (Covid-19) sepsis: revisiting mitochondrial dysfunction in pathogenesis, aging, inflammation, and mortality", "author": "Shenoy", "doi-asserted-by": "crossref", "first-page": "1077", "issue": "11", "journal-title": "Inflamm. Res.", "key": "10.1016/j.redox.2025.103766_bib94", "volume": "69", "year": "2020" }, { "DOI": "10.1159/000531550", "article-title": "Therapeutic benefits of melatonin against COVID-19", "author": "Mubashshir", "doi-asserted-by": "crossref", "first-page": "196", "issue": "1", "journal-title": "Neuroimmunomodulation", "key": "10.1016/j.redox.2025.103766_bib95", "volume": "30", "year": "2023" }, { "DOI": "10.1002/rmv.2109", "article-title": "Melatonin: roles in influenza, Covid-19, and other viral infections", "author": "Anderson", "doi-asserted-by": "crossref", "issue": "3", "journal-title": "Rev. Med. Virol.", "key": "10.1016/j.redox.2025.103766_bib96", "volume": "30", "year": "2020" }, { "DOI": "10.1016/j.freeradbiomed.2024.08.022", "article-title": "A comparative study of the efficiency of mitochondria-targeted antioxidants MitoTEMPO and SKQ1 under oxidative stress", "author": "Liu", "doi-asserted-by": "crossref", "first-page": "117", "journal-title": "Free Radic. Biol. Med.", "key": "10.1016/j.redox.2025.103766_bib97", "volume": "224", "year": "2024" }, { "DOI": "10.1155/2022/2213503", "article-title": "Mitochondria-targeted antioxidant mitoquinone maintains mitochondrial homeostasis through the Sirt3-Dependent pathway to mitigate oxidative damage caused by renal ischemia/reperfusion", "author": "Mao", "doi-asserted-by": "crossref", "journal-title": "Oxid. Med. Cell. Longev.", "key": "10.1016/j.redox.2025.103766_bib98", "volume": "2022", "year": "2022" }, { "DOI": "10.1016/j.freeradbiomed.2021.02.047", "article-title": "AMP-activated protein kinase: a remarkable contributor to preserve a healthy heart against ROS injury", "author": "Marino", "doi-asserted-by": "crossref", "first-page": "238", "journal-title": "Free Radic. Biol. Med.", "key": "10.1016/j.redox.2025.103766_bib99", "volume": "166", "year": "2021" } ], "reference-count": 99, "references-count": 99, "relation": {}, "resource": { "primary": { "URL": "https://linkinghub.elsevier.com/retrieve/pii/S2213231725002794" } }, "score": 1, "short-title": [], "source": "Crossref", "special_numbering": "C", "subject": [], "subtitle": [], "title": "Viral mitochondriopathy in COVID-19", "type": "journal-article", "update-policy": "https://doi.org/10.1016/elsevier_cm_policy", "volume": "85" }
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Submit