Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchMelatoninMelatonin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Melatonin: a ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration

Yehia et al., Molecular Neurodegeneration, doi:10.1186/s13024-024-00728-6
Apr 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Melatonin for COVID-19
11th treatment shown to reduce risk in December 2020, now with p = 0.0000002 from 18 studies.
Lower risk for mortality, ventilation, and recovery.
No treatment is 100% effective. Protocols combine treatments.
5,200+ studies for 112 treatments. c19early.org
Review of melatonin as a potential ferroptosis inhibitor for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration. Authors propose that ferroptosis, an iron-dependent cell death triggered by lipid peroxidation, may underlie post-COVID cognitive impairment and neurodegeneration. SARS-CoV-2 infection induces neuroinflammation, iron dysregulation, oxidative stress, antioxidant system repression, renin-angiotensin system disruption, and clock gene alteration, which can all promote ferroptosis. Melatonin is suggested as a potential treatment due to its anti-inflammatory, antioxidant, iron chelating, and clock gene regulating properties that could inhibit the events leading to ferroptosis. Authors outline the detailed mechanisms by which melatonin may counter ferroptosis in the post-COVID-19 context.
Reviews covering melatonin for COVID-19 include1-23.
Yehia et al., 19 Apr 2024, peer-reviewed, 2 authors. Contact: abulseoud.osama@mayo.edu.
This PaperMelatoninAll
Melatonin: a ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration
Asmaa Yehia, Osama A Abulseoud
Molecular Neurodegeneration, doi:10.1186/s13024-024-00728-6
The unprecedented pandemic of COVID-19 swept millions of lives in a short period, yet its menace continues among its survivors in the form of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from cognitive impairment, with compelling evidence of a trajectory of accelerated aging and neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands extensive research seeking answers for both the molecular underpinnings and potential therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin shines as a promising ferroptosis inhibitor with its repeatedly reported safety and tolerability. According to various studies, melatonin has proven efficacy in attenuating the severity of certain COVID-19 manifestations, validating its reputation as an anti-viral compound. Melatonin has well-documented anti-aging properties and combating neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ferroptosis inhibitor, as a potential treatment.
Yehia and Abulseoud Molecular Neurodegeneration (2024) 19:36 against the ferroptosis-induced post-COVID-19 aging and neurodegeneration. Authors' contributions AY wrote the first draft under the supervision of OAA. Both authors read and approved the final manuscript. Declarations Consent for publication This manuscript does not contain data from any individual person so the consent for publication is not applicable. Ethics approval and consent to participate Not applicable. Ethics approval and consent are not indicated due to the review nature of this paper. Competing interests The authors declare that they have no competing interests. Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
Abbaspour, Hurrell, Kelishadi, Review on iron and its importance for human health, J Res Med Sci
Abdel-Gawad, Post-COVID-19 Syndrome Clinical Manifestations: A Systematic Review, Antiinflamm Antiallergy Agents Med Chem
Abulseoud, Attenuated initial serum ferritin concentration in critically ill coronavirus disease 2019 geriatric patients with comorbid psychiatric conditions, Front Psychiatry
Acufla-Castroviejo, Minireview: Cell protective role of melatonin in the brain, J Pineal Res
Acuña-Castroviejo, Extrapineal melatonin: sources, regulation, and potential functions, Cell Mol Life Sci
Agmon, Modeling the effects of lipid peroxidation during ferroptosis on membrane properties, Sci Rep
Aguado, Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology, bioRxiv
Ahmadi, Ashrafizadeh, Melatonin as a potential modulator of Nrf2, Fundam Clin Pharmacol
Alagiakrishnan, Melatonin based therapies for delirium and dementia, Discov Med
Ali, Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/ NF-KB/JNK signaling pathway in aging mouse model, J Pineal Res
Ali, Premature aging of the hippocampal neurogenic niche in adult Bmal1-deficient mice, Front Pharmacol
Ameri, Efficacy and safety of oral melatonin in patients with severe COVID-19: a randomized controlled trial, Inflammopharmacology
Amidfar, Garcez, Kim, Kondratov, The shared molecular mechanisms underlying aging of the brain, major depressive disorder, and Alzheimer's disease: The role of circadian rhythm disturbances, Prog Neuropsychopharmacol Biol Psychiatry
Anderson, Frazer, Current understanding of iron homeostasis, Am J Clin Nutr
Angeli, Conrad, Selenium and GPX4, a vital symbiosis, Free Radical Biol Med
Anjana, Manifestations and risk factors of post COVID syndrome among COVID-19 patients presented with minimal symptoms -A study from Kerala, India, J Family Med Prim Care
Antolıń, Protective effect of melatonin in a chronic experimental model of Parkinson' s disease, Brain research
Aoyama, Glutathione in the Brain, Int J Mol Sci
Arangino, Effects of melatonin on vascular reactivity, catecholamine levels, and blood pressure in healthy men, Am J Cardiol
Arendt, Brainard, Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor, J Neurosci
Arendt, Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock
Ariza, COVID-19 severity is related to poor executive function in people with post-COVID conditions, J Neurol
Ashy, Shroff, Ashy, Evaluation of the potential drug interaction of melatonin and warfarin: a case series, Life Sci J
Axelrod, The Pineal Gland: a neurochemical transducer: chemical signals from nerves regulate synthesis of melatonin and convey information about internal clocks, Science
Axelrod, Wurtman, Photic and Neural Control of Indoleamine Metabolism in the Rat Pineal Gland
Ayton, Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology, Mol Psychiatry
Bakhtazad, Paying attention to circadian rhythms in the treatment of COVID-19, Basic Clin Neurosci J
Bald, Nance, Schultz, Melatonin may slow disease progression in amyotrophic lateral sclerosis: findings from the Pooled Resource Open-Access ALS Clinic Trials database, Muscle Nerve
Bao, Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease, Cell Death Differ
Bao, Targeting miR-124/Ferroportin signaling ameliorated neuronal cell death through inhibiting apoptosis and Yehia and Abulseoud Molecular Neurodegeneration (2024) 19:36 ferroptosis in aged intracerebral hemorrhage murine model, Aging Cell
Basso, Protective effect of the inhibition of the renin-angiotensin system on aging, Regul Pept
Bayr, Reactive oxygen species, Crit Care Med
Becker-André, Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily, J Biol Chem
Beker, Interaction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival, Sci Rep
Benicky, Anti-Inflammatory Effects of Angiotensin Receptor Blockers in the Brain and the Periphery, Cell Mol Neurobiol
Berson, Dunn, Takao, Phototransduction by retinal ganglion cells that set the circadian clock, Science
Besag, Vasey, Adverse events in long-term studies of exogenous melatonin, Expert Opin Drug Saf
Bindoni, Rizzo, Effects of electrolytic lesions of the pineal gland on the electric activity of some brain structures in the rabbit, Bollettino Della Societa Italiana di Biologia Sperimentale
Bitto, p62/SQSTM1 at the interface of aging, autophagy, and disease, Age
Boga, Beneficial actions of melatonin in the management of viral infections: a new use for this "molecular handyman, Rev Med Virol
Bonilla, Melatonin and viral infections, J Pineal Res
Bonilla, Melatonin protects mice infected with Venezuelan equine encephalomyelitis virus, Cell Mol Life Sci CMLS
Borrmann, Mckeating, Zhuang, The circadian clock and viral infections, J Biol Rhythms
Boutin, Quinone reductase 2 as a promising target of melatonin therapeutic actions, Expert Opin Ther Targets
Brown, The effect of the COVID-19 pandemic on people with Parkinson's disease, J Parkinsons Dis
Brugger, Marktl, Herold, Impaired nocturnal secretion of melatonin in coronary heart disease, Lancet
Brzezinski, Melatonin in humans, N Engl J Med
Cabantchik, Labile iron in cells and body fluids: physiology, pathology, and pharmacology, Front Pharmacol
Cagnacci, Elliott, Yen, Arendt, Melatonin and the pineal gland: influence on mammalian seasonal and circadian physiology, J Clin Endocrinol Metab
Cameron, Landreth, Inflammation, microglia, and Alzheimer's disease, Neurobiol Dis
Campos, The angiotensin-melatonin axis, Int J Hypertens
Cao, Accelerated biological aging in COVID-19 patients, Nat Commun
Caroleo, Doria, Nistico, Melatonin restores immunodepression in aged and cyclophosphamide-treated mice, Ann N Y Acad Sci
Catalá, Five decades with polyunsaturated fatty acids: chemical synthesis, enzymatic formation, lipid peroxidation and its biological effects, J Lipids
Cecchini, Cecchini, Lovell, Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer's disease brain, Free Radical Biol Med
Cecon, Oishi, Jockers, Melatonin receptors: molecular pharmacology and signalling in the context of system bias, Br J Pharmacol
Cecon, Therapeutic potential of melatonin and melatonergic drugs on K18-hACE2 mice infected with SARS-CoV-2, J Pineal Res
Checa, Aran, Reactive oxygen species: drivers of physiological and pathological processes, J Inflamm Res
Chen, Cellular degradation systems in ferroptosis, Cell Death Differ
Chen, Characteristics and biomarkers of ferroptosis, Front Cell Dev Biol
Chen, Enhanced defense against ferroptosis ameliorates cognitive impairment and reduces neurodegeneration in 5xFAD mice, Free Radical Biol Med
Chen, Ferritin reduction is essential for cerebral ischemiainduced hippocampal neuronal death through p53/SLC7A11-mediated ferroptosis, Brain Res
Cheng, Li, What is responsible for the initiating chemistry of ironmediated lipid peroxidation: an update, Chem Rev
Cheng, TrkB agonist N-acetyl serotonin promotes functional recovery after traumatic brain injury by suppressing ferroptosis via the PI3K/Akt/Nrf2/Ferritin H pathway, Free Radical Biol Med
Chiang, Relationships among cortical glutathione levels, brain amyloidosis, and memory in healthy older adults investigated in vivo with 1H-MRS and Pittsburgh compound-B PET, Am J Neuroradiol
Cho, Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β, Nature
Chung, Association of Alzheimer's disease with COVID-19 susceptibility and severe complications: a nationwide cohort study, J Alzheimer's Dis
Cipolla-Neto, Amaral, Lph, Melatonin as a hormone: new physiological and clinical insights, Clin Drug Investig
Claise, Low transferrin levels predict heightened inflammation in patients with COVID-19: New insights, Int J Infect Dis
Claustrat, Brun, Chazot, The basic physiology and pathophysiology of melatonin, Sleep Med Rev
Costa, Lopes, Lamy-Freund, Permeability of pure lipid bilayers to melatonin, J Pineal Res
Cozzi, Stem cell modeling of neuroferritinopathy reveals iron as a determinant of senescence and ferroptosis during neuronal aging, Stem Cell Reports
Crivelli, Changes in cognitive functioning after COVID-19: a systematic review and meta-analysis, Alzheimers Dement
Cui, ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation, Brain Behav Immun
Dang, Activation of angiotensin-converting enzyme 2/angiotensin (1-7)/mas receptor axis triggers autophagy and suppresses microglia proinflammatory polarization via forkhead box class O1 signaling, Aging Cell
Darban, Efficacy of high dose vitamin C, melatonin and zinc in Iranian patients with acute respiratory syndrome due to coronavirus infection: a pilot randomized trial, J Cell Mol Anesth
Del Quilesrey, Mancias, NCOA4-mediated ferritinophagy: a potential link to neurodegeneration, Front Neurosci
Delgado-Alonso, Cognitive dysfunction associated with COVID-19: a comprehensive neuropsychological study, J Psychiatr Res
Delgado-Lara, Effect of melatonin administration on the PER1 and BMAL1 clock genes in patients with Parkinson's disease, Biomed Pharmacother
Diallo, Daytime variation in SARS-CoV-2 infection and cytokine production, Microb Pathog
Dixon, Ferroptosis: an iron-dependent form of nonapoptotic cell death, Cell
Dixon, Stockwell, The hallmarks of ferroptosis, Ann Rev Cancer Biol
Dodson, Castro-Portuguez, Zhang, NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis, Redox Biol
Doll, ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition, Nat Chem Biol
Dou, Targeting iNOS alleviates early brain injury after experimental subarachnoid hemorrhage via promoting ferroptosis of M1 microglia and reducing neuroinflammation, J Cell Mol Med
Duan, ACE2 activator diminazene aceturate ameliorates Alzheimer's disease-like neuropathology and rescues cognitive impairment in SAMP8 mice, Aging
Duez, Staels, The nuclear receptors Rev-erbs and RORs integrate circadian rhythms and metabolism, Diab Vasc Dis Res
Eroğlu, Eroğlu, Güven, Altered tryptophan absorption and metabolism could underlie long-term symptoms in survivors of coronavirus disease 2019 (COVID-19), Nutrition
Evans, ACE2 activation protects against cognitive decline and reduces amyloid pathology in the Tg2576 mouse model of Alzheimer's disease, Acta Neuropathol
Fan, Melatonin ameliorates the progression of Alzheimer's disease by inducing TFEB nuclear translocation, promoting mitophagy, and regulating NLRP3 inflammasome activity, BioMed Res Int
Fan, The effect of melatonin on early postoperative cognitive decline in elderly patients undergoing hip arthroplasty: a randomized controlled trial, J Clin Anesth
Fang, Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: a new mechanism of action, ACS Cent Sci
Fara, Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines, Open Biol
Faridzadeh, Melatonin drugs inhibit SARS-CoV-2 entry into the brain and virus-induced damage of cerebral small vessels, Cell Mol Life Sci
Fariello, Bubenik, Melatonin-induced changes in the sensory activation of acute epileptic foci, Neurosci Lett
Farnoosh, Efficacy of a low dose of melatonin as an adjunctive therapy in hospitalized patients with COVID-19: a randomized, double-blind clinical trial, Arch Med Res
Fedeli, Parkinson's disease related mortality: Long-term trends and impact of COVID-19 pandemic waves, Parkinsonism Relat Disord
Feng, Transferrin receptor is a specific ferroptosis marker, Cell Rep
Feng, Wang, Li, Change of telomere length in angiotensin IIinduced human glomerular mesangial cell senescence and the protective role of losartan, Mol Med Rep
Ferlazzo, Is melatonin the cornucopia of the 21st century?, Antioxidants
Ferrando, Neuropsychological, Medical, and Psychiatric Findings After Recovery From Acute COVID-19: A Cross-sectional Study, J Acad Consult Liaison Psychiatry
Ferrucci, Brain positron emission tomography (PET) and cognitive abnormalities one year after COVID-19, J Neurol
Finch, Plasma ferritin determination as a diagnostic tool, West J Med
Fiske, Bryant, Putnam, Effect of light on the weight of the pineal in the rat, ENDOCRINE SOC 4350 EAST WEST HIGHWAY SUITE
Fj, Post-COVID-19 syndrome: epidemiology, diagnostic criteria and pathogenic mechanisms involved, Rev Neurol
Fogleman, A pilot of a randomized control trial of melatonin and vitamin C for mild-to-moderate COVID-19, J Am Board Fam Med
Forcina, Dixon, GPX4 at the crossroads of lipid homeostasis and ferroptosis, Proteomics
Forman, Zhang, Rinna, Glutathione: overview of its protective roles, measurement, and biosynthesis, Mol Aspects Med
Fowler, Circadian rhythms and melatonin metabolism in patients with disorders of gut-brain interactions, Front Neurosci
Friedman, Why is the nervous system vulnerable to oxidative stress? Oxidative Stress Free Radical Damage, Neurol
Frontera, Comparison of serum neurodegenerative biomarkers among hospitalized COVID-19 patients versus non-COVID subjects with normal cognition, mild cognitive impairment, or Alzheimer's dementia, Alzheimers Dement
Fuqua, Vulpe, Anderson, Intestinal iron absorption, J Trace Elem Med Biol
Furio, Brusco, Cardinali, Possible therapeutic value of melatonin in mild cognitive impairment: a retrospective study, J Pineal Res
Ganz, Hepcidin and iron regulation, 10 years later, Blood
Ganz, Nemeth, Iron homeostasis in host defence and inflammation, Nat Rev Immunol
Gao, Glutaminolysis and transferrin regulate ferroptosis, Mol Cell
Gao, Melatonin ameliorates neurological deficits through MT2/ IL-33/ferritin H signaling-mediated inhibition of neuroinflammation and ferroptosis after traumatic brain injury, Free Radical Biol Med
Garcia-Sanchez, Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 "long haulers, Ann Clin Transl Neurol
Garrido-Gil, Brain angiotensin regulates iron homeostasis in dopaminergic neurons and microglial cells, Exp Neurol
Gaschler, Stockwell, Lipid peroxidation in cell death, Biochem Biophys Res Commun
Geng, Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells, Eur Rev Med Pharmacol Sci
Gilbert, Thiol/disulfide exchange equilibria and disulfidebond stability, Methods Enzymol
Girotti, Mechanisms of lipid peroxidation, J Free Radic Biol Med
Gou, Melatonin improves hypoxic-ischemic brain damage through the Akt/Nrf2/Gpx4 signaling pathway, Brain Res Bull
Gulcin, Buyukokuroglu, Kufrevioglu, Metal chelating and hydrogen peroxide scavenging effects of melatonin, J Pineal Res
Guohua, Melatonin protects against PM2. 5-induced lung injury by inhibiting ferroptosis of lung epithelial cells in a Nrf2dependent manner, Ecotoxicol Environ Safety
Gupta, Role of iron (Fe) in body, IOSR J Appl Chem
Guéraud, Chemistry and biochemistry of lipid peroxidation products, Free Radical Res
Habib, The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators, Biomed Pharmacother
Halliwell, Chirico, Lipid peroxidation: its mechanism, measurement, and significance, Am J Clin Nutr
Halliwell, Gutteridge, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem J
Han, Nrf2 knockout altered brain iron deposition and mitigated age-related motor dysfunction in aging mice, Free Radical Biol Med
Hardeland, Melatonin and Microglia, Int J Mol Sci
Hardeland, Melatonin and brain inflammaging, Prog Neurobiol
Harrison, Arosio, The ferritins: molecular properties, iron storage function and cellular regulation, Biochim Biophys Acta
Harvey, Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress, Free Radical Biol Med
Hasan, Atrakji, Mehuaiden, The effect of melatonin on thrombosis, sepsis and mortality rate in COVID-19 patients, Int J Infect Dis
Haskologlu, Melatonin and REGN-CoV2 combination as a vaccine adjuvant for Omicron variant of SARS-CoV-2, Mol Biol Rep
Hayter, Bishop, Robinson, Pharmacological but not physiological concentrations of melatonin reduce iron-induced neuronal death in rat cerebral cortex, Neurosci Lett
Heneka, Neuroinflammation in Alzheimer's disease, The Lancet Neurology
Herrera, Cognitive impairment in young adults with post COVID-19 syndrome, Sci Rep
Herxheimer, Petrie, Group, Melatonin for the prevention and treatment of jet lag, Cochrane Database Syst Rev
Hirayama, Sassone-Corsi, Structural and functional features of transcription factors controlling the circadian clock, Curr Opin Genet Dev
Hortová-Kohoutková, Hepcidin and ferritin levels as markers of immune cell activation during septic shock, severe COVID-19 and sterile inflammation, J Trace Elem Med Biol
Hosseinzadeh, Melatonin effect on platelets and coagulation: Implications for a prophylactic indication in COVID-19, Life Sci
Hou, Autophagy promotes ferroptosis by degradation of ferritin, Autophagy
Hu, Melatonin decreases M1 polarization via attenuating mitochondrial oxidative damage depending on UCP2 pathway in prorenintreated microglia, PLoS ONE
Huang, Ferroptosis in a sarcopenia model of senescence accelerated mouse prone 8 (SAMP8), Int J Biol Sci
Huang, Melatonin alleviates acute kidney injury by inhibiting NRF2/Slc7a11 axis-mediated ferroptosis, Oxidative Med Cell Longevity
Idrees, Kumar, SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration, Biochem Biophys Res Commun
Iguchi, Kato, Ibayashi, Age-dependent reduction in serum melatonin concentrations in healthy human subjects, J Clin Endocrinol Metab
Ineichen, Worsened Parkinson's disease progression: impact of the COVID-19 pandemic, J Parkinsons Dis
Jallouli, Effect of melatonin intake on postural balance, functional mobility and fall risk in persons with multiple sclerosis: a pilot study, Int J Neurosci
Jand, Melatonin ameliorates disease severity in a mouse model of multiple sclerosis by modulating the kynurenine pathway, Sci Rep
Jankauskas, COVID-19 causes ferroptosis and oxidative stress in human endothelial cells, Antioxidants
Jennings, A systematic review of persistent symptoms and residual abnormal functioning following acute COVID-19: ongoing symptomatic phase vs. post-COVID-19 syndrome, J Clin Med
Ji, Xu, Melatonin protects podocytes from angiotensin II-induced injury in an in vitro diabetic nephropathy model, Mol Med Rep
Jiang, Ferroptosis as a p53-mediated activity during tumour suppression, Nature
Jilg, Melatonin modulates daytime-dependent synaptic plasticity and learning efficiency, J Pineal Res
Jing, Association between inflammatory cytokines and anti-SARS-CoV-2 antibodies in hospitalized patients with COVID-19, Immunity Ageing
Juan, The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies, Int J Mol Sci
Jumnongprakhon, Inhibitory effect of melatonin on cerebral endothelial cells dysfunction induced by methamphetamine via NADPH oxidase-2, Brain Res
Kakhaki, Melatonin supplementation and the effects on clinical and metabolic status in Parkinson's disease: A randomized, double-blind, placebo-controlled trial, Clin Neurol Neurosurg
Kapralov, Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death, Nat Chem Biol
Kaptanoglu, Different responsiveness of central nervous system tissues to oxidative conditions and to the antioxidant effect of melatonin, J Pineal Res
Katsarou, Pantopoulos, Basics and principles of cellular and systemic iron homeostasis, Mol Aspects Med
Kaushal, Serum ferritin as a predictive biomarker in COVID-19. A systematic review, meta-analysis and meta-regression analysis, J Crit Care
Kawabata, Transferrin and transferrin receptors update, Free Radical Biol Med
Kehoe, Angiotensin-converting enzyme 2 is reduced in Alzheimer's disease in association with increasing amyloid-β and tau pathology, Alzheimer's Res Ther
Kempuraj, COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation, Neuroscientist
Keskin-Aktan, SIRT2 and FOXO3a expressions in the cerebral cortex and hippocampus of young and aged male rats: antioxidant and anti-apoptotic effects of melatonin, Biologia Futura
King, Richardson, Reiter, Regulation of rat pineal melatonin synthesis: effect of monoamine oxidase inhibition, Mol Cell Endocrinol
Klein, Moore, Pineal N-acetyltransferase and hydroxyindole-Omethyl-transferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus, Brain Res
Knovich, Ferritin for the clinician, Blood Rev
Kojetin, Burris, REV-ERB and ROR nuclear receptors as drug targets, Nat Rev Drug Discovery
Kondratova, Kondratov, The circadian clock and pathology of the ageing brain, Nat Rev Neurosci
Kong, Melatonin attenuates angiotensin II-induced abdominal aortic aneurysm through the down-regulation of matrix metalloproteinases, Oncotarget
Koppula, Zhuang, Gan, Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy, Protein Cell
Krause, Dubocovich, Regulatory sites in the melatonin system of mammals, Trends Neurosci
Kroner, TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord, Neuron
Kruszewski, Labile iron pool: the main determinant of cellular response to oxidative stress, Mutat Res
Kubben, Repression of the antioxidant NRF2 pathway in premature aging, Cell
Kumar, Mills, Lapierre, Selective autophagy receptor p62/ SQSTM1, a pivotal player in stress and aging, Front Cell Dev Biol
Kumar, Severe glutathione deficiency, oxidative stress and oxidant damage in adults hospitalized with COVID-19: implications for GlyNAC (glycine and N-acetylcysteine) supplementation, Antioxidants
Kuwata, Hara, Role of acyl-CoA synthetase ACSL4 in arachidonic acid metabolism, Prostaglandins Other Lipid Mediat
Kyriakopoulos, Mitogen Activated Protein Kinase (MAPK) Activation, p53, and Autophagy Inhibition Characterize the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike Protein Induced Neurotoxicity, Cureus
Kühn, Borchert, Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes1 1This article is part of a series of reviews on "Regulatory and Cytoprotective Aspects of Lipid Hydroperoxide Metabolism. " The full list of papers may be found on the homepage of the journal, Free Rad Biol Med
Labban, Effects of melatonin and resveratrol on recognition memory and passive avoidance performance in a mouse model of Alzheimer's disease, Behav Brain Res
Lara, Macías-Verde, Burgos-Burgos, Age-induced NLRP3 inflammasome over-activation increases lethality of SARS-CoV-2 pneumonia in elderly patients, Aging Dis
Larson, Impaired hippocampal long-term potentiation in melatonin MT2 receptor-deficient mice, Neurosci Lett
Lee, Lipid metabolism and ferroptosis, Biology
Lemoine, Prolonged-release melatonin improves sleep quality and morning alertness in insomnia patients aged 55 years and older and has no withdrawal effects, J Sleep Res
Leon, Modification of nitric oxide synthase activity and neuronal response in rat striatum by melatonin and kynurenine derivatives, J Neuroendocrinol
Lerner, Isolation of melatonin, the pineal gland factor that lightens melanocyteS1, J Am Chem Soc
Lesnikov, Pierpaoli, Pineal cross-transplantation (old-to-young and vice versa) as evidence for an endogenous" aging clock, Ann N Y Acad Sci
Lewerenz, The cystine/glutamate antiporter system xc-in health and disease: from molecular mechanisms to novel therapeutic opportunities, Antioxid Redox Signal
Lewy, Melatonin shifts human orcadian rhythms according to a phase-response curve, Chronobiol Int
León, Structure-related inhibition of calmodulin-dependent neuronal nitric-oxide synthase activity by melatonin and synthetic kynurenines, Mol Pharmacol
Li, Alterations in the time course of expression of the Nox family in the brain in a rat experimental cerebral ischemia and reperfusion model: effects of melatonin, J Pineal Res
Li, Exogenous melatonin ameliorates steroid-induced osteonecrosis of the femoral head by modulating ferroptosis through GDF15mediated signaling, Free Radical Biol Med
Li, Ferrostatin-1 alleviates angiotensin II (Ang II)-induced inflammation and ferroptosis in astrocytes, Int Immunopharmacol
Li, Melatonin ameliorates Parkinson's disease via regulating microglia polarization in a RORα-depend4ent pathway, npj Parkinson's Dis
Li, Peripheral clock system abnormalities in patients with Parkinson's disease, Front Aging Neurosci
Li, System Xc-/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy, Front Pharmacol
Liang, Minikes, Jiang, Ferroptosis at the intersection of lipid metabolism and cellular signaling, Mol Cell
Liao, CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4, Cancer Cell
Limson, Nyokong, Daya, The interaction of melatonin and its precursors with aluminium, cadmium, copper, iron, lead, and zinc: an adsorptive voltammetric study, J Pineal Res
Lin, Chiu, Lane, Trough Melatonin Levels Differ between Early and Late Phases of Alzheimer Disease, Clin Psychopharmacol Neurosci
Lin, Ho, Melatonin suppresses iron-induced neurodegeneration in rat brain, Free Radical Biol Med
Lino, Ferritin in the coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis, Brazilian J Infect Dis
Liu, Angiotensin II-induced vascular endothelial cells ferroptosis via P53-ALOX12 signal axis, Clin Exp Hypertens
Liu, Autophagy-dependent ferroptosis: machinery and regulation, Cell Chem Biol
Liu, BMAL1 regulation of microglia-mediated neuroinflammation in MPTP-induced Parkinson's disease mouse model, FASEB J
Liu, Iron accumulation with age alters metabolic pattern and circadian clock gene expression through the reduction of AMP-modulated histone methylation, J Biol Chem
Liu, Liang, Soong, Nitric oxide, iron and neurodegeneration, Front Neurosci
Liu, Paeonol improves angiotensin II-induced cardiac hypertrophy by suppressing ferroptosis, Heliyon
Liu, Post-infection cognitive impairments in a cohort of elderly patients with COVID-19, Mol Neurodegener
Liu, The role of ferroptosis mediated by NRF2/ERK-regulated ferritinophagy in CdTe QDs-induced inflammation in macrophage, Yehia and Abulseoud Molecular Neurodegeneration
Lu, Glutathione synthesis, Biochim Biophys Acta
Lynch, Role of senescence and aging in SARS-CoV-2 infection and COVID-19 disease, Cells
Ma, Melatonin alleviates early brain injury by inhibiting the NRF2-mediated ferroptosis pathway after subarachnoid hemorrhage, Free Radical Biol Med
Ma, Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis, Oxidative Med Cell Longevity
Magri, Changes in endocrine orcadian rhythms as markers of physiological and pathological brain aging, Chronobiol Int
Mahalanobish, Melatonin counteracts necroptosis and pulmonary edema in cadmium-induced chronic lung injury through the inhibition of angiotensin II, J Biochem Mol Toxicol
Maharaj, Melatonin and 6-hydroxymelatonin protect against iron-induced neurotoxicity, J Neurochem
Mandal, System xc-and thioredoxin reductase 1 cooperatively rescue glutathione deficiency, J Biol Chem
Marzouk, Modeling COVID-19 Effects on Sustainable Development Goals in Egypt Using System Dynamics
Matias-Guiu, Development of criteria for cognitive dysfunction in post-COVID syndrome: the IC-CoDi-COVID approach, Psychiatry Res
Mattam, Jagota, Differential role of melatonin in restoration of age-induced alterations in daily rhythms of expression of various clock genes in suprachiasmatic nucleus of male Wistar rats, Biogerontology
Mazhar, Implication of ferroptosis in aging, Cell Death Discovery
Mckie, An iron-regulated ferric reductase associated with the absorption of dietary iron, Science
Meo, Magnetic Resonance Imaging (MRI) and neurological manifestations in SARS-CoV-2 patients, Eur Rev Med Pharmacol Sci
Meyer, SARS-CoV-2 spike protein induces paracrine senescence and leukocyte adhesion in endothelial cells, J Virol
Mezzanotte, Activation of the Hepcidin-Ferroportin1 pathway in the brain and astrocytic-neuronal crosstalk to counteract iron dyshomeostasis during aging, Sci Rep
Mi, Melatonin inhibits ferroptosis and delays age-related cataract by regulating SIRT6/p-Nrf2/GPX4 and SIRT6/NCOA4/FTH1 pathways, Biomed Pharmacother
Min, Signaling mechanisms of angiotensin II in regulating vascular senescence, Ageing Res Rev
Minotti, Aust, The role of iron in oxygen radical mediated lipid peroxidation, Chem Biol Interact
Miyamoto, Singlet molecular oxygen generated by biological hydroperoxides, J Photochem Photobiol, B
Montesinos, Guardia-Laguarta, Gomez, The fat brain, Curr Opin Clin Nutr Metab Care
Moradkhani, Immunoregulatory role of melatonin in cancer, J Cell Physiol
Morgan, Effects of the endogenous clock and sleep time on melatonin, insulin, glucose and lipid metabolism, J Endocrinol
Mu, The role of iron homeostasis in remodeling immune function and regulating inflammatory disease, Science Bulletin
Muckenthaler, Galy, Hentze, Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network, Annu Rev Nutr
Muhammad, Deficiency of antioxidants and increased oxidative stress in COVID-19 patients: a cross-sectional comparative study in Jigawa, Northwestern Nigeria, SAGE Open Med
Najafi, Melatonin modulates regulation of NOX2 and NOX4 following irradiation in the lung, Curr Clin Pharmacol
Naskar, Melatonin enhances L-DOPA therapeutic effects, helps to reduce its dose, and protects dopaminergic neurons in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinsonism in mice, J Pineal Res
Ni, An impaired intrinsic microglial clock system induces neuroinflammatory alterations in the early stage of amyloid precursor protein knock-in mouse brain, J Neuroinflammation
Nie, Melatonin ameliorates anxiety and depression-like behaviors and modulates proteomic changes in triple transgenic mice of Alzheimer's disease, BioFactors
Nielsen, Serum ferritin iron in iron overload and liver damage: correlation to body iron stores and diagnostic relevance, J Lab Clin Med
Niki, Lipid peroxidation: mechanisms, inhibition, and biological effects, Biochem Biophys Res Commun
Nir, Changes in the electrical activity of the brain following pinealectomy, Neuroendocrinology
Normandin, Intrathecal inflammatory responses in the absence of SARS-CoV-2 nucleic acid in the CSF of COVID-19 hospitalized patients, J Neurol Sci
Nosjean, Identification of the Melatonin-binding SiteMT 3 as the Quinone Reductase 2, J Biol Chem
Nous, Serum daytime melatonin levels reflect cerebrospinal fluid melatonin levels in Alzheimer's disease but are not correlated with cognitive decline, J Alzheimers Dis
O'neal-Moffitt, Prophylactic melatonin significantly reduces Alzheimer's neuropathology and associated cognitive deficits independent of antioxidant pathways in AβPPswe/PS1 mice, Mol Neurodegener
Obayashi, Physiological levels of melatonin relate to cognitive function and depressive symptoms: the HEIJO-KYO cohort, J Clin Endocrinol Metab
Olagnier, SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate, Nat Commun
Oronsky, A review of persistent post-COVID syndrome (PPCS), Clin Rev Allergy Immunol
Ortega-Gutiérrez, Melatonin improves deferoxamine antioxidant activity in protecting against lipid peroxidation caused by hydrogen peroxide in rat brain homogenates, Neurosci Lett
Pamplona, Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity, Biochim Biophys Acta
Pang, Influence of aging on deterioration of patients with COVID-19, Aging
Papagiannidou, Skene, Ioannides, Potential drug interactions with melatonin, Physiol Behav
Parihar, Outcome of Hospitalized Parkinson's Disease Patients with and without COVID-19, Movement Disorders Clinical Practice
Pasini, Is ferroptosis a key component of the process leading to multiorgan damage in COVID-19?, Antioxidants
Patel, Diabetes mellitus and melatonin: where are we? Biochimie, J Pineal Res
Patiño, Melatonin protects against oxygen and glucose deprivation by decreasing extracellular glutamate and Nox-derived ROS in rat hippocampal slices, Neurotoxicology
Patki, Lau, Melatonin protects against neurobehavioral and mitochondrial deficits in a chronic mouse model of Parkinson's disease, Pharmacol Biochem Behav
Pei, Research progress of glutathione peroxidase family (GPX) in redoxidation, Front Pharmacol
Perez, Dietary lipids induce ferroptosis in caenorhabditiselegans and human cancer cells, Dev Cell
Perrottelli, Cognitive impairment after post-acute COVID-19 infection: a systematic review of the literature, J Pers Med
Pevet, Challet, Melatonin: both master clock output and internal time-giver in the circadian clocks network, Journal of Physiology-Paris
Pevet, The chronobiotic properties of melatonin, Cell Tissue Res
Pierrefiche, Zerbib, Laborit, Anxiolytic activity of melatonin in mice: involvement of benzodiazepine receptors, Res Commun Chem Pathol Pharmacol
Pizzimenti, Interaction of aldehydes derived from lipid peroxidation and membrane proteins, Front Physiol
Poeggeler, Melatonin-a highly potent endogenous radical scavenger and electron donor: new aspects of the oxidation chemistry of this indole in vitro a, Ann N Y Sci
Ponnappan, Ponnappan, Liguori, Aging and immune function: molecular mechanisms to interventions, Clin Interv Aging
Potes, Benefits of the neurogenic potential of melatonin for treating neurological and neuropsychiatric disorders, Int J Mol Sci
Premraj, Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: a meta-analysis, J Neurol Sci
Qiao, Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination, Cell Metab
Raghavendra, Kaur, Kulkarni, Anti-depressant action of melatonin in chronic forced swimming-induced behavioral despair in mice, role of peripheral benzodiazepine receptor modulation, Eur Neuropsychopharmacol
Raghavendra, Kulkarni, Reversal of morphine tolerance and dependence by melatonin: possible role of central and peripheral benzodiazepine receptors, Brain Res
Raveendran, Jayadevan, Sashidharan, Long COVID: an overview, Diabetes Metab Syndr
Recalcati, Molecular regulation of cellular iron balance, IUBMB Life
Reiter, Delivery of pineal melatonin to the brain and SCN: role of canaliculi, cerebrospinal fluid, tanycytes and Virchow-Robin perivascular spaces, Brain Struct Funct
Reiter, Melatonin and its relation to the immune system and inflammation, Ann N Y Acad Sci
Reiter, Melatonin as an antioxidant: under promises but over delivers, J Pineal Res
Reiter, Melatonin: reproductive effects
Reiter, Melatonin: the chemical expression of darkness, Mol Cell Endocrinol
Reiter, Tan, Galano, Melatonin: exceeding expectations, Physiology
Ren, Melatonin reduces radiation-induced ferroptosis in hippocampal neurons by activating the PKM2/NRF2/GPX4 signaling pathway, Prog Neuropsychopharmacol Biol Psychiatry
Reppert, Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor, Proc Natl Acad Sci
Reppert, Weaver, Ebisawa, Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses, Neuron
Rocha, Cerebrospinal fluid levels of angiotensin-converting enzyme are associated with amyloid-β 42 burden in Alzheimer's disease, J Alzheimers Dis
Rodencal, Dixon, A tale of two lipids: Lipid unsaturation commands ferroptosis sensitivity, Proteomics
Rodriguez, Hepcidin induction by pathogens and pathogenderived molecules is strongly dependent on interleukin-6, Infect Immun
Rodriguez, Regulation of antioxidant enzymes: a significant role for melatonin, J Pineal Res
Romero, A review of metal-catalyzed molecular damage: protection by melatonin, J Pineal Res
Rossi, Oxidized forms of glutathione in peripheral blood as biomarkers of oxidative stress, Clin Chem
Roth, Melatonin promotes osteoblast differentiation and bone formation*, J Biol Chem
Roy, Belsham, Reiter, Melatonin receptor activation regulates GnRH Gene expression and secretion in GT1-7 GnRH neurons: signal transduction mechanisms, J Biol Chem
Rozengurt, Mitogenic signaling pathways induced by G proteincoupled receptors, J Cell Physiol
Ruddick, Tryptophan metabolism in the central nervous system: medical implications, Expert Rev Mol Med
Rudnicka-Drożak, Links between COVID-19 and Alzheimer's disease-what do we already know?, Int J Environ Res Public Health
Rui, Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury-induced ferroptosis, J Pineal Res
Régrigny, Melatonin improves cerebral circulation security margin in rats, Am J Physiology-Heart Circulatory Physiol
Sahu, Retrospective review of melatonin in patients with COVID-19, Chest
Salimi, Hamlyn, COVID-19 and crosstalk with the hallmarks of aging, J Gerontol Series A
Santana-Codina, Mancias, The role of NCOA4-mediated ferritinophagy in health and disease, Pharmaceuticals
Sargiacomo, Sotgia, Lisanti, COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection?, Aging
Sato, Aging is associated with increased brain iron through cortex-derived hepcidin expression, Mech Ageing Dev
Savla, Prabhavalkar, Bhatt, Cytokine storm associated coagulation complications in COVID-19 patients: pathogenesis and management, Expert Rev Anti Infect Ther
Schild, Multidomain cognitive impairment in non-hospitalized patients with the post-COVID-19 syndrome: results from a prospective monocentric cohort, J Neurol
Seibt, Proneth, Conrad, Role of GPX4 in ferroptosis and its pharmacological implication, Free Radical Biol Med
Sengupta, Clocks, viruses, and immunity: lessons for the COVID-19 pandemic, J Biol Rhythms
Sfera, Ferrosenescence: the iron age of neurodegeneration?, Mech Ageing Dev
Shen, Melatonin induces autophagy in amyotrophic lateral sclerosis mice via upregulation of SIRT1, Mol Neurobiol
Shih, Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress, J Neurosci
Shiu, Urgent search for safe and effective treatments of severe acute respiratory syndrome: is melatonin a promising candidate drug?, J Pineal Res
Sies, Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology, Nat Rev Mol Cell Biol
Sies, Jones, Reactive oxygen species (ROS) as pleiotropic physiological signalling agents, Nat Rev Mol Cell Biol
Slominski, Melatonin membrane receptors in peripheral tissues: Distribution and functions, Mol Cell Endocrinol
Song, Human umbilical cord blood-derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice, Cell Biol Toxicol
Song, Temozolomide drives ferroptosis via a DMT1-dependent pathway in glioblastoma cells, Yonsei Med J
Sr, Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways, Prog Neurobiol
Stankov, Melatonin signal transduction and mechanism of action in the central nervous system: using the rabbit cortex as a model, Endocrinology
Strassman, Elevated rectal temperature produced by all-night bright light is reversed by melatonin infusion in men, J Appl Physiol
Styś, Iron regulatory protein 1 outcompetes iron regulatory protein 2 in regulating cellular iron homeostasis in response to nitric oxide, J Biol Chem
Su, Melatonin attenuates angiotensin II-induced cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway, Mol Cell Biochem
Su, Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis, Oxid Med Cell Longev
Sun, Melatonin alleviates doxorubicin-induced mitochondrial oxidative damage and ferroptosis in cardiomyocytes by regulating YAP expression, Toxicol Appl Pharmacol
Sun, Protective effects of melatonin on male fertility preservation and reproductive system, Cryobiology
Suriawinata, Mehta, Iron and iron-related proteins in COVID-19, Clin Exp Med
Sánchez-Rico, Melatonin does not reduce mortality in adult hospitalized patients with COVID-19: a multicenter retrospective observational study, J Travel Med
Takahashi, Transcriptional architecture of the mammalian circadian clock, Nat Rev Genet
Tamarkin, Effect of melatonin on the reproductive systems of male and female Syrian hamsters: a diurnal rhythm in sensitivity to melatonin, Endocrinology
Tamura, Melatonin and the ovary: physiological and pathophysiological implications, Fertil Steril
Tan, Ebola virus disease: potential use of melatonin as a treatment, J Pineal Res
Taquet, 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records, Lancet Psychiatry
Taquet, Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA, Lancet Psychiatry
Taquet, Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients, Lancet Psychiatry
Taso, Lipid peroxidation products and their role in neurodegenerative diseases, Ann Res Hosp
Tomar, Raghav, Association of circadian clock and severe acute respiratory syndrome coronavirus 2 infection, Chronobiol Med
Tonelli, Chio, Tuveson, Transcriptional regulation by Nrf2, Antioxid Redox Signal
Touitou, Age-and mental health-related circadian rhythms of plasma levels of melatonin, prolactin, luteinizing hormone and folliclestimulating hormone in man, J Endocrinol
Touitou, Age-related changes in both circadian and seasonal rhythms of rectal temperature with special reference to senile dementia of Alzheimer type, Gerontology
Toyokuni, Ferroptosis at the crossroads of infection, aging and cancer, Cancer Sci
Tresguerres, Melatonin dietary supplement as an anti-aging therapy for age-related bone loss, Rejuvenation Res
Tripathi, SARS-CoV-2 causes senescence in human cells and exacerbates the senescence-associated secretory phenotype through TLR-3, Aging
Tseng, The dose and duration-dependent association between melatonin treatment and overall cognition in Alzheimer's dementia: a network meta-analysis of randomized placebo-controlled trials, Curr Neuropharmacol
Tu, Insights into the novel function of system Xc-in regulated cell death, Eur Rev Med Pharmacol Sci
Urrutia, Bórquez, Núñez, Inflaming the Brain with Iron, Antioxidants
Urrutia, Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells, J Neurochem
Ursini, Maiorino, Lipid peroxidation and ferroptosis: The role of GSH and GPx4, Free Radical Biol Med
Vega, Chronic treatment with melatonin improves hippocampal neurogenesis in the aged brain and under neurodegeneration, Molecules
Vishnoi, Raisuddin, Parvez, Reiter, Glutamate excitotoxicity and oxidative stress in epilepsy: modulatory role of melatonin, J Environ Pathol Toxicol Oncol
Vriend, Reiter, Melatonin feedback on clock genes: a theory involving the proteasome, J Pineal Res
Wagner, Buettner, Burns, Free radical-mediated lipid peroxidation in cells: oxidizability is a function of cell lipid bis-allylic hydrogen content, Biochemistry
Waldhauser, Fall in nocturnal serum melatonin during prepuberty and pubescence, Lancet
Waldhauser, Serum melatonin in central precocious puberty is lower than in age-matched prepubertal children, J Clin Endocrinol Metab
Wan, Iron deposition leads to hyperphosphorylation of tau and disruption of insulin signaling, Front Neurol
Wang, Association of COVID-19 with new-onset Alzheimer's disease, J Alzheimer's Dis
Wang, Chemistry and biology of ω-3 PUFA peroxidation-derived compounds, Prostaglandins Other Lipid Mediat
Wang, Deficiency of angiotensin-converting enzyme 2 causes deterioration of cognitive function, npj Aging Mechanisms Dis
Wang, Revisiting the intersection of microglial activation and neuroinflammation in Alzheimer's disease from the perspective of ferroptosis, Chem Biol Interact
Weaver, Skouta, The selenoprotein glutathione peroxidase 4: from molecular mechanisms to novel therapeutic opportunities, Biomedicines
Wen, Sulforaphane triggers iron overload-mediated ferroptosis in gastric carcinoma cells by activating the PI3K/IRP2/DMT1 pathway, Hum Exp Toxicol
Wendimu, Hooks, Microglia phenotypes in aging and neurodegenerative diseases, Cells
Winterbourn, Toxicity of iron and hydrogen peroxide: the Fenton reaction, Toxicol Lett
Wu, A novel mechanism linking ferroptosis and endoplasmic reticulum stress via the circPtpn14/miR-351-5p/5-LOX signaling in melatonin-mediated treatment of traumatic brain injury, Free Radical Biol Med
Wurtman, Armstrong, Melatonin as a hormone in humans: a history, Yale J Biol Med
Wurtman, Axelrod, Chu, Melatonin, a pineal substance: effect on the rat ovary, Science
Wurtman, Interactions of the pineal and exposure to continuous light on organ weights of female rats, Eur J Endocrinol
Wójtowicz, Jakiel, Olcese, Melatonin and female reproduction: an expanding universe, Front Endocrinol
Xia, An update on inflamm-aging: mechanisms, prevention, and treatment, J Immunol Res
Xie, A review of sleep disorders and melatonin, Neurol Res
Xu, Melatonin alleviates PTSD-like behaviors and restores serum GABA and cortisol levels in mice, Psychopharmacology
Xu, Role of ferroptosis in stroke, Cell Mol Neurobiol
Yadalam, Assessing the therapeutic potential of agomelatine, ramelteon, and melatonin against SARS-CoV-2, Saudi J Biol Sci
Yanatori, Kishi, DMT1 and iron transport, Free Radical Biol Med
Yang, Clockophagy is a novel selective autophagy process favoring ferroptosis, Int J Equity Health
Yang, Lai, SARS-CoV-2 infection: can ferroptosis be a potential treatment target for multiple organ involvement?, Cell Death Discovery
Yang, Melatonin alleviates angiotensin-II-induced cardiac hypertrophy via activating MICU1 pathway, Aging
Yang, Tang, Zeng, Melatonin: potential avenue for treating iron overload disorders, Ageing Res Rev
Yao, Iron regulatory protein 1 promotes ferroptosis by sustaining cellular iron homeostasis in melanoma, Oncol Lett
Yasmin, The melatonin receptor in the human brain: cloning experiments and distribution studies, Gen Comp Endocrinol
Yin, Xu, Porter, Free radical lipid peroxidation: mechanisms and analysis, Chem Rev
Yoo, Melatonin improves D-galactose-induced aging effects on behavior, neurogenesis, and lipid peroxidation in the mouse dentate gyrus via increasing pCREB expression, J Pineal Res
You, Astrocyte hepcidin is a key factor in LPS-induced neuronal apoptosis, Cell Death Dis
Yu, Activation of PKG-CREB-KLF15 by melatonin attenuates Angiotensin II-induced vulnerability to atrial fibrillation via enhancing branched-chain amino acids catabolism, Free Radical Biol Med
Yılmaz, Öner, Melatonin levels are low in COVID-19 positive patients and these levels are associated with depression, death anxiety and insomnia, Scandinavian J Clin Lab Investig
Yılmaz, Öner, Melatonin levels are low in COVID-19 positive patients and these levels are associated with depression, death anxiety and insomnia, Yehia and Abulseoud Molecular Neurodegeneration
Zenesini, Risk of SARS-CoV-2 infection, hospitalization, and death for COVID-19 in people with Parkinson disease or parkinsonism over a 15-month period: A cohort study, Eur J Neurol
Zhang, COVID-19-related brain injury: the potential role of ferroptosis, J Inflammation Res
Zhang, Cellular iron status influences the functional relationship between microglia and oligodendrocytes, Redox Biol
Zhang, Hepcidin promoted ferroptosis through iron metabolism which is associated with DMT1 signaling activation in early brain injury following subarachnoid hemorrhage, Oxidative Med Cell Longevity
Zhang, Impairment of hepcidin upregulation by lipopolysaccharide in the interleukin-6 knockout mouse brain, Front Mol Neurosci
Zhang, Melatonin alleviates retinal ischemia-reperfusion injury by inhibiting p53-mediated ferroptosis, Antioxidants
Zhang, Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARγ expression and enhancing Runx2 expression, J Pineal Res
Zhang, SARS-COV-2 spike protein promotes RPE cell senescence via the ROS/P53/P21 pathway, Biogerontology
Zhao, Melatonin prevents against ethanol-induced liver injury by mitigating ferroptosis via targeting brain and muscle ARNT-like 1 in mice liver and HepG2 cells, J Agric Food Chem
Zhou, Increased serum levels of hepcidin and ferritin are associated with severity of COVID-19, Med Sci Monitor
Zhou, Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway, Cancer Med
Zhou, Melatonin reduces neuroinflammation and improves axonal hypomyelination by modulating M1/M2 microglia polarization via JAK2-STAT3-telomerase pathway in postnatal exposed to lipopolysaccharide, Mol Neurobiol
Zhou, Novel insights into ferroptosis: Implications for agerelated diseases, Theranostics
Zhuang, The circadian clock component BMAL1 regulates SARS-CoV-2 entry and replication in lung epithelial cells, IScience
Zimmermann, Effects of acute tryptophan depletion on nocturnal melatonin secretion in humans, J Clin Endocrinol Metab
{ 'indexed': {'date-parts': [[2024, 4, 19]], 'date-time': '2024-04-19T14:40:50Z', 'timestamp': 1713537650210}, 'reference-count': 436, 'publisher': 'Springer Science and Business Media LLC', 'issue': '1', 'license': [ { 'start': { 'date-parts': [[2024, 4, 19]], 'date-time': '2024-04-19T00:00:00Z', 'timestamp': 1713484800000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}, { 'start': { 'date-parts': [[2024, 4, 19]], 'date-time': '2024-04-19T00:00:00Z', 'timestamp': 1713484800000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}], 'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False}, 'abstract': '<jats:title>Abstract</jats:title><jats:p>The unprecedented pandemic of COVID-19 swept ' 'millions of lives in a short period, yet its menace continues among its survivors in the form ' 'of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from ' 'cognitive impairment, with compelling evidence of a trajectory of accelerated aging and ' 'neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands ' 'extensive research seeking answers for both the molecular underpinnings and potential ' 'therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed ' 'underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites ' 'neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, ' 'antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene ' 'alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, ' 'premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin ' 'shines as a promising ferroptosis inhibitor with its repeatedly reported safety and ' 'tolerability. According to various studies, melatonin has proven efficacy in attenuating the ' 'severity of certain COVID-19 manifestations, validating its reputation as an anti-viral ' 'compound. Melatonin has well-documented anti-aging properties and combating ' 'neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis ' 'since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II ' 'antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind ' 'the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ' 'ferroptosis inhibitor, as a potential treatment.</jats:p>', 'DOI': '10.1186/s13024-024-00728-6', 'type': 'journal-article', 'created': {'date-parts': [[2024, 4, 19]], 'date-time': '2024-04-19T13:02:03Z', 'timestamp': 1713531723000}, 'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Melatonin: a ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 ' 'trajectory of accelerated brain aging and neurodegeneration', 'prefix': '10.1186', 'volume': '19', 'author': [ {'given': 'Asmaa', 'family': 'Yehia', 'sequence': 'first', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-0652-0862', 'authenticated-orcid': False, 'given': 'Osama A.', 'family': 'Abulseoud', 'sequence': 'additional', 'affiliation': []}], 'member': '297', 'published-online': {'date-parts': [[2024, 4, 19]]}, 'reference': [ { 'key': '728_CR1', 'doi-asserted-by': 'publisher', 'DOI': '10.21203/rs.3.rs-1313103/v1', 'volume-title': 'Modeling COVID-19 Effects on Sustainable Development Goals in Egypt ' 'Using System Dynamics', 'author': 'M Marzouk', 'year': '2022', 'unstructured': 'Marzouk M, et al. Modeling COVID-19 Effects on Sustainable Development ' 'Goals in Egypt Using System Dynamics. 2022.'}, { 'issue': '24', 'key': '728_CR2', 'doi-asserted-by': 'publisher', 'first-page': '5913', 'DOI': '10.3390/jcm10245913', 'volume': '10', 'author': 'G Jennings', 'year': '2021', 'unstructured': 'Jennings G, et al. A systematic review of persistent symptoms and ' 'residual abnormal functioning following acute COVID-19: ongoing ' 'symptomatic phase vs. post-COVID-19 syndrome. J Clin Med. ' '2021;10(24):5913.', 'journal-title': 'J Clin Med'}, { 'issue': '11', 'key': '728_CR3', 'first-page': '384', 'volume': '72', 'author': 'FJ Carod-Artal', 'year': '2021', 'unstructured': 'Carod-Artal FJ. Post-COVID-19 syndrome: epidemiology, diagnostic ' 'criteria and pathogenic mechanisms involved. Rev Neurol. ' '2021;72(11):384–96.', 'journal-title': 'Rev Neurol'}, { 'issue': '3', 'key': '728_CR4', 'doi-asserted-by': 'publisher', 'first-page': '869', 'DOI': '10.1016/j.dsx.2021.04.007', 'volume': '15', 'author': 'AV Raveendran', 'year': '2021', 'unstructured': 'Raveendran AV, Jayadevan R, Sashidharan S. Long COVID: an overview. ' 'Diabetes Metab Syndr. 2021;15(3):869–75.', 'journal-title': 'Diabetes Metab Syndr'}, { 'issue': '2', 'key': '728_CR5', 'first-page': '1101', 'volume': '25', 'author': 'SA Meo', 'year': '2021', 'unstructured': 'Meo SA, et al. Magnetic Resonance Imaging (MRI) and neurological ' 'manifestations in SARS-CoV-2 patients. Eur Rev Med Pharmacol Sci. ' '2021;25(2):1101–8.', 'journal-title': 'Eur Rev Med Pharmacol Sci'}, { 'issue': '11', 'key': '728_CR6', 'doi-asserted-by': 'publisher', 'first-page': '4023', 'DOI': '10.4103/jfmpc.jfmpc_851_21', 'volume': '10', 'author': 'NKN Anjana', 'year': '2021', 'unstructured': 'Anjana NKN, et al. Manifestations and risk factors of post COVID ' 'syndrome among COVID-19 patients presented with minimal symptoms - A ' 'study from Kerala, India. J Family Med Prim Care. 2021;10(11):4023–9.', 'journal-title': 'J Family Med Prim Care'}, { 'key': '728_CR7', 'doi-asserted-by': 'crossref', 'unstructured': 'Abdel-Gawad M. et al. Post-COVID-19 Syndrome Clinical Manifestations: A ' 'Systematic Review. Antiinflamm Antiallergy Agents Med Chem. 2022.', 'DOI': '10.2174/1871523021666220328115818'}, { 'issue': '5', 'key': '728_CR8', 'doi-asserted-by': 'publisher', 'first-page': '416', 'DOI': '10.1016/S2215-0366(21)00084-5', 'volume': '8', 'author': 'M Taquet', 'year': '2021', 'unstructured': 'Taquet M, et al. 6-month neurological and psychiatric outcomes in 236 ' '379 survivors of COVID-19: a retrospective cohort study using electronic ' 'health records. Lancet Psychiatry. 2021;8(5):416–27.', 'journal-title': 'Lancet Psychiatry'}, { 'issue': '2', 'key': '728_CR9', 'doi-asserted-by': 'publisher', 'first-page': '130', 'DOI': '10.1016/S2215-0366(20)30462-4', 'volume': '8', 'author': 'M Taquet', 'year': '2021', 'unstructured': 'Taquet M, et al. Bidirectional associations between COVID-19 and ' 'psychiatric disorder: retrospective cohort studies of 62\u2008354 ' 'COVID-19 cases in the USA. Lancet Psychiatry. 2021;8(2):130–40.', 'journal-title': 'Lancet Psychiatry'}, { 'issue': '10', 'key': '728_CR10', 'doi-asserted-by': 'publisher', 'first-page': '815', 'DOI': '10.1016/S2215-0366(22)00260-7', 'volume': '9', 'author': 'M Taquet', 'year': '2022', 'unstructured': 'Taquet M, et al. Neurological and psychiatric risk trajectories after ' 'SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies ' 'including 1 284 437 patients. Lancet Psychiatry. 2022;9(10):815–27.', 'journal-title': 'Lancet Psychiatry'}, { 'issue': '12', 'key': '728_CR11', 'doi-asserted-by': 'publisher', 'first-page': '2070', 'DOI': '10.3390/jpm12122070', 'volume': '12', 'author': 'A Perrottelli', 'year': '2022', 'unstructured': 'Perrottelli A, et al. Cognitive impairment after post-acute COVID-19 ' 'infection: a systematic review of the literature. J Pers Med. ' '2022;12(12):2070.', 'journal-title': 'J Pers Med'}, { 'issue': '5', 'key': '728_CR12', 'doi-asserted-by': 'publisher', 'first-page': '1047', 'DOI': '10.1002/alz.12644', 'volume': '18', 'author': 'L Crivelli', 'year': '2022', 'unstructured': 'Crivelli L, et al. Changes in cognitive functioning after COVID-19: a ' 'systematic review and meta-analysis. Alzheimers Dement. ' '2022;18(5):1047–66.', 'journal-title': 'Alzheimers Dement'}, { 'key': '728_CR13', 'doi-asserted-by': 'publisher', 'first-page': '120162', 'DOI': '10.1016/j.jns.2022.120162', 'volume': '434', 'author': 'L Premraj', 'year': '2022', 'unstructured': 'Premraj L, et al. Mid and long-term neurological and neuropsychiatric ' 'manifestations of post-COVID-19 syndrome: a meta-analysis. J Neurol Sci. ' '2022;434:120162.', 'journal-title': 'J Neurol Sci'}, { 'issue': '5', 'key': '728_CR14', 'doi-asserted-by': 'publisher', 'first-page': '1060', 'DOI': '10.1016/j.cell.2012.03.042', 'volume': '149', 'author': 'SJ Dixon', 'year': '2012', 'unstructured': 'Dixon SJ, et al. Ferroptosis: an iron-dependent form of nonapoptotic ' 'cell death. Cell. 2012;149(5):1060–72.', 'journal-title': 'Cell'}, { 'key': '728_CR15', 'doi-asserted-by': 'publisher', 'first-page': '35', 'DOI': '10.1146/annurev-cancerbio-030518-055844', 'volume': '3', 'author': 'SJ Dixon', 'year': '2019', 'unstructured': 'Dixon SJ, Stockwell BR. The hallmarks of ferroptosis. Ann Rev Cancer ' 'Biol. 2019;3:35–54.', 'journal-title': 'Ann Rev Cancer Biol'}, { 'key': '728_CR16', 'doi-asserted-by': 'publisher', 'first-page': '637162', 'DOI': '10.3389/fcell.2021.637162', 'volume': '9', 'author': 'X Chen', 'year': '2021', 'unstructured': 'Chen X, et al. Characteristics and biomarkers of ferroptosis. Front Cell ' 'Dev Biol. 2021;9:637162.', 'journal-title': 'Front Cell Dev Biol'}, { 'issue': '1', 'key': '728_CR17', 'doi-asserted-by': 'publisher', 'first-page': '5155', 'DOI': '10.1038/s41598-018-23408-0', 'volume': '8', 'author': 'E Agmon', 'year': '2018', 'unstructured': 'Agmon E, et al. Modeling the effects of lipid peroxidation during ' 'ferroptosis on membrane properties. Sci Rep. 2018;8(1):5155.', 'journal-title': 'Sci Rep'}, { 'key': '728_CR18', 'doi-asserted-by': 'publisher', 'first-page': '5080843', 'DOI': '10.1155/2019/5080843', 'volume': '2019', 'author': 'L-J Su', 'year': '2019', 'unstructured': 'Su L-J, et al. Reactive oxygen species-induced lipid peroxidation in ' 'apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. ' '2019;2019:5080843.', 'journal-title': 'Oxid Med Cell Longev'}, { 'issue': '7', 'key': '728_CR19', 'doi-asserted-by': 'publisher', 'first-page': '499', 'DOI': '10.1038/s41580-022-00456-z', 'volume': '23', 'author': 'H Sies', 'year': '2022', 'unstructured': 'Sies H, et al. Defining roles of specific reactive oxygen species (ROS) ' 'in cell biology and physiology. Nat Rev Mol Cell Biol. ' '2022;23(7):499–515.', 'journal-title': 'Nat Rev Mol Cell Biol'}, { 'key': '728_CR20', 'doi-asserted-by': 'publisher', 'first-page': '1057', 'DOI': '10.2147/JIR.S275595', 'volume': '13', 'author': 'J Checa', 'year': '2020', 'unstructured': 'Checa J, Aran JM. Reactive oxygen species: drivers of physiological and ' 'pathological processes. J Inflamm Res. 2020;13:1057–73.', 'journal-title': 'J Inflamm Res'}, { 'key': '728_CR21', 'doi-asserted-by': 'publisher', 'first-page': '969', 'DOI': '10.1016/0378-4274(95)03532-X', 'volume': '82', 'author': 'CC Winterbourn', 'year': '1995', 'unstructured': 'Winterbourn CC. Toxicity of iron and hydrogen peroxide: the Fenton ' 'reaction. Toxicol Lett. 1995;82:969–74.', 'journal-title': 'Toxicol Lett'}, { 'issue': '1', 'key': '728_CR22', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1042/bj2190001', 'volume': '219', 'author': 'B Halliwell', 'year': '1984', 'unstructured': 'Halliwell B, Gutteridge J. Oxygen toxicity, oxygen radicals, transition ' 'metals and disease. Biochem J. 1984;219(1):1.', 'journal-title': 'Biochem J'}, { 'issue': '7', 'key': '728_CR23', 'doi-asserted-by': 'publisher', 'first-page': '363', 'DOI': '10.1038/s41580-020-0230-3', 'volume': '21', 'author': 'H Sies', 'year': '2020', 'unstructured': 'Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic ' 'physiological signalling agents. Nat Rev Mol Cell Biol. ' '2020;21(7):363–83.', 'journal-title': 'Nat Rev Mol Cell Biol'}, { 'issue': '9', 'key': '728_CR24', 'doi-asserted-by': 'publisher', 'first-page': '4642', 'DOI': '10.3390/ijms22094642', 'volume': '22', 'author': 'CA Juan', 'year': '2021', 'unstructured': 'Juan CA, et al. The Chemistry of Reactive Oxygen Species (ROS) ' 'Revisited: Outlining Their Role in Biological Macromolecules (DNA, ' 'Lipids and Proteins) and Induced Pathologies. Int J Mol Sci. ' '2021;22(9):4642.', 'journal-title': 'Int J Mol Sci'}, { 'key': '728_CR25', 'doi-asserted-by': 'publisher', 'first-page': '84', 'DOI': '10.1016/j.prostaglandins.2016.12.004', 'volume': '132', 'author': 'W Wang', 'year': '2017', 'unstructured': 'Wang W, et al. Chemistry and biology of ω-3 PUFA peroxidation-derived ' 'compounds. Prostaglandins Other Lipid Mediat. 2017;132:84–91.', 'journal-title': 'Prostaglandins Other Lipid Mediat'}, { 'key': '728_CR26', 'doi-asserted-by': 'publisher', 'first-page': '710290', 'DOI': '10.1155/2013/710290', 'volume': '2013', 'author': 'A Catalá', 'year': '2013', 'unstructured': 'Catalá A. Five decades with polyunsaturated fatty acids: chemical ' 'synthesis, enzymatic formation, lipid peroxidation and its biological ' 'effects. J Lipids. 2013;2013:710290.', 'journal-title': 'J Lipids'}, { 'issue': '15', 'key': '728_CR27', 'doi-asserted-by': 'publisher', 'first-page': '4449', 'DOI': '10.1021/bi00181a003', 'volume': '33', 'author': 'BA Wagner', 'year': '1994', 'unstructured': 'Wagner BA, Buettner GR, Burns CP. Free radical-mediated lipid ' 'peroxidation in cells: oxidizability is a function of cell lipid ' 'bis-allylic hydrogen content. Biochemistry. 1994;33(15):4449–53.', 'journal-title': 'Biochemistry'}, { 'issue': '12', 'key': '728_CR28', 'doi-asserted-by': 'publisher', 'first-page': 'S498', 'DOI': '10.1097/01.CCM.0000186787.64500.12', 'volume': '33', 'author': 'H Bayr', 'year': '2005', 'unstructured': 'Bayr H. Reactive oxygen species. Crit Care Med. 2005;33(12):S498–501.', 'journal-title': 'Crit Care Med'}, { 'issue': '10', 'key': '728_CR29', 'doi-asserted-by': 'publisher', 'first-page': '5944', 'DOI': '10.1021/cr200084z', 'volume': '111', 'author': 'H Yin', 'year': '2011', 'unstructured': 'Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and ' 'analysis. Chem Rev. 2011;111(10):5944–72.', 'journal-title': 'Chem Rev'}, { 'issue': '2', 'key': '728_CR30', 'doi-asserted-by': 'publisher', 'first-page': '87', 'DOI': '10.1016/0748-5514(85)90011-X', 'volume': '1', 'author': 'AW Girotti', 'year': '1985', 'unstructured': 'Girotti AW. Mechanisms of lipid peroxidation. J Free Radic Biol Med. ' '1985;1(2):87–95.', 'journal-title': 'J Free Radic Biol Med'}, { 'issue': '3', 'key': '728_CR31', 'doi-asserted-by': 'publisher', 'first-page': '419', 'DOI': '10.1016/j.bbrc.2016.10.086', 'volume': '482', 'author': 'MM Gaschler', 'year': '2017', 'unstructured': 'Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem ' 'Biophys Res Commun. 2017;482(3):419–25.', 'journal-title': 'Biochem Biophys Res Commun'}, { 'issue': '5', 'key': '728_CR32', 'doi-asserted-by': 'publisher', 'first-page': '715S', 'DOI': '10.1093/ajcn/57.5.715S', 'volume': '57', 'author': 'B Halliwell', 'year': '1993', 'unstructured': 'Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, ' 'and significance. Am J Clin Nutr. 1993;57(5):715S–725S.', 'journal-title': 'Am J Clin Nutr'}, { 'issue': '1', 'key': '728_CR33', 'doi-asserted-by': 'publisher', 'first-page': '668', 'DOI': '10.1016/j.bbrc.2005.08.072', 'volume': '338', 'author': 'E Niki', 'year': '2005', 'unstructured': 'Niki E, et al. Lipid peroxidation: mechanisms, inhibition, and ' 'biological effects. Biochem Biophys Res Commun. 2005;338(1):668–76.', 'journal-title': 'Biochem Biophys Res Commun'}, { 'issue': '2', 'key': '728_CR34', 'doi-asserted-by': 'publisher', 'first-page': '154', 'DOI': '10.1016/S0891-5849(02)00855-9', 'volume': '33', 'author': 'H Kühn', 'year': '2002', 'unstructured': 'Kühn H, Borchert A. Regulation of enzymatic lipid peroxidation: the ' 'interplay of peroxidizing and peroxide reducing enzymes1 1This article ' 'is part of a series of reviews on “Regulatory and Cytoprotective Aspects ' 'of Lipid Hydroperoxide Metabolism.” The full list of papers may be found ' 'on the homepage of the journal. Free Rad Biol Med. 2002;33(2):154–72.', 'journal-title': 'Free Rad Biol Med'}, { 'issue': '12', 'key': '728_CR35', 'doi-asserted-by': 'publisher', 'first-page': '2215', 'DOI': '10.1016/j.molcel.2022.03.022', 'volume': '82', 'author': 'D Liang', 'year': '2022', 'unstructured': 'Liang D, Minikes AM, Jiang X. Ferroptosis at the intersection of lipid ' 'metabolism and cellular signaling. Mol Cell. 2022;82(12):2215–27.', 'journal-title': 'Mol Cell'}, { 'issue': '3', 'key': '728_CR36', 'doi-asserted-by': 'publisher', 'first-page': '184', 'DOI': '10.3390/biology10030184', 'volume': '10', 'author': 'J-Y Lee', 'year': '2021', 'unstructured': 'Lee J-Y, et al. Lipid metabolism and ferroptosis. Biology. ' '2021;10(3):184.', 'journal-title': 'Biology'}, { 'issue': '1', 'key': '728_CR37', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1016/0009-2797(89)90087-2', 'volume': '71', 'author': 'G Minotti', 'year': '1989', 'unstructured': 'Minotti G, Aust SD. The role of iron in oxygen radical mediated lipid ' 'peroxidation. Chem Biol Interact. 1989;71(1):1–19.', 'journal-title': 'Chem Biol Interact'}, { 'issue': '3', 'key': '728_CR38', 'doi-asserted-by': 'publisher', 'first-page': '748', 'DOI': '10.1021/cr040077w', 'volume': '107', 'author': 'Z Cheng', 'year': '2007', 'unstructured': 'Cheng Z, Li Y. What is responsible for the initiating chemistry of ' 'iron-mediated lipid peroxidation: an update. Chem Rev. ' '2007;107(3):748–66.', 'journal-title': 'Chem Rev'}, { 'issue': '10', 'key': '728_CR39', 'doi-asserted-by': 'publisher', 'first-page': '1249', 'DOI': '10.1016/j.bbabio.2008.07.003', 'volume': '1777', 'author': 'R Pamplona', 'year': '2008', 'unstructured': 'Pamplona R. Membrane phospholipids, lipoxidative damage and molecular ' 'integrity: a causal role in aging and longevity. Biochim Biophys Acta. ' '2008;1777(10):1249–62.', 'journal-title': 'Biochim Biophys Acta'}, { 'key': '728_CR40', 'doi-asserted-by': 'publisher', 'first-page': '242', 'DOI': '10.3389/fphys.2013.00242', 'volume': '4', 'author': 'S Pizzimenti', 'year': '2013', 'unstructured': 'Pizzimenti S, et al. Interaction of aldehydes derived from lipid ' 'peroxidation and membrane proteins. Front Physiol. 2013;4:242.', 'journal-title': 'Front Physiol'}, { 'issue': '2', 'key': '728_CR41', 'first-page': '10.21037', 'volume': '3', 'author': 'OV Taso', 'year': '2019', 'unstructured': 'Taso OV, et al. Lipid peroxidation products and their role in ' 'neurodegenerative diseases. Ann Res Hosp. 2019;3(2):10.21037.', 'journal-title': 'Ann Res Hosp'}, { 'issue': '10', 'key': '728_CR42', 'doi-asserted-by': 'publisher', 'first-page': '1098', 'DOI': '10.3109/10715762.2010.498477', 'volume': '44', 'author': 'F Guéraud', 'year': '2010', 'unstructured': 'Guéraud F, et al. Chemistry and biochemistry of lipid peroxidation ' 'products. Free Radical Res. 2010;44(10):1098–124.', 'journal-title': 'Free Radical Res'}, { 'key': '728_CR43', 'doi-asserted-by': 'publisher', 'first-page': '24', 'DOI': '10.1016/j.jphotobiol.2014.03.028', 'volume': '139', 'author': 'S Miyamoto', 'year': '2014', 'unstructured': 'Miyamoto S, et al. Singlet molecular oxygen generated by biological ' 'hydroperoxides. J Photochem Photobiol, B. 2014;139:24–33.', 'journal-title': 'J Photochem Photobiol, B'}, { 'key': '728_CR44', 'doi-asserted-by': 'publisher', 'first-page': '1147414', 'DOI': '10.3389/fphar.2023.1147414', 'volume': '14', 'author': 'J Pei', 'year': '2023', 'unstructured': 'Pei J, et al. Research progress of glutathione peroxidase family (GPX) ' 'in redoxidation. Front Pharmacol. 2023;14:1147414.', 'journal-title': 'Front Pharmacol'}, { 'key': '728_CR45', 'doi-asserted-by': 'publisher', 'first-page': '153', 'DOI': '10.1016/j.freeradbiomed.2018.03.001', 'volume': '127', 'author': 'JPF Angeli', 'year': '2018', 'unstructured': 'Angeli JPF, Conrad M. Selenium and GPX4, a vital symbiosis. Free Radical ' 'Biol Med. 2018;127:153–9.', 'journal-title': 'Free Radical Biol Med'}, { 'issue': '4', 'key': '728_CR46', 'doi-asserted-by': 'publisher', 'first-page': '891', 'DOI': '10.3390/biomedicines10040891', 'volume': '10', 'author': 'K Weaver', 'year': '2022', 'unstructured': 'Weaver K, Skouta R. The selenoprotein glutathione peroxidase 4: from ' 'molecular mechanisms to novel therapeutic opportunities. Biomedicines. ' '2022;10(4):891.', 'journal-title': 'Biomedicines'}, { 'issue': '5', 'key': '728_CR47', 'doi-asserted-by': 'publisher', 'first-page': '3143', 'DOI': '10.1016/j.bbagen.2012.09.008', 'volume': '1830', 'author': 'SC Lu', 'year': '2013', 'unstructured': 'Lu SC. Glutathione synthesis. Biochim Biophys Acta. ' '2013;1830(5):3143–53.', 'journal-title': 'Biochim Biophys Acta'}, { 'issue': '1–2', 'key': '728_CR48', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1016/j.mam.2008.08.006', 'volume': '30', 'author': 'HJ Forman', 'year': '2009', 'unstructured': 'Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective ' 'roles, measurement, and biosynthesis. Mol Aspects Med. ' '2009;30(1–2):1–12.', 'journal-title': 'Mol Aspects Med'}, { 'issue': '9', 'key': '728_CR49', 'doi-asserted-by': 'publisher', 'first-page': '5010', 'DOI': '10.3390/ijms22095010', 'volume': '22', 'author': 'K Aoyama', 'year': '2021', 'unstructured': 'Aoyama K. Glutathione in the Brain. Int J Mol Sci. 2021;22(9):5010.', 'journal-title': 'Int J Mol Sci'}, { 'key': '728_CR50', 'doi-asserted-by': 'publisher', 'first-page': '8', 'DOI': '10.1016/0076-6879(95)51107-5', 'volume': '251', 'author': 'HF Gilbert', 'year': '1995', 'unstructured': 'Gilbert HF. [2] Thiol/disulfide exchange equilibria and disulfidebond ' 'stability. Methods Enzymol. 1995;251:8–28.', 'journal-title': 'Methods Enzymol'}, { 'issue': '7', 'key': '728_CR51', 'doi-asserted-by': 'publisher', 'first-page': '1406', 'DOI': '10.1373/clinchem.2006.067793', 'volume': '52', 'author': 'R Rossi', 'year': '2006', 'unstructured': 'Rossi R, et al. Oxidized forms of glutathione in peripheral blood as ' 'biomarkers of oxidative stress. Clin Chem. 2006;52(7):1406–14.', 'journal-title': 'Clin Chem'}, { 'key': '728_CR52', 'doi-asserted-by': 'publisher', 'first-page': '910292', 'DOI': '10.3389/fphar.2022.910292', 'volume': '13', 'author': 'F-J Li', 'year': '2022', 'unstructured': 'Li F-J, et al. System Xc−/GSH/GPX4 axis: An important antioxidant system ' 'for the ferroptosis in drug-resistant solid tumor therapy. Front ' 'Pharmacol. 2022;13:910292.', 'journal-title': 'Front Pharmacol'}, { 'issue': '29', 'key': '728_CR53', 'doi-asserted-by': 'publisher', 'first-page': '22244', 'DOI': '10.1074/jbc.M110.121327', 'volume': '285', 'author': 'PK Mandal', 'year': '2010', 'unstructured': 'Mandal PK, et al. System xc− and thioredoxin reductase 1 cooperatively ' 'rescue glutathione deficiency. J Biol Chem. 2010;285(29):22244–53.', 'journal-title': 'J Biol Chem'}, { 'issue': '5', 'key': '728_CR54', 'doi-asserted-by': 'publisher', 'first-page': '522', 'DOI': '10.1089/ars.2011.4391', 'volume': '18', 'author': 'J Lewerenz', 'year': '2013', 'unstructured': 'Lewerenz J, et al. The cystine/glutamate antiporter system xc− in health ' 'and disease: from molecular mechanisms to novel therapeutic ' 'opportunities. Antioxid Redox Signal. 2013;18(5):522–55.', 'journal-title': 'Antioxid Redox Signal'}, { 'issue': '4', 'key': '728_CR55', 'doi-asserted-by': 'publisher', 'first-page': '443', 'DOI': '10.1016/j.freeradbiomed.2008.10.040', 'volume': '46', 'author': 'C Harvey', 'year': '2009', 'unstructured': 'Harvey C, et al. Nrf2-regulated glutathione recycling independent of ' 'biosynthesis is critical for cell survival during oxidative stress. Free ' 'Radical Biol Med. 2009;46(4):443–53.', 'journal-title': 'Free Radical Biol Med'}, { 'issue': '8', 'key': '728_CR56', 'doi-asserted-by': 'publisher', 'first-page': '3394', 'DOI': '10.1523/JNEUROSCI.23-08-03394.2003', 'volume': '23', 'author': 'AY Shih', 'year': '2003', 'unstructured': 'Shih AY, et al. Coordinate regulation of glutathione biosynthesis and ' 'release by Nrf2-expressing glia potently protects neurons from oxidative ' 'stress. J Neurosci. 2003;23(8):3394–406.', 'journal-title': 'J Neurosci'}, { 'issue': '17', 'key': '728_CR57', 'doi-asserted-by': 'publisher', 'first-page': '1727', 'DOI': '10.1089/ars.2017.7342', 'volume': '29', 'author': 'C Tonelli', 'year': '2018', 'unstructured': 'Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. ' 'Antioxid Redox Signal. 2018;29(17):1727–45.', 'journal-title': 'Antioxid Redox Signal'}, { 'key': '728_CR58', 'doi-asserted-by': 'publisher', 'first-page': '101107', 'DOI': '10.1016/j.redox.2019.101107', 'volume': '23', 'author': 'M Dodson', 'year': '2019', 'unstructured': 'Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in ' 'mitigating lipid peroxidation and ferroptosis. Redox Biol. ' '2019;23:101107.', 'journal-title': 'Redox Biol'}, { 'issue': '11', 'key': '728_CR59', 'doi-asserted-by': 'publisher', 'first-page': '38', 'DOI': '10.9790/5736-071123846', 'volume': '7', 'author': 'C Gupta', 'year': '2014', 'unstructured': 'Gupta C. Role of iron (Fe) in body. IOSR J Appl Chem. 2014;7(11):38–46.', 'journal-title': 'IOSR J Appl Chem'}, { 'issue': '2', 'key': '728_CR60', 'first-page': '164', 'volume': '19', 'author': 'N Abbaspour', 'year': '2014', 'unstructured': 'Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance ' 'for human health. J Res Med Sci. 2014;19(2):164.', 'journal-title': 'J Res Med Sci'}, { 'key': '728_CR61', 'doi-asserted-by': 'publisher', 'first-page': '45', 'DOI': '10.3389/fphar.2014.00045', 'volume': '5', 'author': 'ZI Cabantchik', 'year': '2014', 'unstructured': 'Cabantchik ZI. Labile iron in cells and body fluids: physiology, ' 'pathology, and pharmacology. Front Pharmacol. 2014;5:45.', 'journal-title': 'Front Pharmacol'}, { 'issue': '6', 'key': '728_CR62', 'doi-asserted-by': 'publisher', 'first-page': '1559S', 'DOI': '10.3945/ajcn.117.155804', 'volume': '106', 'author': 'GJ Anderson', 'year': '2017', 'unstructured': 'Anderson GJ, Frazer DM. Current understanding of iron homeostasis. Am J ' 'Clin Nutr. 2017;106(6):1559S–1566S.', 'journal-title': 'Am J Clin Nutr'}, { 'key': '728_CR63', 'doi-asserted-by': 'publisher', 'first-page': '100866', 'DOI': '10.1016/j.mam.2020.100866', 'volume': '75', 'author': 'A Katsarou', 'year': '2020', 'unstructured': 'Katsarou A, Pantopoulos K. Basics and principles of cellular and ' 'systemic iron homeostasis. Mol Aspects Med. 2020;75:100866.', 'journal-title': 'Mol Aspects Med'}, { 'issue': '17', 'key': '728_CR64', 'doi-asserted-by': 'publisher', 'first-page': '4425', 'DOI': '10.1182/blood-2011-01-258467', 'volume': '117', 'author': 'T Ganz', 'year': '2011', 'unstructured': 'Ganz T. Hepcidin and iron regulation, 10 years later. Blood. ' '2011;117(17):4425–33.', 'journal-title': 'Blood'}, { 'issue': '6', 'key': '728_CR65', 'doi-asserted-by': 'publisher', 'first-page': '918', 'DOI': '10.1016/j.cmet.2012.03.018', 'volume': '15', 'author': 'B Qiao', 'year': '2012', 'unstructured': 'Qiao B, et al. Hepcidin-induced endocytosis of ferroportin is dependent ' 'on ferroportin ubiquitination. Cell Metab. 2012;15(6):918–24.', 'journal-title': 'Cell Metab'}, { 'issue': '5509', 'key': '728_CR66', 'doi-asserted-by': 'publisher', 'first-page': '1755', 'DOI': '10.1126/science.1057206', 'volume': '291', 'author': 'AT McKie', 'year': '2001', 'unstructured': 'McKie AT, et al. An iron-regulated ferric reductase associated with the ' 'absorption of dietary iron. Science. 2001;291(5509):1755–9.', 'journal-title': 'Science'}, { 'issue': '2', 'key': '728_CR67', 'doi-asserted-by': 'publisher', 'first-page': '115', 'DOI': '10.1016/j.jtemb.2012.03.015', 'volume': '26', 'author': 'BK Fuqua', 'year': '2012', 'unstructured': 'Fuqua BK, Vulpe CD, Anderson GJ. Intestinal iron absorption. J Trace ' 'Elem Med Biol. 2012;26(2):115–9.', 'journal-title': 'J Trace Elem Med Biol'}, { 'key': '728_CR68', 'doi-asserted-by': 'publisher', 'first-page': '46', 'DOI': '10.1016/j.freeradbiomed.2018.06.037', 'volume': '133', 'author': 'H Kawabata', 'year': '2019', 'unstructured': 'Kawabata H. Transferrin and transferrin receptors update. Free Radical ' 'Biol Med. 2019;133:46–54.', 'journal-title': 'Free Radical Biol Med'}, { 'key': '728_CR69', 'doi-asserted-by': 'publisher', 'first-page': '55', 'DOI': '10.1016/j.freeradbiomed.2018.07.020', 'volume': '133', 'author': 'I Yanatori', 'year': '2019', 'unstructured': 'Yanatori I, Kishi F. DMT1 and iron transport. Free Radical Biol Med. ' '2019;133:55–63.', 'journal-title': 'Free Radical Biol Med'}, { 'issue': '3', 'key': '728_CR70', 'doi-asserted-by': 'publisher', 'first-page': '161', 'DOI': '10.1016/0005-2728(96)00022-9', 'volume': '1275', 'author': 'PM Harrison', 'year': '1996', 'unstructured': 'Harrison PM, Arosio P. The ferritins: molecular properties, iron storage ' 'function and cellular regulation. Biochim Biophys Acta. ' '1996;1275(3):161–203.', 'journal-title': 'Biochim Biophys Acta'}, { 'key': '728_CR71', 'doi-asserted-by': 'publisher', 'first-page': '238', 'DOI': '10.3389/fnins.2019.00238', 'volume': '13', 'author': 'M del QuilesRey', 'year': '2019', 'unstructured': 'del QuilesRey M, Mancias JD. NCOA4-mediated ferritinophagy: a potential ' 'link to neurodegeneration. Front Neurosci. 2019;13:238.', 'journal-title': 'Front Neurosci'}, { 'issue': '4', 'key': '728_CR72', 'doi-asserted-by': 'publisher', 'first-page': '114', 'DOI': '10.3390/ph11040114', 'volume': '11', 'author': 'N Santana-Codina', 'year': '2018', 'unstructured': 'Santana-Codina N, Mancias JD. The role of NCOA4-mediated ferritinophagy ' 'in health and disease. Pharmaceuticals. 2018;11(4):114.', 'journal-title': 'Pharmaceuticals'}, { 'issue': '8', 'key': '728_CR73', 'doi-asserted-by': 'publisher', 'first-page': '1425', 'DOI': '10.1080/15548627.2016.1187366', 'volume': '12', 'author': 'W Hou', 'year': '2016', 'unstructured': 'Hou W, et al. Autophagy promotes ferroptosis by degradation of ferritin. ' 'Autophagy. 2016;12(8):1425–8.', 'journal-title': 'Autophagy'}, { 'issue': '2', 'key': '728_CR74', 'doi-asserted-by': 'publisher', 'first-page': 'e12704', 'DOI': '10.1111/jpi.12704', 'volume': '70', 'author': 'T Rui', 'year': '2021', 'unstructured': 'Rui T, et al. Deletion of ferritin H in neurons counteracts the ' 'protective effect of melatonin against traumatic brain injury-induced ' 'ferroptosis. J Pineal Res. 2021;70(2):e12704.', 'journal-title': 'J Pineal Res'}, { 'issue': '5', 'key': '728_CR75', 'first-page': '657', 'volume': '145', 'author': 'CA Finch', 'year': '1986', 'unstructured': 'Finch CA, et al. Plasma ferritin determination as a diagnostic tool. ' 'West J Med. 1986;145(5):657.', 'journal-title': 'West J Med'}, { 'issue': '5', 'key': '728_CR76', 'doi-asserted-by': 'publisher', 'first-page': '413', 'DOI': '10.1067/mlc.2000.106456', 'volume': '135', 'author': 'P Nielsen', 'year': '2000', 'unstructured': 'Nielsen P, et al. Serum ferritin iron in iron overload and liver damage: ' 'correlation to body iron stores and diagnostic relevance. J Lab Clin ' 'Med. 2000;135(5):413–8.', 'journal-title': 'J Lab Clin Med'}, { 'issue': '3', 'key': '728_CR77', 'doi-asserted-by': 'publisher', 'first-page': '95', 'DOI': '10.1016/j.blre.2008.08.001', 'volume': '23', 'author': 'MA Knovich', 'year': '2009', 'unstructured': 'Knovich MA, et al. Ferritin for the clinician. Blood Rev. ' '2009;23(3):95–104.', 'journal-title': 'Blood Rev'}, { 'issue': '1–2', 'key': '728_CR78', 'doi-asserted-by': 'publisher', 'first-page': '81', 'DOI': '10.1016/j.mrfmmm.2003.08.004', 'volume': '531', 'author': 'M Kruszewski', 'year': '2003', 'unstructured': 'Kruszewski M. Labile iron pool: the main determinant of cellular ' 'response to oxidative stress. Mutat Res. 2003;531(1–2):81–92.', 'journal-title': 'Mutat Res'}, { 'key': '728_CR79', 'doi-asserted-by': 'publisher', 'first-page': '197', 'DOI': '10.1146/annurev.nutr.28.061807.155521', 'volume': '28', 'author': 'MU Muckenthaler', 'year': '2008', 'unstructured': 'Muckenthaler MU, Galy B, Hentze MW. Systemic iron homeostasis and the ' 'iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory ' 'network. Annu Rev Nutr. 2008;28:197–213.', 'journal-title': 'Annu Rev Nutr'}, { 'issue': '26', 'key': '728_CR80', 'doi-asserted-by': 'publisher', 'first-page': '22846', 'DOI': '10.1074/jbc.M111.231902', 'volume': '286', 'author': 'A Styś', 'year': '2011', 'unstructured': 'Styś A, et al. Iron regulatory protein 1 outcompetes iron regulatory ' 'protein 2 in regulating cellular iron homeostasis in response to nitric ' 'oxide. J Biol Chem. 2011;286(26):22846–54.', 'journal-title': 'J Biol Chem'}, { 'issue': '6', 'key': '728_CR81', 'doi-asserted-by': 'publisher', 'first-page': '389', 'DOI': '10.1002/iub.1628', 'volume': '69', 'author': 'S Recalcati', 'year': '2017', 'unstructured': 'Recalcati S, et al. Molecular regulation of cellular iron balance. IUBMB ' 'Life. 2017;69(6):389–98.', 'journal-title': 'IUBMB Life'}, { 'issue': '2', 'key': '728_CR82', 'doi-asserted-by': 'publisher', 'first-page': '68', 'DOI': '10.1097/MCO.0000000000000634', 'volume': '23', 'author': 'J Montesinos', 'year': '2020', 'unstructured': 'Montesinos J, Guardia-Laguarta C, Area-Gomez E. The fat brain. Curr Opin ' 'Clin Nutr Metab Care. 2020;23(2):68–75.', 'journal-title': 'Curr Opin Clin Nutr Metab Care'}, { 'key': '728_CR83', 'doi-asserted-by': 'crossref', 'unstructured': 'Friedman J. Why is the nervous system vulnerable to oxidative stress? ' 'Oxidative Stress Free Radical Damage Neurol. 2011:19–27.', 'DOI': '10.1007/978-1-60327-514-9_2'}, { 'issue': '6', 'key': '728_CR84', 'doi-asserted-by': 'publisher', 'first-page': '2100308', 'DOI': '10.1002/pmic.202100308', 'volume': '23', 'author': 'J Rodencal', 'year': '2023', 'unstructured': 'Rodencal J, Dixon SJ. A tale of two lipids: Lipid unsaturation commands ' 'ferroptosis sensitivity. Proteomics. 2023;23(6):2100308.', 'journal-title': 'Proteomics'}, { 'issue': '4', 'key': '728_CR85', 'doi-asserted-by': 'publisher', 'first-page': '447', 'DOI': '10.1016/j.devcel.2020.06.019', 'volume': '54', 'author': 'MA Perez', 'year': '2020', 'unstructured': 'Perez MA, et al. Dietary lipids induce ferroptosis in ' 'caenorhabditiselegans and human cancer cells. Dev Cell. ' '2020;54(4):447–45. e44.', 'journal-title': 'Dev Cell'}, { 'issue': '4', 'key': '728_CR86', 'doi-asserted-by': 'publisher', 'first-page': '365', 'DOI': '10.1016/j.ccell.2022.02.003', 'volume': '40', 'author': 'P Liao', 'year': '2022', 'unstructured': 'Liao P, et al. CD8+ T cells and fatty acids orchestrate tumor ' 'ferroptosis and immunity via ACSL4. Cancer Cell. 2022;40(4):365–378. e6.', 'journal-title': 'Cancer Cell'}, { 'key': '728_CR87', 'doi-asserted-by': 'publisher', 'first-page': '106363', 'DOI': '10.1016/j.prostaglandins.2019.106363', 'volume': '144', 'author': 'H Kuwata', 'year': '2019', 'unstructured': 'Kuwata H, Hara S. Role of acyl-CoA synthetase ACSL4 in arachidonic acid ' 'metabolism. Prostaglandins Other Lipid Mediat. 2019;144:106363.', 'journal-title': 'Prostaglandins Other Lipid Mediat'}, { 'issue': '1', 'key': '728_CR88', 'doi-asserted-by': 'publisher', 'first-page': '91', 'DOI': '10.1038/nchembio.2239', 'volume': '13', 'author': 'S Doll', 'year': '2017', 'unstructured': 'Doll S, et al. ACSL4 dictates ferroptosis sensitivity by shaping ' 'cellular lipid composition. Nat Chem Biol. 2017;13(1):91–8.', 'journal-title': 'Nat Chem Biol'}, { 'key': '728_CR89', 'doi-asserted-by': 'publisher', 'first-page': '144', 'DOI': '10.1016/j.freeradbiomed.2018.09.014', 'volume': '133', 'author': 'TM Seibt', 'year': '2019', 'unstructured': 'Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its ' 'pharmacological implication. Free Radical Biol Med. 2019;133:144–52.', 'journal-title': 'Free Radical Biol Med'}, { 'key': '728_CR90', 'doi-asserted-by': 'publisher', 'first-page': '175', 'DOI': '10.1016/j.freeradbiomed.2020.02.027', 'volume': '152', 'author': 'F Ursini', 'year': '2020', 'unstructured': 'Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: The role of ' 'GSH and GPx4. Free Radical Biol Med. 2020;152:175–85.', 'journal-title': 'Free Radical Biol Med'}, { 'issue': '18', 'key': '728_CR91', 'doi-asserted-by': 'publisher', 'first-page': '1800311', 'DOI': '10.1002/pmic.201800311', 'volume': '19', 'author': 'GC Forcina', 'year': '2019', 'unstructured': 'Forcina GC, Dixon SJ. GPX4 at the crossroads of lipid homeostasis and ' 'ferroptosis. Proteomics. 2019;19(18):1800311.', 'journal-title': 'Proteomics'}, { 'issue': '7545', 'key': '728_CR92', 'doi-asserted-by': 'publisher', 'first-page': '57', 'DOI': '10.1038/nature14344', 'volume': '520', 'author': 'L Jiang', 'year': '2015', 'unstructured': 'Jiang L, et al. Ferroptosis as a p53-mediated activity during tumour ' 'suppression. Nature. 2015;520(7545):57–62.', 'journal-title': 'Nature'}, { 'issue': '8', 'key': '728_CR93', 'doi-asserted-by': 'publisher', 'first-page': '599', 'DOI': '10.1007/s13238-020-00789-5', 'volume': '12', 'author': 'P Koppula', 'year': '2021', 'unstructured': 'Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ' 'ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. ' '2021;12(8):599–620.', 'journal-title': 'Protein Cell'}, { 'issue': '2', 'key': '728_CR94', 'doi-asserted-by': 'publisher', 'first-page': '298', 'DOI': '10.1016/j.molcel.2015.06.011', 'volume': '59', 'author': 'M Gao', 'year': '2015', 'unstructured': 'Gao M, et al. Glutaminolysis and transferrin regulate ferroptosis. Mol ' 'Cell. 2015;59(2):298–308.', 'journal-title': 'Mol Cell'}, { 'issue': '10', 'key': '728_CR95', 'doi-asserted-by': 'publisher', 'first-page': '3411', 'DOI': '10.1016/j.celrep.2020.02.049', 'volume': '30', 'author': 'H Feng', 'year': '2020', 'unstructured': 'Feng H, et al. Transferrin receptor is a specific ferroptosis marker. ' 'Cell Rep. 2020;30(10):3411–3423. e7.', 'journal-title': 'Cell Rep'}, { 'issue': '9', 'key': '728_CR96', 'doi-asserted-by': 'publisher', 'first-page': '843', 'DOI': '10.3349/ymj.2021.62.9.843', 'volume': '62', 'author': 'Q Song', 'year': '2021', 'unstructured': 'Song Q, et al. Temozolomide drives ferroptosis via a DMT1-dependent ' 'pathway in glioblastoma cells. Yonsei Med J. 2021;62(9):843.', 'journal-title': 'Yonsei Med J'}, { 'key': '728_CR97', 'doi-asserted-by': 'publisher', 'first-page': '51', 'DOI': '10.1007/s10565-020-09530-8', 'volume': '37', 'author': 'Y Song', 'year': '2021', 'unstructured': 'Song Y, et al. Human umbilical cord blood–derived MSCs exosome attenuate ' 'myocardial injury by inhibiting ferroptosis in acute myocardial ' 'infarction mice. Cell Biol Toxicol. 2021;37:51–64.', 'journal-title': 'Cell Biol Toxicol'}, { 'issue': '3', 'key': '728_CR98', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.3892/ol.2021.12918', 'volume': '22', 'author': 'F Yao', 'year': '2021', 'unstructured': 'Yao F, et al. Iron regulatory protein 1 promotes ferroptosis by ' 'sustaining cellular iron homeostasis in melanoma. Oncol Lett. ' '2021;22(3):1–12.', 'journal-title': 'Oncol Lett'}, { 'key': '728_CR99', 'doi-asserted-by': 'publisher', 'first-page': '096032712311772', 'DOI': '10.1177/09603271231177295', 'volume': '42', 'author': 'J Wen', 'year': '2023', 'unstructured': 'Wen J, et al. Sulforaphane triggers iron overload-mediated ferroptosis ' 'in gastric carcinoma cells by activating the PI3K/IRP2/DMT1 pathway. Hum ' 'Exp Toxicol. 2023;42:09603271231177295.', 'journal-title': 'Hum Exp Toxicol'}, { 'issue': '12', 'key': '728_CR100', 'first-page': '3826', 'volume': '22', 'author': 'N Geng', 'year': '2018', 'unstructured': 'Geng N, et al. Knockdown of ferroportin accelerates erastin-induced ' 'ferroptosis in neuroblastoma cells. Eur Rev Med Pharmacol Sci. ' '2018;22(12):3826–36.', 'journal-title': 'Eur Rev Med Pharmacol Sci'}, { 'issue': '5', 'key': '728_CR101', 'doi-asserted-by': 'publisher', 'first-page': '1548', 'DOI': '10.1038/s41418-020-00685-9', 'volume': '28', 'author': 'W-D Bao', 'year': '2021', 'unstructured': 'Bao W-D, et al. Loss of ferroportin induces memory impairment by ' 'promoting ferroptosis in Alzheimer’s disease. Cell Death Differ. ' '2021;28(5):1548–62.', 'journal-title': 'Cell Death Differ'}, { 'key': '728_CR102', 'doi-asserted-by': 'crossref', 'unstructured': 'Zhang H. et al. Hepcidin promoted ferroptosis through iron metabolism ' 'which is associated with DMT1 signaling activation in early brain injury ' 'following subarachnoid hemorrhage. Oxidative Med Cell Longevity. ' '2021;2021.', 'DOI': '10.1155/2021/9800794'}, { 'issue': '6', 'key': '728_CR103', 'doi-asserted-by': 'publisher', 'first-page': '980', 'DOI': '10.1021/acscentsci.0c01592', 'volume': '7', 'author': 'Y Fang', 'year': '2021', 'unstructured': 'Fang Y, et al. Inhibiting ferroptosis through disrupting the NCOA4–FTH1 ' 'interaction: a new mechanism of action. ACS Cent Sci. 2021;7(6):980–9.', 'journal-title': 'ACS Cent Sci'}, { 'key': '728_CR104', 'doi-asserted-by': 'publisher', 'first-page': '129043', 'DOI': '10.1016/j.jhazmat.2022.129043', 'volume': '436', 'author': 'N Liu', 'year': '2022', 'unstructured': 'Liu N, et al. The role of ferroptosis mediated by NRF2/ERK-regulated ' 'ferritinophagy in CdTe QDs-induced inflammation in macrophage. J Hazard ' 'Mater. 2022;436:129043.', 'journal-title': 'J Hazard Mater'}, { 'key': '728_CR105', 'doi-asserted-by': 'publisher', 'first-page': '184', 'DOI': '10.1016/j.freeradbiomed.2022.12.002', 'volume': '194', 'author': 'Y Cheng', 'year': '2023', 'unstructured': 'Cheng Y, et al. TrkB agonist N-acetyl serotonin promotes functional ' 'recovery after traumatic brain injury by suppressing ferroptosis via the ' 'PI3K/Akt/Nrf2/Ferritin H pathway. Free Radical Biol Med. ' '2023;194:184–98.', 'journal-title': 'Free Radical Biol Med'}, { 'key': '728_CR106', 'doi-asserted-by': 'crossref', 'unstructured': 'Yang, M., et al., Clockophagy is a novel selective autophagy process ' 'favoring ferroptosis. Science advances, 2019. 5(7): p. eaaw2238.', 'DOI': '10.1126/sciadv.aaw2238'}, { 'issue': '1', 'key': '728_CR107', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1186/s12939-020-01242-z', 'volume': '19', 'author': 'Y Rozenfeld', 'year': '2020', 'unstructured': 'Rozenfeld Y, et al. A model of disparities: risk factors associated with ' 'COVID-19 infection. Int J Equity Health. 2020;19(1):1–10.', 'journal-title': 'Int J Equity Health'}, { 'issue': '24', 'key': '728_CR108', 'doi-asserted-by': 'publisher', 'first-page': '26248', 'DOI': '10.18632/aging.202136', 'volume': '12', 'author': 'L Pang', 'year': '2020', 'unstructured': 'Pang L, et al. Influence of aging on deterioration of patients with ' 'COVID-19. Aging (Albany NY). 2020;12(24):26248.', 'journal-title': 'Aging (Albany NY)'}, { 'key': '728_CR109', 'unstructured': 'Aguado J. et al. Senolytic therapy alleviates physiological human brain ' 'aging and COVID-19 neuropathology. bioRxiv, 2023: p. 2023.01. ' '17.524329.'}, { 'issue': '8', 'key': '728_CR110', 'doi-asserted-by': 'publisher', 'first-page': '6511', 'DOI': '10.18632/aging.103001', 'volume': '12', 'author': 'C Sargiacomo', 'year': '2020', 'unstructured': 'Sargiacomo C, Sotgia F, Lisanti MP. COVID-19 and chronological aging: ' 'senolytics and other anti-aging drugs for the treatment or prevention of ' 'corona virus infection? Aging (Albany NY). 2020;12(8):6511.', 'journal-title': 'Aging (Albany NY)'}, { 'issue': '18', 'key': '728_CR111', 'doi-asserted-by': 'publisher', 'first-page': '21838', 'DOI': '10.18632/aging.203560', 'volume': '13', 'author': 'U Tripathi', 'year': '2021', 'unstructured': 'Tripathi U, et al. SARS-CoV-2 causes senescence in human cells and ' 'exacerbates the senescence-associated secretory phenotype through TLR-3. ' 'Aging (albany NY). 2021;13(18):21838.', 'journal-title': 'Aging (albany NY)'}, { 'issue': '17', 'key': '728_CR112', 'doi-asserted-by': 'publisher', 'first-page': 'e00794', 'DOI': '10.1128/JVI.00794-21', 'volume': '95', 'author': 'K Meyer', 'year': '2021', 'unstructured': 'Meyer K, et al. SARS-CoV-2 spike protein induces paracrine senescence ' 'and leukocyte adhesion in endothelial cells. J Virol. ' '2021;95(17):e00794–e821.', 'journal-title': 'J Virol'}, { 'issue': '1', 'key': '728_CR113', 'doi-asserted-by': 'publisher', 'first-page': '2135', 'DOI': '10.1038/s41467-022-29801-8', 'volume': '13', 'author': 'X Cao', 'year': '2022', 'unstructured': 'Cao X, et al. Accelerated biological aging in COVID-19 patients. Nat ' 'Commun. 2022;13(1):2135.', 'journal-title': 'Nat Commun'}, { 'issue': '4', 'key': '728_CR114', 'doi-asserted-by': 'publisher', 'first-page': '1365', 'DOI': '10.3233/JPD-202249', 'volume': '10', 'author': 'EG Brown', 'year': '2020', 'unstructured': 'Brown EG, et al. The effect of the COVID-19 pandemic on people with ' 'Parkinson’s disease. J Parkinsons Dis. 2020;10(4):1365–77.', 'journal-title': 'J Parkinsons Dis'}, { 'issue': '4', 'key': '728_CR115', 'doi-asserted-by': 'publisher', 'first-page': '1579', 'DOI': '10.3233/JPD-212779', 'volume': '11', 'author': 'C Ineichen', 'year': '2021', 'unstructured': 'Ineichen C, et al. Worsened Parkinson’s disease progression: impact of ' 'the COVID-19 pandemic. J Parkinsons Dis. 2021;11(4):1579–83.', 'journal-title': 'J Parkinsons Dis'}, { 'key': '728_CR116', 'doi-asserted-by': 'publisher', 'first-page': '75', 'DOI': '10.1016/j.parkreldis.2022.04.011', 'volume': '98', 'author': 'U Fedeli', 'year': '2022', 'unstructured': 'Fedeli U, et al. Parkinson’s disease related mortality: Long-term trends ' 'and impact of COVID-19 pandemic waves. Parkinsonism Relat Disord. ' '2022;98:75–7.', 'journal-title': 'Parkinsonism Relat Disord'}, { 'issue': '6', 'key': '728_CR117', 'doi-asserted-by': 'publisher', 'first-page': '859', 'DOI': '10.1002/mdc3.13231', 'volume': '8', 'author': 'R Parihar', 'year': '2021', 'unstructured': 'Parihar R, et al. Outcome of Hospitalized Parkinson’s Disease Patients ' 'with and without COVID-19. Movement Disorders Clinical Practice. ' '2021;8(6):859–67.', 'journal-title': 'Movement Disorders Clinical Practice'}, { 'issue': '11', 'key': '728_CR118', 'doi-asserted-by': 'publisher', 'first-page': '3205', 'DOI': '10.1111/ene.15505', 'volume': '29', 'author': 'C Zenesini', 'year': '2022', 'unstructured': 'Zenesini C, et al. Risk of SARS-CoV-2 infection, hospitalization, and ' 'death for COVID-19 in people with Parkinson disease or parkinsonism over ' 'a 15-month period: A cohort study. Eur J Neurol. 2022;29(11):3205–17.', 'journal-title': 'Eur J Neurol'}, { 'key': '728_CR119', 'unstructured': 'Wang L. et al. Association of COVID-19 with new-onset Alzheimer’s ' "disease. J Alzheimer's Dis. 2022(Preprint):1–4."}, { 'key': '728_CR120', 'doi-asserted-by': 'crossref', 'unstructured': 'Chung SJ. et al. Association of Alzheimer’s disease with COVID-19 ' 'susceptibility and severe complications: a nationwide cohort study. J ' "Alzheimer's Dis. 2022(Preprint):1–10.", 'DOI': '10.3233/JAD-220031'}, { 'issue': '3', 'key': '728_CR121', 'doi-asserted-by': 'publisher', 'first-page': '2146', 'DOI': '10.3390/ijerph20032146', 'volume': '20', 'author': 'E Rudnicka-Drożak', 'year': '2023', 'unstructured': 'Rudnicka-Drożak E, et al. Links between COVID-19 and Alzheimer’s ' 'disease—what do we already know? Int J Environ Res Public Health. ' '2023;20(3):2146.', 'journal-title': 'Int J Environ Res Public Health'}, { 'issue': '5', 'key': '728_CR122', 'doi-asserted-by': 'publisher', 'first-page': '899', 'DOI': '10.1002/alz.12556', 'volume': '18', 'author': 'JA Frontera', 'year': '2022', 'unstructured': 'Frontera JA, et al. Comparison of serum neurodegenerative biomarkers ' 'among hospitalized COVID-19 patients versus non-COVID subjects with ' 'normal cognition, mild cognitive impairment, or Alzheimer’s dementia. ' 'Alzheimers Dement. 2022;18(5):899–910.', 'journal-title': 'Alzheimers Dement'}, { 'key': '728_CR123', 'doi-asserted-by': 'publisher', 'first-page': '94', 'DOI': '10.1016/j.bbrc.2021.03.100', 'volume': '554', 'author': 'D Idrees', 'year': '2021', 'unstructured': 'Idrees D, Kumar V. SARS-CoV-2 spike protein interactions with ' 'amyloidogenic proteins: Potential clues to neurodegeneration. Biochem ' 'Biophys Res Commun. 2021;554:94–8.', 'journal-title': 'Biochem Biophys Res Commun'}, { 'issue': '4', 'key': '728_CR124', 'doi-asserted-by': 'publisher', 'first-page': '1823', 'DOI': '10.1007/s00415-022-11543-8', 'volume': '270', 'author': 'R Ferrucci', 'year': '2023', 'unstructured': 'Ferrucci R, et al. Brain positron emission tomography (PET) and ' 'cognitive abnormalities one year after COVID-19. J Neurol. ' '2023;270(4):1823–34.', 'journal-title': 'J Neurol'}, { 'key': '728_CR125', 'doi-asserted-by': 'publisher', 'first-page': '115006', 'DOI': '10.1016/j.psychres.2022.115006', 'volume': '319', 'author': 'JA Matias-Guiu', 'year': '2023', 'unstructured': 'Matias-Guiu JA, et al. Development of criteria for cognitive dysfunction ' 'in post-COVID syndrome: the IC-CoDi-COVID approach. Psychiatry Res. ' '2023;319:115006.', 'journal-title': 'Psychiatry Res'}, { 'issue': '1', 'key': '728_CR126', 'doi-asserted-by': 'publisher', 'first-page': '6378', 'DOI': '10.1038/s41598-023-32939-0', 'volume': '13', 'author': 'E Herrera', 'year': '2023', 'unstructured': 'Herrera E, et al. Cognitive impairment in young adults with post ' 'COVID-19 syndrome. Sci Rep. 2023;13(1):6378.', 'journal-title': 'Sci Rep'}, { 'issue': '3', 'key': '728_CR127', 'doi-asserted-by': 'publisher', 'first-page': 'e2508', 'DOI': '10.1002/brb3.2508', 'volume': '12', 'author': 'C Garcia-Sanchez', 'year': '2022', 'unstructured': 'Garcia-Sanchez C, et al. Neuropsychological deficits in patients with ' 'cognitive complaints after COVID-19. Brain Behav. 2022;12(3):e2508.', 'journal-title': 'Brain Behav'}, { 'issue': '5', 'key': '728_CR128', 'doi-asserted-by': 'publisher', 'first-page': '1073', 'DOI': '10.1002/acn3.51350', 'volume': '8', 'author': 'EL Graham', 'year': '2021', 'unstructured': 'Graham EL, et al. Persistent neurologic symptoms and cognitive ' 'dysfunction in non-hospitalized Covid-19 “long haulers.” Ann Clin Transl ' 'Neurol. 2021;8(5):1073–85.', 'journal-title': 'Ann Clin Transl Neurol'}, { 'issue': '5', 'key': '728_CR129', 'doi-asserted-by': 'publisher', 'first-page': '474', 'DOI': '10.1016/j.jaclp.2022.01.003', 'volume': '63', 'author': 'SJ Ferrando', 'year': '2022', 'unstructured': 'Ferrando SJ, et al. Neuropsychological, Medical, and Psychiatric ' 'Findings After Recovery From Acute COVID-19: A Cross-sectional Study. J ' 'Acad Consult Liaison Psychiatry. 2022;63(5):474–84.', 'journal-title': 'J Acad Consult Liaison Psychiatry'}, { 'issue': '3', 'key': '728_CR130', 'doi-asserted-by': 'publisher', 'first-page': '1215', 'DOI': '10.1007/s00415-022-11444-w', 'volume': '270', 'author': 'AK Schild', 'year': '2023', 'unstructured': 'Schild AK, et al. Multidomain cognitive impairment in non-hospitalized ' 'patients with the post-COVID-19 syndrome: results from a prospective ' 'monocentric cohort. J Neurol. 2023;270(3):1215–23.', 'journal-title': 'J Neurol'}, { 'issue': '1', 'key': '728_CR131', 'doi-asserted-by': 'publisher', 'first-page': '48', 'DOI': '10.1186/s13024-021-00469-w', 'volume': '16', 'author': 'YH Liu', 'year': '2021', 'unstructured': 'Liu YH, et al. Post-infection cognitive impairments in a cohort of ' 'elderly patients with COVID-19. Mol Neurodegener. 2021;16(1):48.', 'journal-title': 'Mol Neurodegener'}, { 'key': '728_CR132', 'doi-asserted-by': 'publisher', 'first-page': '40', 'DOI': '10.1016/j.jpsychires.2022.03.033', 'volume': '150', 'author': 'C Delgado-Alonso', 'year': '2022', 'unstructured': 'Delgado-Alonso C, et al. Cognitive dysfunction associated with COVID-19: ' 'a comprehensive neuropsychological study. J Psychiatr Res. ' '2022;150:40–6.', 'journal-title': 'J Psychiatr Res'}, { 'key': '728_CR133', 'unstructured': 'Ariza M. et al. COVID-19 severity is related to poor executive function ' 'in people with post-COVID conditions. J Neurol. 2023:1–17.'}, { 'issue': '10', 'key': '728_CR134', 'doi-asserted-by': 'publisher', 'first-page': '2587', 'DOI': '10.1021/ja01543a060', 'volume': '80', 'author': 'AB Lerner', 'year': '1958', 'unstructured': 'Lerner AB, et al. Isolation of melatonin, the pineal gland factor that ' 'lightens melanocyteS1. J Am Chem Soc. 1958;80(10):2587–2587.', 'journal-title': 'J Am Chem Soc'}, { 'issue': '3', 'key': '728_CR135', 'doi-asserted-by': 'publisher', 'first-page': '186', 'DOI': '10.1056/NEJM199701163360306', 'volume': '336', 'author': 'A Brzezinski', 'year': '1997', 'unstructured': 'Brzezinski A. Melatonin in humans. N Engl J Med. 1997;336(3):186–95.', 'journal-title': 'N Engl J Med'}, { 'issue': '1', 'key': '728_CR136', 'doi-asserted-by': 'publisher', 'first-page': '11', 'DOI': '10.1016/j.smrv.2004.08.001', 'volume': '9', 'author': 'B Claustrat', 'year': '2005', 'unstructured': 'Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology ' 'of melatonin. Sleep Med Rev. 2005;9(1):11–24.', 'journal-title': 'Sleep Med Rev'}, { 'issue': '1–3', 'key': '728_CR137', 'doi-asserted-by': 'publisher', 'first-page': 'C153', 'DOI': '10.1016/0303-7207(91)90087-9', 'volume': '79', 'author': 'RJ Reiter', 'year': '1991', 'unstructured': 'Reiter RJ. Melatonin: the chemical expression of darkness. Mol Cell ' 'Endocrinol. 1991;79(1–3):C153–8.', 'journal-title': 'Mol Cell Endocrinol'}, { 'issue': '6', 'key': '728_CR138', 'first-page': '547', 'volume': '58', 'author': 'RJ Wurtman', 'year': '1985', 'unstructured': 'Wurtman RJ. Melatonin as a hormone in humans: a history. Yale J Biol ' 'Med. 1985;58(6):547.', 'journal-title': 'Yale J Biol Med'}, { 'issue': '10', 'key': '728_CR139', 'doi-asserted-by': 'publisher', 'first-page': '932', 'DOI': '10.1007/BF01953050', 'volume': '45', 'author': 'SM Armstrong', 'year': '1989', 'unstructured': 'Armstrong SM. Melatonin and circadian control in mammals. Experientia. ' '1989;45(10):932–8.', 'journal-title': 'Experientia'}, { 'issue': '2', 'key': '728_CR140', 'first-page': '447', 'volume': '75', 'author': 'A Cagnacci', 'year': '1992', 'unstructured': 'Cagnacci A, Elliott J, Yen S. Melatonin: a major regulator of the ' 'circadian rhythm of core temperature in humans. J Clin Endocrinol Metab. ' '1992;75(2):447–52.', 'journal-title': 'J Clin Endocrinol Metab'}, { 'key': '728_CR141', 'doi-asserted-by': 'publisher', 'first-page': '13', 'DOI': '10.1530/ror.0.0030013', 'volume': '3', 'author': 'J Arendt', 'year': '1998', 'unstructured': 'Arendt J. Melatonin and the pineal gland: influence on mammalian ' 'seasonal and circadian physiology. Rev Reprod. 1998;3:13–22.', 'journal-title': 'Rev Reprod'}, { 'key': '728_CR142', 'doi-asserted-by': 'crossref', 'unstructured': 'Axelrod J, Wurtman RJ. Photic and Neural Control of Indoleamine ' 'Metabolism in the Rat Pineal Gland, in Advances in Pharmacology, S. ' 'Garattini and P.A. Shore, Editors. 1968, Academic Press. p. 157–166.', 'DOI': '10.1016/S1054-3589(08)61169-2'}, { 'issue': '4144', 'key': '728_CR143', 'doi-asserted-by': 'publisher', 'first-page': '1341', 'DOI': '10.1126/science.184.4144.1341', 'volume': '184', 'author': 'J Axelrod', 'year': '1974', 'unstructured': 'Axelrod J. The Pineal Gland: a neurochemical transducer: chemical ' 'signals from nerves regulate synthesis of melatonin and convey ' 'information about internal clocks. Science. 1974;184(4144):1341–8.', 'journal-title': 'Science'}, { 'issue': '5557', 'key': '728_CR144', 'doi-asserted-by': 'publisher', 'first-page': '1070', 'DOI': '10.1126/science.1067262', 'volume': '295', 'author': 'DM Berson', 'year': '2002', 'unstructured': 'Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells ' 'that set the circadian clock. Science. 2002;295(5557):1070–3.', 'journal-title': 'Science'}, { 'issue': '4–6', 'key': '728_CR145', 'doi-asserted-by': 'publisher', 'first-page': '170', 'DOI': '10.1016/j.jphysparis.2011.07.001', 'volume': '105', 'author': 'P Pevet', 'year': '2011', 'unstructured': 'Pevet P, Challet E. Melatonin: both master clock output and internal ' 'time-giver in the circadian clocks network. Journal of Physiology-Paris. ' '2011;105(4–6):170–82.', 'journal-title': 'Journal of Physiology-Paris'}, { 'issue': '11', 'key': '728_CR146', 'doi-asserted-by': 'publisher', 'first-page': '464', 'DOI': '10.1016/0166-2236(90)90100-O', 'volume': '13', 'author': 'DN Krause', 'year': '1990', 'unstructured': 'Krause DN, Dubocovich ML. Regulatory sites in the melatonin system of ' 'mammals. Trends Neurosci. 1990;13(11):464–70.', 'journal-title': 'Trends Neurosci'}, { 'issue': '2', 'key': '728_CR147', 'doi-asserted-by': 'publisher', 'first-page': '245', 'DOI': '10.1016/0006-8993(79)90848-5', 'volume': '174', 'author': 'DC Klein', 'year': '1979', 'unstructured': 'Klein DC, Moore RY. Pineal N-acetyltransferase and ' 'hydroxyindole-O-methyl-transferase: control by the retinohypothalamic ' 'tract and the suprachiasmatic nucleus. Brain Res. 1979;174(2):245–62.', 'journal-title': 'Brain Res'}, { 'issue': '5', 'key': '728_CR148', 'first-page': '1160', 'volume': '76', 'author': 'R Zimmermann', 'year': '1993', 'unstructured': 'Zimmermann R, et al. Effects of acute tryptophan depletion on nocturnal ' 'melatonin secretion in humans. J Clin Endocrinol Metab. ' '1993;76(5):1160–4.', 'journal-title': 'J Clin Endocrinol Metab'}, { 'issue': '20', 'key': '728_CR149', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1017/S1462399406000068', 'volume': '8', 'author': 'JP Ruddick', 'year': '2006', 'unstructured': 'Ruddick JP, et al. Tryptophan metabolism in the central nervous system: ' 'medical implications. Expert Rev Mol Med. 2006;8(20):1–27.', 'journal-title': 'Expert Rev Mol Med'}, { 'issue': '3', 'key': '728_CR150', 'doi-asserted-by': 'publisher', 'first-page': '327', 'DOI': '10.1016/0303-7207(82)90088-0', 'volume': '25', 'author': 'TS King', 'year': '1982', 'unstructured': 'King TS, Richardson BA, Reiter RJ. Regulation of rat pineal melatonin ' 'synthesis: effect of monoamine oxidase inhibition. Mol Cell Endocrinol. ' '1982;25(3):327–38.', 'journal-title': 'Mol Cell Endocrinol'}, { 'issue': '16', 'key': '728_CR151', 'doi-asserted-by': 'publisher', 'first-page': '2997', 'DOI': '10.1007/s00018-014-1579-2', 'volume': '71', 'author': 'D Acuña-Castroviejo', 'year': '2014', 'unstructured': 'Acuña-Castroviejo D, et al. Extrapineal melatonin: sources, regulation, ' 'and potential functions. Cell Mol Life Sci. 2014;71(16):2997–3025.', 'journal-title': 'Cell Mol Life Sci'}, { 'issue': '5', 'key': '728_CR152', 'doi-asserted-by': 'publisher', 'first-page': '325', 'DOI': '10.1152/physiol.00011.2014', 'volume': '29', 'author': 'RJ Reiter', 'year': '2014', 'unstructured': 'Reiter RJ, Tan DX, Galano A. Melatonin: exceeding expectations. ' 'Physiology. 2014;29(5):325–33.', 'journal-title': 'Physiology'}, { 'issue': '3', 'key': '728_CR153', 'doi-asserted-by': 'publisher', 'first-page': '123', 'DOI': '10.1111/j.1600-079X.1995.tb00180.x', 'volume': '19', 'author': 'EJ Costa', 'year': '1995', 'unstructured': 'Costa EJ, Lopes RH, Lamy-Freund MT. Permeability of pure lipid bilayers ' 'to melatonin. J Pineal Res. 1995;19(3):123–6.', 'journal-title': 'J Pineal Res'}, { 'issue': '11', 'key': '728_CR154', 'doi-asserted-by': 'publisher', 'first-page': '1088', 'DOI': '10.3390/antiox9111088', 'volume': '9', 'author': 'N Ferlazzo', 'year': '2020', 'unstructured': 'Ferlazzo N, et al. Is melatonin the cornucopia of the 21st century? ' 'Antioxidants. 2020;9(11):1088.', 'journal-title': 'Antioxidants'}, { 'issue': '5', 'key': '728_CR155', 'doi-asserted-by': 'publisher', 'first-page': '1177', 'DOI': '10.1016/0896-6273(94)90055-8', 'volume': '13', 'author': 'SM Reppert', 'year': '1994', 'unstructured': 'Reppert SM, Weaver DR, Ebisawa T. Cloning and characterization of a ' 'mammalian melatonin receptor that mediates reproductive and circadian ' 'responses. Neuron. 1994;13(5):1177–85.', 'journal-title': 'Neuron'}, { 'issue': '19', 'key': '728_CR156', 'doi-asserted-by': 'publisher', 'first-page': '8734', 'DOI': '10.1073/pnas.92.19.8734', 'volume': '92', 'author': 'SM Reppert', 'year': '1995', 'unstructured': 'Reppert SM, et al. Molecular characterization of a second melatonin ' 'receptor expressed in human retina and brain: the Mel1b melatonin ' 'receptor. Proc Natl Acad Sci. 1995;92(19):8734–8.', 'journal-title': 'Proc Natl Acad Sci'}, { 'issue': '3', 'key': '728_CR157', 'doi-asserted-by': 'publisher', 'first-page': '589', 'DOI': '10.1002/jcp.21246', 'volume': '213', 'author': 'E Rozengurt', 'year': '2007', 'unstructured': 'Rozengurt E. Mitogenic signaling pathways induced by G protein-coupled ' 'receptors. J Cell Physiol. 2007;213(3):589–602.', 'journal-title': 'J Cell Physiol'}, { 'issue': '16', 'key': '728_CR158', 'doi-asserted-by': 'publisher', 'first-page': '3263', 'DOI': '10.1111/bph.13950', 'volume': '175', 'author': 'E Cecon', 'year': '2018', 'unstructured': 'Cecon E, Oishi A, Jockers R. Melatonin receptors: molecular pharmacology ' 'and signalling in the context of system bias. Br J Pharmacol. ' '2018;175(16):3263–80.', 'journal-title': 'Br J Pharmacol'}, { 'issue': '2', 'key': '728_CR159', 'doi-asserted-by': 'publisher', 'first-page': '152', 'DOI': '10.1016/j.mce.2012.01.004', 'volume': '351', 'author': 'RM Slominski', 'year': '2012', 'unstructured': 'Slominski RM, et al. Melatonin membrane receptors in peripheral tissues: ' 'Distribution and functions. Mol Cell Endocrinol. 2012;351(2):152–66.', 'journal-title': 'Mol Cell Endocrinol'}, { 'issue': '40', 'key': '728_CR160', 'doi-asserted-by': 'publisher', 'first-page': '31311', 'DOI': '10.1074/jbc.M005141200', 'volume': '275', 'author': 'O Nosjean', 'year': '2000', 'unstructured': 'Nosjean O, et al. Identification of the Melatonin-binding SiteMT 3 as ' 'the Quinone Reductase 2. J Biol Chem. 2000;275(40):31311–7.', 'journal-title': 'J Biol Chem'}, { 'issue': '3', 'key': '728_CR161', 'doi-asserted-by': 'publisher', 'first-page': '303', 'DOI': '10.1517/14728222.2016.1091882', 'volume': '20', 'author': 'JA Boutin', 'year': '2016', 'unstructured': 'Boutin JA. Quinone reductase 2 as a promising target of melatonin ' 'therapeutic actions. Expert Opin Ther Targets. 2016;20(3):303–17.', 'journal-title': 'Expert Opin Ther Targets'}, { 'issue': '46', 'key': '728_CR162', 'doi-asserted-by': 'publisher', 'first-page': '28531', 'DOI': '10.1016/S0021-9258(19)61934-4', 'volume': '269', 'author': 'M Becker-André', 'year': '1994', 'unstructured': 'Becker-André M, et al. Pineal gland hormone melatonin binds and ' 'activates an orphan of the nuclear receptor superfamily. J Biol Chem. ' '1994;269(46):28531–4.', 'journal-title': 'J Biol Chem'}, { 'issue': '3', 'key': '728_CR163', 'doi-asserted-by': 'publisher', 'first-page': '197', 'DOI': '10.1038/nrd4100', 'volume': '13', 'author': 'DJ Kojetin', 'year': '2014', 'unstructured': 'Kojetin DJ, Burris TP. REV-ERB and ROR nuclear receptors as drug ' 'targets. Nat Rev Drug Discovery. 2014;13(3):197–216.', 'journal-title': 'Nat Rev Drug Discovery'}, { 'issue': '3577', 'key': '728_CR164', 'doi-asserted-by': 'publisher', 'first-page': '277', 'DOI': '10.1126/science.141.3577.277', 'volume': '141', 'author': 'RJ Wurtman', 'year': '1963', 'unstructured': 'Wurtman RJ, Axelrod J, Chu EW. Melatonin, a pineal substance: effect on ' 'the rat ovary. Science. 1963;141(3577):277–8.', 'journal-title': 'Science'}, { 'key': '728_CR165', 'unstructured': 'Reiter, R., et al. Melatonin: reproductive effects. in The Pineal Gland: ' 'Proceedings of the International Symposium, Jerusalem, November 14–17, ' '1977. 1978. Springer.'}, { 'key': '728_CR166', 'unstructured': 'Fiske V, Bryant G, Putnam J. Effect of light on the weight of the pineal ' 'in the rat. 1960, ENDOCRINE SOC 4350 EAST WEST HIGHWAY SUITE 500, ' 'BETHESDA, MD 20814-4110. p. 489-491.'}, { 'issue': '4', 'key': '728_CR167', 'doi-asserted-by': 'publisher', 'first-page': '617', 'DOI': '10.1530/acta.0.0360617', 'volume': '36', 'author': 'RJ Wurtman', 'year': '1961', 'unstructured': 'Wurtman RJ, et al. Interactions of the pineal and exposure to continuous ' 'light on organ weights of female rats. Eur J Endocrinol. ' '1961;36(4):617–24.', 'journal-title': 'Eur J Endocrinol'}, { 'issue': '6', 'key': '728_CR168', 'doi-asserted-by': 'publisher', 'first-page': '1534', 'DOI': '10.1210/endo-99-6-1534', 'volume': '99', 'author': 'L Tamarkin', 'year': '1976', 'unstructured': 'Tamarkin L, et al. Effect of melatonin on the reproductive systems of ' 'male and female Syrian hamsters: a diurnal rhythm in sensitivity to ' 'melatonin. Endocrinology. 1976;99(6):1534–41.', 'journal-title': 'Endocrinology'}, { 'issue': '5', 'key': '728_CR169', 'doi-asserted-by': 'publisher', 'first-page': '380', 'DOI': '10.3109/07420529209064550', 'volume': '9', 'author': 'AJ Lewy', 'year': '1992', 'unstructured': 'Lewy AJ, et al. Melatonin shifts human orcadian rhythms according to a ' 'phase-response curve. Chronobiol Int. 1992;9(5):380–92.', 'journal-title': 'Chronobiol Int'}, { 'issue': '6', 'key': '728_CR170', 'doi-asserted-by': 'publisher', 'first-page': '2178', 'DOI': '10.1152/jappl.1991.71.6.2178', 'volume': '71', 'author': 'RJ Strassman', 'year': '1991', 'unstructured': 'Strassman RJ, et al. Elevated rectal temperature produced by all-night ' 'bright light is reversed by melatonin infusion in men. J Appl Physiol. ' '1991;71(6):2178–82.', 'journal-title': 'J Appl Physiol'}, { 'issue': '1', 'key': '728_CR171', 'doi-asserted-by': 'publisher', 'first-page': '419', 'DOI': '10.1111/j.1749-6632.1994.tb21831.x', 'volume': '738', 'author': 'B Poeggeler', 'year': '1994', 'unstructured': 'Poeggeler B, et al. Melatonin—a highly potent endogenous radical ' 'scavenger and electron donor: new aspects of the oxidation chemistry of ' 'this indole accessed in vitro a. Ann N Y Acad Sci. 1994;738(1):419–20.', 'journal-title': 'Ann N Y Acad Sci'}, { 'issue': '1', 'key': '728_CR172', 'doi-asserted-by': 'publisher', 'first-page': '376', 'DOI': '10.1111/j.1749-6632.2000.tb05402.x', 'volume': '917', 'author': 'RJ Reiter', 'year': '2000', 'unstructured': 'Reiter RJ, et al. Melatonin and its relation to the immune system and ' 'inflammation. Ann N Y Acad Sci. 2000;917(1):376–86.', 'journal-title': 'Ann N Y Acad Sci'}, { 'issue': '3', 'key': '728_CR173', 'doi-asserted-by': 'publisher', 'first-page': '443', 'DOI': '10.1677/joe.0.1570443', 'volume': '157', 'author': 'L Morgan', 'year': '1998', 'unstructured': 'Morgan L, et al. Effects of the endogenous clock and sleep time on ' 'melatonin, insulin, glucose and lipid metabolism. J Endocrinol. ' '1998;157(3):443–52.', 'journal-title': 'J Endocrinol'}, { 'key': '728_CR174', 'unstructured': 'Arendt J. Melatonin and the mammalian pineal gland. 1994: Springer ' 'Science & Business Media.'}, { 'issue': '16', 'key': '728_CR175', 'doi-asserted-by': 'publisher', 'first-page': '6405', 'DOI': '10.1523/JNEUROSCI.21-16-06405.2001', 'volume': '21', 'author': 'GC Brainard', 'year': '2001', 'unstructured': 'Brainard GC, et al. Action spectrum for melatonin regulation in humans: ' 'evidence for a novel circadian photoreceptor. J Neurosci. ' '2001;21(16):6405–12.', 'journal-title': 'J Neurosci'}, { 'key': '728_CR176', 'doi-asserted-by': 'publisher', 'first-page': '183', 'DOI': '10.1007/s00441-002-0584-1', 'volume': '309', 'author': 'P Pevet', 'year': '2002', 'unstructured': 'Pevet P, et al. The chronobiotic properties of melatonin. Cell Tissue ' 'Res. 2002;309:183–91.', 'journal-title': 'Cell Tissue Res'}, { 'key': '728_CR177', 'doi-asserted-by': 'crossref', 'unstructured': 'Arendt J et al. Some effects of melatonin and the control of its ' 'secretion in humans. in Ciba Foundation Symposium 117‐Photoperiodism, ' 'Melatonin and the Pineal. 1985. Wiley Online Library.', 'DOI': '10.1002/9780470720981.ch16'}, { 'issue': '1', 'key': '728_CR178', 'doi-asserted-by': 'publisher', 'first-page': '91', 'DOI': '10.1016/S0896-6273(00)80350-5', 'volume': '19', 'author': 'C Liu', 'year': '1997', 'unstructured': 'Liu C, et al. Molecular dissection of two distinct actions of melatonin ' 'on the suprachiasmatic circadian clock. Neuron. 1997;19(1):91–102.', 'journal-title': 'Neuron'}, { 'issue': '48–55', 'key': '728_CR179', 'first-page': '8', 'volume': '9', 'author': 'U Albrecht', 'year': '2004', 'unstructured': 'Albrecht U. The mammalian circadian clock: a network of gene expression. ' 'Front Biosci. 2004;9(48–55):8.', 'journal-title': 'Front Biosci'}, { 'issue': '1', 'key': '728_CR180', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1111/jpi.12189', 'volume': '58', 'author': 'J Vriend', 'year': '2015', 'unstructured': 'Vriend J, Reiter RJ. Melatonin feedback on clock genes: a theory ' 'involving the proteasome. J Pineal Res. 2015;58(1):1–11.', 'journal-title': 'J Pineal Res'}, { 'issue': '3', 'key': '728_CR181', 'doi-asserted-by': 'publisher', 'first-page': '164', 'DOI': '10.1038/nrg.2016.150', 'volume': '18', 'author': 'JS Takahashi', 'year': '2017', 'unstructured': 'Takahashi JS. Transcriptional architecture of the mammalian circadian ' 'clock. Nat Rev Genet. 2017;18(3):164–79.', 'journal-title': 'Nat Rev Genet'}, { 'issue': '5', 'key': '728_CR182', 'doi-asserted-by': 'publisher', 'first-page': '548', 'DOI': '10.1016/j.gde.2005.07.003', 'volume': '15', 'author': 'J Hirayama', 'year': '2005', 'unstructured': 'Hirayama J, Sassone-Corsi P. Structural and functional features of ' 'transcription factors controlling the circadian clock. Curr Opin Genet ' 'Dev. 2005;15(5):548–56.', 'journal-title': 'Curr Opin Genet Dev'}, { 'issue': '7396', 'key': '728_CR183', 'doi-asserted-by': 'publisher', 'first-page': '123', 'DOI': '10.1038/nature11048', 'volume': '485', 'author': 'H Cho', 'year': '2012', 'unstructured': 'Cho H, et al. Regulation of circadian behaviour and metabolism by ' 'REV-ERB-α and REV-ERB-β. Nature. 2012;485(7396):123–7.', 'journal-title': 'Nature'}, { 'issue': '2', 'key': '728_CR184', 'doi-asserted-by': 'publisher', 'first-page': '82', 'DOI': '10.3132/dvdr.2008.0014', 'volume': '5', 'author': 'H Duez', 'year': '2008', 'unstructured': 'Duez H, Staels B. The nuclear receptors Rev-erbs and RORs integrate ' 'circadian rhythms and metabolism. Diab Vasc Dis Res. 2008;5(2):82–8.', 'journal-title': 'Diab Vasc Dis Res'}, { 'issue': '1', 'key': '728_CR185', 'doi-asserted-by': 'publisher', 'first-page': '19082', 'DOI': '10.1038/s41598-019-55663-0', 'volume': '9', 'author': 'MC Beker', 'year': '2019', 'unstructured': 'Beker MC, et al. Interaction of melatonin and Bmal1 in the regulation of ' 'PI3K/AKT pathway components and cellular survival. Sci Rep. ' '2019;9(1):19082.', 'journal-title': 'Sci Rep'}, { 'issue': '1', 'key': '728_CR186', 'doi-asserted-by': 'publisher', 'first-page': '251', 'DOI': '10.1074/jbc.M108890200', 'volume': '277', 'author': 'D Roy', 'year': '2002', 'unstructured': 'Roy D, Belsham DD. Melatonin receptor activation regulates GnRH Gene ' 'expression and secretion in GT1–7 GnRH neurons: signal transduction ' 'mechanisms. J Biol Chem. 2002;277(1):251–8.', 'journal-title': 'J Biol Chem'}, { 'issue': '1', 'key': '728_CR187', 'doi-asserted-by': 'publisher', 'first-page': '103', 'DOI': '10.3109/07853899808999391', 'volume': '30', 'author': 'RJ Reiter', 'year': '1998', 'unstructured': 'Reiter RJ. Melatonin and human reproduction. Ann Med. 1998;30(1):103–8.', 'journal-title': 'Ann Med'}, { 'issue': '8373', 'key': '728_CR188', 'doi-asserted-by': 'publisher', 'first-page': '362', 'DOI': '10.1016/S0140-6736(84)90412-4', 'volume': '323', 'author': 'F Waldhauser', 'year': '1984', 'unstructured': 'Waldhauser F, et al. Fall in nocturnal serum melatonin during prepuberty ' 'and pubescence. Lancet. 1984;323(8373):362–5.', 'journal-title': 'Lancet'}, { 'issue': '12', 'key': '728_CR189', 'first-page': '1231', 'volume': '73', 'author': 'M Wójtowicz', 'year': '2002', 'unstructured': 'Wójtowicz M, Jakiel G. Melatonin and its role in human reproduction. ' 'Ginekol Pol. 2002;73(12):1231–7.', 'journal-title': 'Ginekol Pol'}, { 'key': '728_CR190', 'doi-asserted-by': 'publisher', 'first-page': '85', 'DOI': '10.3389/fendo.2020.00085', 'volume': '11', 'author': 'JM Olcese', 'year': '2020', 'unstructured': 'Olcese JM. Melatonin and female reproduction: an expanding universe. ' 'Front Endocrinol. 2020;11:85.', 'journal-title': 'Front Endocrinol'}, { 'key': '728_CR191', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1016/j.cryobiol.2020.01.018', 'volume': '95', 'author': 'T-C Sun', 'year': '2020', 'unstructured': 'Sun T-C, et al. Protective effects of melatonin on male fertility ' 'preservation and reproductive system. Cryobiology. 2020;95:1–8.', 'journal-title': 'Cryobiology'}, { 'issue': '31', 'key': '728_CR192', 'doi-asserted-by': 'publisher', 'first-page': '22041', 'DOI': '10.1074/jbc.274.31.22041', 'volume': '274', 'author': 'JA Roth', 'year': '1999', 'unstructured': 'Roth JA, et al. Melatonin promotes osteoblast differentiation and bone ' 'formation*. J Biol Chem. 1999;274(31):22041–7.', 'journal-title': 'J Biol Chem'}, { 'issue': '4', 'key': '728_CR193', 'doi-asserted-by': 'publisher', 'first-page': '364', 'DOI': '10.1111/j.1600-079X.2010.00803.x', 'volume': '49', 'author': 'L Zhang', 'year': '2010', 'unstructured': 'Zhang L, et al. Melatonin inhibits adipogenesis and enhances ' 'osteogenesis of human mesenchymal stem cells by suppressing PPARγ ' 'expression and enhancing Runx2 expression. J Pineal Res. ' '2010;49(4):364–72.', 'journal-title': 'J Pineal Res'}, { 'issue': '9', 'key': '728_CR194', 'doi-asserted-by': 'publisher', 'first-page': '1417', 'DOI': '10.1016/S0002-9149(99)00112-5', 'volume': '83', 'author': 'S Arangino', 'year': '1999', 'unstructured': 'Arangino S, et al. Effects of melatonin on vascular reactivity, ' 'catecholamine levels, and blood pressure in healthy men. Am J Cardiol. ' '1999;83(9):1417–9.', 'journal-title': 'Am J Cardiol'}, { 'key': '728_CR195', 'doi-asserted-by': 'publisher', 'first-page': '521783', 'DOI': '10.1155/2013/521783', 'volume': '2013', 'author': 'LA Campos', 'year': '2013', 'unstructured': 'Campos LA, et al. The angiotensin-melatonin axis. Int J Hypertens. ' '2013;2013:521783.', 'journal-title': 'Int J Hypertens'}, { 'issue': '1', 'key': '728_CR196', 'doi-asserted-by': 'publisher', 'first-page': 'H139', 'DOI': '10.1152/ajpheart.1998.275.1.H139', 'volume': '275', 'author': 'O Régrigny', 'year': '1998', 'unstructured': 'Régrigny O, et al. Melatonin improves cerebral circulation security ' 'margin in rats. Am J Physiology-Heart Circulatory Physiol. ' '1998;275(1):H139–44.', 'journal-title': 'Am J Physiology-Heart Circulatory Physiol'}, { 'key': '728_CR197', 'doi-asserted-by': 'publisher', 'first-page': '113693', 'DOI': '10.1016/j.ygcen.2020.113693', 'volume': '303', 'author': 'F Yasmin', 'year': '2021', 'unstructured': 'Yasmin F, et al. Gut melatonin: a potent candidate in the diversified ' 'journey of melatonin research. Gen Comp Endocrinol. 2021;303:113693.', 'journal-title': 'Gen Comp Endocrinol'}, { 'issue': '1–2', 'key': '728_CR198', 'doi-asserted-by': 'publisher', 'first-page': '117', 'DOI': '10.1016/0169-328X(96)00017-4', 'volume': '39', 'author': 'C Mazzucchelli', 'year': '1996', 'unstructured': 'Mazzucchelli C, et al. The melatonin receptor in the human brain: ' 'cloning experiments and distribution studies. Mol Brain Res. ' '1996;39(1–2):117–26.', 'journal-title': 'Mol Brain Res'}, { 'issue': '3', 'key': '728_CR199', 'doi-asserted-by': 'publisher', 'first-page': '335', 'DOI': '10.1016/j.pneurobio.2008.04.001', 'volume': '85', 'author': 'SR Pandi-Perumal', 'year': '2008', 'unstructured': 'Pandi-Perumal SR, et al. Physiological effects of melatonin: role of ' 'melatonin receptors and signal transduction pathways. Prog Neurobiol. ' '2008;85(3):335–53.', 'journal-title': 'Prog Neurobiol'}, { 'key': '728_CR200', 'doi-asserted-by': 'publisher', 'first-page': '1873', 'DOI': '10.1007/s00429-014-0719-7', 'volume': '219', 'author': 'RJ Reiter', 'year': '2014', 'unstructured': 'Reiter RJ, et al. Delivery of pineal melatonin to the brain and SCN: ' 'role of canaliculi, cerebrospinal fluid, tanycytes and Virchow-Robin ' 'perivascular spaces. Brain Struct Funct. 2014;219:1873–87.', 'journal-title': 'Brain Struct Funct'}, { 'key': '728_CR201', 'doi-asserted-by': 'publisher', 'first-page': '2921', 'DOI': '10.1007/s00429-017-1439-6', 'volume': '222', 'author': 'KY Ng', 'year': '2017', 'unstructured': 'Ng KY, et al. Melatonin receptors: distribution in mammalian brain and ' 'their respective putative functions. Brain Struct Funct. ' '2017;222:2921–39.', 'journal-title': 'Brain Struct Funct'}, { 'issue': '2', 'key': '728_CR202', 'doi-asserted-by': 'publisher', 'first-page': '122', 'DOI': '10.1159/000121744', 'volume': '4', 'author': 'I Nir', 'year': '1969', 'unstructured': 'Nir I, et al. Changes in the electrical activity of the brain following ' 'pinealectomy. Neuroendocrinology. 1969;4(2):122–7.', 'journal-title': 'Neuroendocrinology'}, { 'key': '728_CR203', 'unstructured': 'Bindoni M, Rizzo R. Effects of electrolytic lesions of the pineal gland ' 'on the electric activity of some brain structures in the rabbit. ' 'Bollettino Della Societa Italiana di Biologia Sperimentale. 1964;40(24): ' 'p. Suppl: 2010–3.'}, { 'issue': '3', 'key': '728_CR204', 'doi-asserted-by': 'publisher', 'first-page': '151', 'DOI': '10.1016/0304-3940(76)90085-9', 'volume': '3', 'author': 'RG Fariello', 'year': '1976', 'unstructured': 'Fariello RG, Bubenik GA. Melatonin-induced changes in the sensory ' 'activation of acute epileptic foci. Neurosci Lett. 1976;3(3):151–5.', 'journal-title': 'Neurosci Lett'}, { 'issue': '4', 'key': '728_CR205', 'first-page': '2152', 'volume': '130', 'author': 'B Stankov', 'year': '1992', 'unstructured': 'Stankov B, et al. Melatonin signal transduction and mechanism of action ' 'in the central nervous system: using the rabbit cortex as a model. ' 'Endocrinology. 1992;130(4):2152–9.', 'journal-title': 'Endocrinology'}, { 'issue': '2', 'key': '728_CR206', 'doi-asserted-by': 'publisher', 'first-page': '259', 'DOI': '10.1007/s00213-023-06312-y', 'volume': '240', 'author': 'Z Xu', 'year': '2023', 'unstructured': 'Xu Z, et al. Melatonin alleviates PTSD-like behaviors and restores serum ' 'GABA and cortisol levels in mice. Psychopharmacology. ' '2023;240(2):259–69.', 'journal-title': 'Psychopharmacology'}, { 'issue': '2', 'key': '728_CR207', 'first-page': '131', 'volume': '82', 'author': 'G Pierrefiche', 'year': '1993', 'unstructured': 'Pierrefiche G, Zerbib R, Laborit H. Anxiolytic activity of melatonin in ' 'mice: involvement of benzodiazepine receptors. Res Commun Chem Pathol ' 'Pharmacol. 1993;82(2):131–42.', 'journal-title': 'Res Commun Chem Pathol Pharmacol'}, { 'issue': '1–2', 'key': '728_CR208', 'doi-asserted-by': 'publisher', 'first-page': '178', 'DOI': '10.1016/S0006-8993(99)01520-6', 'volume': '834', 'author': 'V Raghavendra', 'year': '1999', 'unstructured': 'Raghavendra V, Kulkarni SK. Reversal of morphine tolerance and ' 'dependence by melatonin: possible role of central and peripheral ' 'benzodiazepine receptors. Brain Res. 1999;834(1–2):178–81.', 'journal-title': 'Brain Res'}, { 'issue': '6', 'key': '728_CR209', 'doi-asserted-by': 'publisher', 'first-page': '473', 'DOI': '10.1016/S0924-977X(00)00115-2', 'volume': '10', 'author': 'V Raghavendra', 'year': '2000', 'unstructured': 'Raghavendra V, Kaur G, Kulkarni SK. Anti-depressant action of melatonin ' 'in chronic forced swimming-induced behavioral despair in mice, role of ' 'peripheral benzodiazepine receptor modulation. Eur Neuropsychopharmacol. ' '2000;10(6):473–81.', 'journal-title': 'Eur Neuropsychopharmacol'}, { 'issue': '2', 'key': '728_CR210', 'doi-asserted-by': 'publisher', 'first-page': '57', 'DOI': '10.1111/j.1600-079X.1995.tb00171.x', 'volume': '19', 'author': 'D Acufla-Castroviejo', 'year': '1995', 'unstructured': 'Acufla-Castroviejo D, et al. Minireview: Cell protective role of ' 'melatonin in the brain. J Pineal Res. 1995;19(2):57–63.', 'journal-title': 'J Pineal Res'}, { 'key': '728_CR211', 'doi-asserted-by': 'crossref', 'unstructured': 'Vishnoi S, Raisuddin S, Parvez S. Glutamate excitotoxicity and oxidative ' 'stress in epilepsy: modulatory role of melatonin. J Environ Pathol ' 'Toxicol Oncol. 2016. 35(4).', 'DOI': '10.1615/JEnvironPatholToxicolOncol.2016016399'}, { 'issue': '3', 'key': '728_CR212', 'doi-asserted-by': 'publisher', 'first-page': '359', 'DOI': '10.1016/S0301-0082(98)00052-5', 'volume': '56', 'author': 'RJ Reiter', 'year': '1998', 'unstructured': 'Reiter RJ. Oxidative damage in the central nervous system: protection by ' 'melatonin. Prog Neurobiol. 1998;56(3):359–84.', 'journal-title': 'Prog Neurobiol'}, { 'issue': '4', 'key': '728_CR213', 'doi-asserted-by': 'publisher', 'first-page': '297', 'DOI': '10.1046/j.1365-2826.1998.00203.x', 'volume': '10', 'author': 'J Leon', 'year': '1998', 'unstructured': 'Leon J, et al. Modification of nitric oxide synthase activity and ' 'neuronal response in rat striatum by melatonin and kynurenine ' 'derivatives. J Neuroendocrinol. 1998;10(4):297–302.', 'journal-title': 'J Neuroendocrinol'}, { 'issue': '5', 'key': '728_CR214', 'doi-asserted-by': 'publisher', 'first-page': '967', 'DOI': '10.1124/mol.58.5.967', 'volume': '58', 'author': 'J León', 'year': '2000', 'unstructured': 'León J, et al. Structure-related inhibition of calmodulin-dependent ' 'neuronal nitric-oxide synthase activity by melatonin and synthetic ' 'kynurenines. Mol Pharmacol. 2000;58(5):967–75.', 'journal-title': 'Mol Pharmacol'}, { 'issue': '1', 'key': '728_CR215', 'doi-asserted-by': 'publisher', 'first-page': '23', 'DOI': '10.1016/j.neulet.2005.09.040', 'volume': '393', 'author': 'J Larson', 'year': '2006', 'unstructured': 'Larson J, et al. Impaired hippocampal long-term potentiation in ' 'melatonin MT2 receptor-deficient mice. Neurosci Lett. 2006;393(1):23–6.', 'journal-title': 'Neurosci Lett'}, { 'issue': '3', 'key': '728_CR216', 'doi-asserted-by': 'publisher', 'first-page': 'e12553', 'DOI': '10.1111/jpi.12553', 'volume': '66', 'author': 'A Jilg', 'year': '2019', 'unstructured': 'Jilg A, et al. Melatonin modulates daytime-dependent synaptic plasticity ' 'and learning efficiency. J Pineal Res. 2019;66(3):e12553.', 'journal-title': 'J Pineal Res'}, { 'issue': '6', 'key': '728_CR217', 'doi-asserted-by': 'publisher', 'first-page': '990', 'DOI': '10.1210/er.2018-00084', 'volume': '39', 'author': 'J Cipolla-Neto', 'year': '2018', 'unstructured': 'Cipolla-Neto J, Amaral FGD. Melatonin as a hormone: new physiological ' 'and clinical insights. Endocrine Rev. 2018;39(6):990–1028.', 'journal-title': 'Endocrine Rev'}, { 'key': '728_CR218', 'doi-asserted-by': 'publisher', 'first-page': '169', 'DOI': '10.1007/s40261-015-0368-5', 'volume': '36', 'author': 'LPH Andersen', 'year': '2016', 'unstructured': 'Andersen LPH, et al. The safety of melatonin in humans. Clin Drug ' 'Investig. 2016;36:169–75.', 'journal-title': 'Clin Drug Investig'}, { 'issue': '12', 'key': '728_CR219', 'doi-asserted-by': 'publisher', 'first-page': '1469', 'DOI': '10.1080/14740338.2022.2160444', 'volume': '21', 'author': 'FM Besag', 'year': '2022', 'unstructured': 'Besag FM, Vasey MJ. Adverse events in long-term studies of exogenous ' 'melatonin. Expert Opin Drug Saf. 2022;21(12):1469–81.', 'journal-title': 'Expert Opin Drug Saf'}, { 'key': '728_CR220', 'doi-asserted-by': 'publisher', 'first-page': '17', 'DOI': '10.1016/j.physbeh.2014.04.016', 'volume': '131', 'author': 'E Papagiannidou', 'year': '2014', 'unstructured': 'Papagiannidou E, Skene DJ, Ioannides C. Potential drug interactions with ' 'melatonin. Physiol Behav. 2014;131:17–24.', 'journal-title': 'Physiol Behav'}, { 'issue': '6', 'key': '728_CR221', 'first-page': '124', 'volume': '13', 'author': 'NI Ashy', 'year': '2016', 'unstructured': 'Ashy NI, Shroff KV, Ashy N. Evaluation of the potential drug interaction ' 'of melatonin and warfarin: a case series. Life Sci J. 2016;13(6):124.', 'journal-title': 'Life Sci J'}, { 'key': '728_CR222', 'doi-asserted-by': 'publisher', 'first-page': '120866', 'DOI': '10.1016/j.lfs.2022.120866', 'volume': '307', 'author': 'A Hosseinzadeh', 'year': '2022', 'unstructured': 'Hosseinzadeh A, et al. Melatonin effect on platelets and coagulation: ' 'Implications for a prophylactic indication in COVID-19. Life Sci. ' '2022;307:120866.', 'journal-title': 'Life Sci'}, { 'issue': '6', 'key': '728_CR223', 'doi-asserted-by': 'publisher', 'first-page': '559', 'DOI': '10.1080/01616412.2017.1315864', 'volume': '39', 'author': 'Z Xie', 'year': '2017', 'unstructured': 'Xie Z, et al. A review of sleep disorders and melatonin. Neurol Res. ' '2017;39(6):559–65.', 'journal-title': 'Neurol Res'}, { 'key': '728_CR224', 'doi-asserted-by': 'crossref', 'unstructured': 'Herxheimer A, Petrie KJ, C.C.M.D. Group. Melatonin for the prevention ' 'and treatment of jet lag. Cochrane Database Syst Rev. 1996;2010(1).', 'DOI': '10.1002/14651858.CD001520'}, { 'issue': '4', 'key': '728_CR225', 'doi-asserted-by': 'publisher', 'first-page': '793', 'DOI': '10.1210/jcem-73-4-793', 'volume': '73', 'author': 'F Waldhauser', 'year': '1991', 'unstructured': 'Waldhauser F, et al. Serum melatonin in central precocious puberty is ' 'lower than in age-matched prepubertal children. J Clin Endocrinol Metab. ' '1991;73(4):793–6.', 'journal-title': 'J Clin Endocrinol Metab'}, { 'issue': '1', 'key': '728_CR226', 'doi-asserted-by': 'publisher', 'first-page': '328', 'DOI': '10.1016/j.fertnstert.2008.05.016', 'volume': '92', 'author': 'H Tamura', 'year': '2009', 'unstructured': 'Tamura H, et al. Melatonin and the ovary: physiological and ' 'pathophysiological implications. Fertil Steril. 2009;92(1):328–43.', 'journal-title': 'Fertil Steril'}, { 'issue': '8962', 'key': '728_CR227', 'doi-asserted-by': 'publisher', 'first-page': '1408', 'DOI': '10.1016/S0140-6736(95)92600-3', 'volume': '345', 'author': 'P Brugger', 'year': '1995', 'unstructured': 'Brugger P, Marktl W, Herold M. Impaired nocturnal secretion of melatonin ' 'in coronary heart disease. Lancet. 1995;345(8962):1408.', 'journal-title': 'Lancet'}, { 'key': '728_CR228', 'doi-asserted-by': 'publisher', 'first-page': '825246', 'DOI': '10.3389/fnins.2022.825246', 'volume': '16', 'author': 'S Fowler', 'year': '2022', 'unstructured': 'Fowler S, et al. Circadian rhythms and melatonin metabolism in patients ' 'with disorders of gut-brain interactions. Front Neurosci. ' '2022;16:825246.', 'journal-title': 'Front Neurosci'}, { 'issue': '2', 'key': '728_CR229', 'doi-asserted-by': 'publisher', 'first-page': '745', 'DOI': '10.1002/jcp.29036', 'volume': '235', 'author': 'F Moradkhani', 'year': '2020', 'unstructured': 'Moradkhani F, et al. Immunoregulatory role of melatonin in cancer. J ' 'Cell Physiol. 2020;235(2):745–57.', 'journal-title': 'J Cell Physiol'}, { 'key': '728_CR230', 'doi-asserted-by': 'crossref', 'unstructured': 'Patel R. et al. Diabetes mellitus and melatonin: where are we? ' 'Biochimie. 2022.', 'DOI': '10.1016/j.biochi.2022.01.001'}, { 'issue': '4', 'key': '728_CR231', 'doi-asserted-by': 'publisher', 'first-page': '371', 'DOI': '10.1111/jpi.12137', 'volume': '56', 'author': 'J Cipolla-Neto', 'year': '2014', 'unstructured': 'Cipolla-Neto J, et al. Melatonin, energy metabolism, and obesity: a ' 'review. J Pineal Res. 2014;56(4):371–81.', 'journal-title': 'J Pineal Res'}, { 'issue': '5', 'key': '728_CR232', 'doi-asserted-by': 'publisher', 'first-page': '4803', 'DOI': '10.3390/ijms24054803', 'volume': '24', 'author': 'Y Potes', 'year': '2023', 'unstructured': 'Potes Y, et al. Benefits of the neurogenic potential of melatonin for ' 'treating neurological and neuropsychiatric disorders. Int J Mol Sci. ' '2023;24(5):4803.', 'journal-title': 'Int J Mol Sci'}, { 'issue': '3', 'key': '728_CR233', 'doi-asserted-by': 'publisher', 'first-page': '467', 'DOI': '10.1677/joe.0.0910467', 'volume': '91', 'author': 'Y Touitou', 'year': '1981', 'unstructured': 'Touitou Y, et al. Age-and mental health-related circadian rhythms of ' 'plasma levels of melatonin, prolactin, luteinizing hormone and ' 'follicle-stimulating hormone in man. J Endocrinol. 1981;91(3):467–75.', 'journal-title': 'J Endocrinol'}, { 'issue': '1', 'key': '728_CR234', 'doi-asserted-by': 'publisher', 'first-page': '27', 'DOI': '10.1210/jcem-55-1-27', 'volume': '55', 'author': 'H Iguchi', 'year': '1982', 'unstructured': 'Iguchi H, Kato K-I, Ibayashi H. Age-dependent reduction in serum ' 'melatonin concentrations in healthy human subjects. J Clin Endocrinol ' 'Metab. 1982;55(1):27–9.', 'journal-title': 'J Clin Endocrinol Metab'}, { 'issue': '2', 'key': '728_CR235', 'doi-asserted-by': 'publisher', 'first-page': '110', 'DOI': '10.1159/000212774', 'volume': '32', 'author': 'Y Touitou', 'year': '1986', 'unstructured': 'Touitou Y, et al. Age-related changes in both circadian and seasonal ' 'rhythms of rectal temperature with special reference to senile dementia ' 'of Alzheimer type. Gerontology. 1986;32(2):110–8.', 'journal-title': 'Gerontology'}, { 'issue': '4', 'key': '728_CR236', 'doi-asserted-by': 'publisher', 'first-page': '385', 'DOI': '10.3109/07420529709001459', 'volume': '14', 'author': 'F Magri', 'year': '1997', 'unstructured': 'Magri F, et al. Changes in endocrine orcadian rhythms as markers of ' 'physiological and pathological brain aging. Chronobiol Int. ' '1997;14(4):385–96.', 'journal-title': 'Chronobiol Int'}, { 'issue': '4', 'key': '728_CR237', 'doi-asserted-by': 'publisher', 'first-page': '341', 'DOI': '10.1089/rej.2013.1542', 'volume': '17', 'author': 'IF Tresguerres', 'year': '2014', 'unstructured': 'Tresguerres IF, et al. Melatonin dietary supplement as an anti-aging ' 'therapy for age-related bone loss. Rejuvenation Res. 2014;17(4):341–6.', 'journal-title': 'Rejuvenation Res'}, { 'key': '728_CR238', 'doi-asserted-by': 'publisher', 'first-page': '456', 'DOI': '10.1111/j.1749-6632.1994.tb56850.x', 'volume': '719', 'author': 'VA Lesnikov', 'year': '1994', 'unstructured': 'Lesnikov VA, Pierpaoli W. Pineal cross-transplantation (old-to-young and ' 'vice versa) as evidence for an endogenous" aging clock". Ann N Y Acad ' 'Sci. 1994;719:456–60.', 'journal-title': 'Ann N Y Acad Sci'}, { 'key': '728_CR239', 'doi-asserted-by': 'publisher', 'first-page': '343', 'DOI': '10.1111/j.1749-6632.1994.tb56841.x', 'volume': '719', 'author': 'MC Caroleo', 'year': '1994', 'unstructured': 'Caroleo MC, Doria G, Nistico G. Melatonin restores immunodepression in ' 'aged and cyclophosphamide-treated mice. Ann N Y Acad Sci. ' '1994;719:343–52.', 'journal-title': 'Ann N Y Acad Sci'}, { 'issue': '1', 'key': '728_CR240', 'doi-asserted-by': 'publisher', 'first-page': '21', 'DOI': '10.1111/j.1600-079X.2011.00912.x', 'volume': '52', 'author': 'DY Yoo', 'year': '2012', 'unstructured': 'Yoo DY, et al. Melatonin improves D-galactose-induced aging effects on ' 'behavior, neurogenesis, and lipid peroxidation in the mouse dentate ' 'gyrus via increasing pCREB expression. J Pineal Res. 2012;52(1):21–8.', 'journal-title': 'J Pineal Res'}, { 'issue': '17', 'key': '728_CR241', 'doi-asserted-by': 'publisher', 'first-page': '5543', 'DOI': '10.3390/molecules27175543', 'volume': '27', 'author': 'C Cachán-Vega', 'year': '2022', 'unstructured': 'Cachán-Vega C, et al. Chronic treatment with melatonin improves ' 'hippocampal neurogenesis in the aged brain and under neurodegeneration. ' 'Molecules. 2022;27(17):5543.', 'journal-title': 'Molecules'}, { 'key': '728_CR242', 'doi-asserted-by': 'publisher', 'first-page': '46', 'DOI': '10.1016/j.pneurobio.2015.02.001', 'volume': '127', 'author': 'R Hardeland', 'year': '2015', 'unstructured': 'Hardeland R, et al. Melatonin and brain inflammaging. Prog Neurobiol. ' '2015;127:46–63.', 'journal-title': 'Prog Neurobiol'}, { 'key': '728_CR243', 'doi-asserted-by': 'crossref', 'unstructured': 'Keskin-Aktan A et al. SIRT2 and FOXO3a expressions in the cerebral ' 'cortex and hippocampus of young and aged male rats: antioxidant and ' 'anti-apoptotic effects of melatonin. Biologia Futura. 2022:1–15.', 'DOI': '10.1007/s42977-021-00102-3'}, { 'issue': '4', 'key': '728_CR244', 'doi-asserted-by': 'publisher', 'first-page': '372', 'DOI': '10.1111/j.1365-2869.2007.00613.x', 'volume': '16', 'author': 'P Lemoine', 'year': '2007', 'unstructured': 'Lemoine P, et al. Prolonged-release melatonin improves sleep quality and ' 'morning alertness in insomnia patients aged 55 years and older and has ' 'no withdrawal effects. J Sleep Res. 2007;16(4):372–80.', 'journal-title': 'J Sleep Res'}, { 'key': '728_CR245', 'doi-asserted-by': 'publisher', 'first-page': '77', 'DOI': '10.1016/j.jclinane.2017.03.023', 'volume': '39', 'author': 'Y Fan', 'year': '2017', 'unstructured': 'Fan Y, et al. The effect of melatonin on early postoperative cognitive ' 'decline in elderly patients undergoing hip arthroplasty: a randomized ' 'controlled trial. J Clin Anesth. 2017;39:77–81.', 'journal-title': 'J Clin Anesth'}, { 'issue': '4', 'key': '728_CR246', 'doi-asserted-by': 'publisher', 'first-page': '404', 'DOI': '10.1111/j.1600-079X.2007.00491.x', 'volume': '43', 'author': 'AM Furio', 'year': '2007', 'unstructured': 'Furio AM, Brusco LI, Cardinali DP. Possible therapeutic value of ' 'melatonin in mild cognitive impairment: a retrospective study. J Pineal ' 'Res. 2007;43(4):404–9.', 'journal-title': 'J Pineal Res'}, { 'issue': '1', 'key': '728_CR247', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1186/s13024-015-0027-6', 'volume': '10', 'author': 'G O’Neal-Moffitt', 'year': '2015', 'unstructured': 'O’Neal-Moffitt G, et al. Prophylactic melatonin significantly reduces ' 'Alzheimer’s neuropathology and associated cognitive deficits independent ' 'of antioxidant pathways in AβPPswe/PS1 mice. Mol Neurodegener. ' '2015;10(1):1–21.', 'journal-title': 'Mol Neurodegener'}, { 'key': '728_CR248', 'doi-asserted-by': 'publisher', 'first-page': '113100', 'DOI': '10.1016/j.bbr.2020.113100', 'volume': '402', 'author': 'S Labban', 'year': '2021', 'unstructured': 'Labban S, et al. Effects of melatonin and resveratrol on recognition ' 'memory and passive avoidance performance in a mouse model of Alzheimer’s ' 'disease. Behav Brain Res. 2021;402:113100.', 'journal-title': 'Behav Brain Res'}, { 'issue': '4', 'key': '728_CR249', 'doi-asserted-by': 'publisher', 'first-page': '593', 'DOI': '10.1002/biof.1369', 'volume': '43', 'author': 'L Nie', 'year': '2017', 'unstructured': 'Nie L, et al. Melatonin ameliorates anxiety and depression-like ' 'behaviors and modulates proteomic changes in triple transgenic mice of ' 'Alzheimer’s disease. BioFactors. 2017;43(4):593–611.', 'journal-title': 'BioFactors'}, { 'issue': '4', 'key': '728_CR250', 'doi-asserted-by': 'publisher', 'first-page': '704', 'DOI': '10.1016/j.pbb.2011.06.026', 'volume': '99', 'author': 'G Patki', 'year': '2011', 'unstructured': 'Patki G, Lau Y-S. Melatonin protects against neurobehavioral and ' 'mitochondrial deficits in a chronic mouse model of Parkinson’s disease. ' 'Pharmacol Biochem Behav. 2011;99(4):704–11.', 'journal-title': 'Pharmacol Biochem Behav'}, { 'key': '728_CR251', 'doi-asserted-by': 'crossref', 'unstructured': 'Antolı́n, I., et al., Protective effect of melatonin in a chronic ' 'experimental model of Parkinson’s disease. Brain research, 2002. 943(2): ' 'p. 163–173.', 'DOI': '10.1016/S0006-8993(02)02551-9'}, { 'issue': '3', 'key': '728_CR252', 'doi-asserted-by': 'publisher', 'first-page': '262', 'DOI': '10.1111/jpi.12212', 'volume': '58', 'author': 'A Naskar', 'year': '2015', 'unstructured': 'Naskar A, et al. Melatonin enhances L-DOPA therapeutic effects, helps to ' 'reduce its dose, and protects dopaminergic neurons in ' '1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinsonism in ' 'mice. J Pineal Res. 2015;58(3):262–74.', 'journal-title': 'J Pineal Res'}, { 'issue': '1', 'key': '728_CR253', 'doi-asserted-by': 'publisher', 'first-page': '15963', 'DOI': '10.1038/s41598-022-20164-0', 'volume': '12', 'author': 'Y Jand', 'year': '2022', 'unstructured': 'Jand Y, et al. Melatonin ameliorates disease severity in a mouse model ' 'of multiple sclerosis by modulating the kynurenine pathway. Sci Rep. ' '2022;12(1):15963.', 'journal-title': 'Sci Rep'}, { 'issue': '8', 'key': '728_CR254', 'doi-asserted-by': 'publisher', 'first-page': '4747', 'DOI': '10.1007/s12035-022-02875-7', 'volume': '59', 'author': 'X Shen', 'year': '2022', 'unstructured': 'Shen X, et al. Melatonin induces autophagy in amyotrophic lateral ' 'sclerosis mice via upregulation of SIRT1. Mol Neurobiol. ' '2022;59(8):4747–60.', 'journal-title': 'Mol Neurobiol'}, { 'issue': '10', 'key': '728_CR255', 'doi-asserted-by': 'publisher', 'first-page': '1816', 'DOI': '10.2174/1570159X20666220420122322', 'volume': '20', 'author': 'P-T Tseng', 'year': '2022', 'unstructured': 'Tseng P-T, et al. The dose and duration-dependent association between ' 'melatonin treatment and overall cognition in Alzheimer’s dementia: a ' 'network meta-analysis of randomized placebo-controlled trials. Curr ' 'Neuropharmacol. 2022;20(10):1816.', 'journal-title': 'Curr Neuropharmacol'}, { 'issue': '117', 'key': '728_CR256', 'first-page': '363', 'volume': '21', 'author': 'K Alagiakrishnan', 'year': '2016', 'unstructured': 'Alagiakrishnan K. Melatonin based therapies for delirium and dementia. ' 'Discov Med. 2016;21(117):363–71.', 'journal-title': 'Discov Med'}, { 'issue': '2', 'key': '728_CR257', 'doi-asserted-by': 'publisher', 'first-page': '693', 'DOI': '10.3233/JAD-210562', 'volume': '83', 'author': 'A Nous', 'year': '2021', 'unstructured': 'Nous A, et al. Serum daytime melatonin levels reflect cerebrospinal ' 'fluid melatonin levels in Alzheimer’s disease but are not correlated ' 'with cognitive decline. J Alzheimers Dis. 2021;83(2):693–704.', 'journal-title': 'J Alzheimers Dis'}, { 'issue': '1', 'key': '728_CR258', 'doi-asserted-by': 'publisher', 'first-page': '135', 'DOI': '10.9758/cpn.2021.19.1.135', 'volume': '19', 'author': 'CH Lin', 'year': '2021', 'unstructured': 'Lin CH, Chiu CC, Lane HY. Trough Melatonin Levels Differ between Early ' 'and Late Phases of Alzheimer Disease. Clin Psychopharmacol Neurosci. ' '2021;19(1):135–44.', 'journal-title': 'Clin Psychopharmacol Neurosci'}, { 'issue': '8', 'key': '728_CR259', 'doi-asserted-by': 'publisher', 'first-page': '3090', 'DOI': '10.1210/jc.2015-1859', 'volume': '100', 'author': 'K Obayashi', 'year': '2015', 'unstructured': 'Obayashi K, et al. Physiological levels of melatonin relate to cognitive ' 'function and depressive symptoms: the HEIJO-KYO cohort. J Clin ' 'Endocrinol Metab. 2015;100(8):3090–6.', 'journal-title': 'J Clin Endocrinol Metab'}, { 'key': '728_CR260', 'doi-asserted-by': 'publisher', 'first-page': '105878', 'DOI': '10.1016/j.clineuro.2020.105878', 'volume': '195', 'author': 'R Daneshvar Kakhaki', 'year': '2020', 'unstructured': 'Daneshvar Kakhaki R, et al. Melatonin supplementation and the effects on ' 'clinical and metabolic status in Parkinson’s disease: A randomized, ' 'double-blind, placebo-controlled trial. Clin Neurol Neurosurg. ' '2020;195:105878.', 'journal-title': 'Clin Neurol Neurosurg'}, { 'key': '728_CR261', 'unstructured': 'Jallouli S et al. Effect of melatonin intake on postural balance, ' 'functional mobility and fall risk in persons with multiple sclerosis: a ' 'pilot study. Int J Neurosci. 2022:1–11.'}, { 'issue': '4', 'key': '728_CR262', 'doi-asserted-by': 'publisher', 'first-page': '572', 'DOI': '10.1002/mus.27168', 'volume': '63', 'author': 'EM Bald', 'year': '2021', 'unstructured': 'Bald EM, Nance CS, Schultz JL. Melatonin may slow disease progression in ' 'amyotrophic lateral sclerosis: findings from the Pooled Resource ' 'Open-Access ALS Clinic Trials database. Muscle Nerve. 2021;63(4):572–6.', 'journal-title': 'Muscle Nerve'}, { 'issue': '5', 'key': '728_CR263', 'doi-asserted-by': 'publisher', 'first-page': '323', 'DOI': '10.1002/rmv.1714', 'volume': '22', 'author': 'JA Boga', 'year': '2012', 'unstructured': 'Boga JA, et al. Beneficial actions of melatonin in the management of ' 'viral infections: a new use for this “molecular handyman”? Rev Med ' 'Virol. 2012;22(5):323–38.', 'journal-title': 'Rev Med Virol'}, { 'key': '728_CR264', 'doi-asserted-by': 'publisher', 'first-page': '430', 'DOI': '10.1007/s000180050051', 'volume': '53', 'author': 'E Bonilla', 'year': '1997', 'unstructured': 'Bonilla E, et al. Melatonin protects mice infected with Venezuelan ' 'equine encephalomyelitis virus. Cell Mol Life Sci CMLS. 1997;53:430–4.', 'journal-title': 'Cell Mol Life Sci CMLS'}, { 'issue': '2', 'key': '728_CR265', 'doi-asserted-by': 'publisher', 'first-page': '73', 'DOI': '10.1046/j.1600-079X.2003.00105.x', 'volume': '36', 'author': 'E Bonilla', 'year': '2004', 'unstructured': 'Bonilla E, et al. Melatonin and viral infections. J Pineal Res. ' '2004;36(2):73–9.', 'journal-title': 'J Pineal Res'}, { 'issue': '1', 'key': '728_CR266', 'doi-asserted-by': 'publisher', 'first-page': '69', 'DOI': '10.1034/j.1600-079X.2003.00068.x', 'volume': '35', 'author': 'SY Shiu', 'year': '2003', 'unstructured': 'Shiu SY, et al. Urgent search for safe and effective treatments of ' 'severe acute respiratory syndrome: is melatonin a promising candidate ' 'drug? J Pineal Res. 2003;35(1):69.', 'journal-title': 'J Pineal Res'}, { 'issue': '4', 'key': '728_CR267', 'doi-asserted-by': 'publisher', 'first-page': '381', 'DOI': '10.1111/jpi.12186', 'volume': '57', 'author': 'D-X Tan', 'year': '2014', 'unstructured': 'Tan D-X, et al. Ebola virus disease: potential use of melatonin as a ' 'treatment. J Pineal Res. 2014;57(4):381–4.', 'journal-title': 'J Pineal Res'}, { 'issue': '2', 'key': '728_CR268', 'doi-asserted-by': 'publisher', 'first-page': '86', 'DOI': '10.1080/00365513.2023.2175236', 'volume': '83', 'author': 'S Yılmaz', 'year': '2023', 'unstructured': 'Yılmaz S, Öner P. Melatonin levels are low in COVID-19 positive patients ' 'and these levels are associated with depression, death anxiety and ' 'insomnia. Scand J Clin Lab Invest. 2023;83(2):86–94.', 'journal-title': 'Scand J Clin Lab Invest'}, { 'key': '728_CR269', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.nut.2021.111308', 'volume': '90', 'author': 'İ Eroğlu', 'year': '2021', 'unstructured': 'Eroğlu İ, Eroğlu BÇ, Güven GS. Altered tryptophan absorption and ' 'metabolism could underlie long-term symptoms in survivors of coronavirus ' 'disease 2019 (COVID-19). Nutrition. 2021;90: 111308.', 'journal-title': 'Nutrition'}, { 'issue': '1', 'key': '728_CR270', 'doi-asserted-by': 'publisher', 'first-page': '79', 'DOI': '10.1016/j.arcmed.2021.06.006', 'volume': '53', 'author': 'G Farnoosh', 'year': '2022', 'unstructured': 'Farnoosh G, et al. Efficacy of a low dose of melatonin as an adjunctive ' 'therapy in hospitalized patients with COVID-19: a randomized, ' 'double-blind clinical trial. Arch Med Res. 2022;53(1):79–85.', 'journal-title': 'Arch Med Res'}, { 'issue': '4', 'key': '728_CR271', 'doi-asserted-by': 'publisher', 'first-page': '695', 'DOI': '10.3122/jabfm.2022.04.210529', 'volume': '35', 'author': 'C Fogleman', 'year': '2022', 'unstructured': 'Fogleman C, et al. A pilot of a randomized control trial of melatonin ' 'and vitamin C for mild-to-moderate COVID-19. J Am Board Fam Med. ' '2022;35(4):695–707.', 'journal-title': 'J Am Board Fam Med'}, { 'issue': '1', 'key': '728_CR272', 'doi-asserted-by': 'publisher', 'first-page': '265', 'DOI': '10.1007/s10787-022-01096-7', 'volume': '31', 'author': 'A Ameri', 'year': '2023', 'unstructured': 'Ameri A, et al. Efficacy and safety of oral melatonin in patients with ' 'severe COVID-19: a randomized controlled trial. Inflammopharmacology. ' '2023;31(1):265–74.', 'journal-title': 'Inflammopharmacology'}, { 'key': '728_CR273', 'doi-asserted-by': 'publisher', 'first-page': '79', 'DOI': '10.1016/j.ijid.2021.10.012', 'volume': '114', 'author': 'ZT Hasan', 'year': '2022', 'unstructured': 'Hasan ZT, Atrakji D, Mehuaiden DAK. The effect of melatonin on ' 'thrombosis, sepsis and mortality rate in COVID-19 patients. Int J Infect ' 'Dis. 2022;114:79–84.', 'journal-title': 'Int J Infect Dis'}, { 'key': '728_CR274', 'first-page': '164', 'volume': '6', 'author': 'M Darban', 'year': '2021', 'unstructured': 'Darban M, et al. Efficacy of high dose vitamin C, melatonin and zinc in ' 'Iranian patients with acute respiratory syndrome due to coronavirus ' 'infection: a pilot randomized trial. J Cell Mol Anesth. 2021;6:164–7.', 'journal-title': 'J Cell Mol Anesth'}, { 'issue': '3', 'key': '728_CR275', 'doi-asserted-by': 'publisher', 'first-page': 'taab195', 'DOI': '10.1093/jtm/taab195', 'volume': '29', 'author': 'M Sánchez-Rico', 'year': '2022', 'unstructured': 'Sánchez-Rico M, et al. Melatonin does not reduce mortality in adult ' 'hospitalized patients with COVID-19: a multicenter retrospective ' 'observational study. J Travel Med. 2022;29(3):taab195.', 'journal-title': 'J Travel Med'}, { 'issue': '4', 'key': '728_CR276', 'doi-asserted-by': 'publisher', 'first-page': 'A560', 'DOI': '10.1016/j.chest.2021.07.541', 'volume': '160', 'author': 'N Sahu', 'year': '2021', 'unstructured': 'Sahu N, et al. Retrospective review of melatonin in patients with ' 'COVID-19. Chest. 2021;160(4):A560.', 'journal-title': 'Chest'}, { 'key': '728_CR277', 'doi-asserted-by': 'crossref', 'unstructured': 'Faridzadeh A et al. The role of melatonin as an adjuvant in the ' 'treatment of COVID-19: a systematic review. Heliyon. 2022.', 'DOI': '10.1016/j.heliyon.2022.e10906'}, { 'issue': '7', 'key': '728_CR278', 'doi-asserted-by': 'publisher', 'first-page': '361', 'DOI': '10.1007/s00018-022-04390-3', 'volume': '79', 'author': 'E Cecon', 'year': '2022', 'unstructured': 'Cecon E, et al. Melatonin drugs inhibit SARS-CoV-2 entry into the brain ' 'and virus-induced damage of cerebral small vessels. Cell Mol Life Sci. ' '2022;79(7):361.', 'journal-title': 'Cell Mol Life Sci'}, { 'issue': '5', 'key': '728_CR279', 'doi-asserted-by': 'publisher', 'first-page': '3140', 'DOI': '10.1016/j.sjbs.2022.01.049', 'volume': '29', 'author': 'PK Yadalam', 'year': '2022', 'unstructured': 'Yadalam PK, et al. Assessing the therapeutic potential of agomelatine, ' 'ramelteon, and melatonin against SARS-CoV-2. Saudi J Biol Sci. ' '2022;29(5):3140–50.', 'journal-title': 'Saudi J Biol Sci'}, { 'issue': '1', 'key': '728_CR280', 'doi-asserted-by': 'publisher', 'first-page': 'e12772', 'DOI': '10.1111/jpi.12772', 'volume': '72', 'author': 'E Cecon', 'year': '2022', 'unstructured': 'Cecon E, et al. Therapeutic potential of melatonin and melatonergic ' 'drugs on K18-hACE2 mice infected with SARS-CoV-2. J Pineal Res. ' '2022;72(1):e12772.', 'journal-title': 'J Pineal Res'}, { 'issue': '1', 'key': '728_CR281', 'doi-asserted-by': 'publisher', 'first-page': '50', 'DOI': '10.3390/antiox11010050', 'volume': '11', 'author': 'P Kumar', 'year': '2022', 'unstructured': 'Kumar P, et al. Severe glutathione deficiency, oxidative stress and ' 'oxidant damage in adults hospitalized with COVID-19: implications for ' 'GlyNAC (glycine and N-acetylcysteine) supplementation. Antioxidants. ' '2022;11(1):50.', 'journal-title': 'Antioxidants'}, { 'key': '728_CR282', 'doi-asserted-by': 'publisher', 'first-page': '205031212199124', 'DOI': '10.1177/2050312121991246', 'volume': '9', 'author': 'Y Muhammad', 'year': '2021', 'unstructured': 'Muhammad Y, et al. Deficiency of antioxidants and increased oxidative ' 'stress in COVID-19 patients: a cross-sectional comparative study in ' 'Jigawa, Northwestern Nigeria. SAGE Open Med. 2021;9:2050312121991246.', 'journal-title': 'SAGE Open Med'}, { 'issue': '1', 'key': '728_CR283', 'doi-asserted-by': 'publisher', 'first-page': '130', 'DOI': '10.1038/s41420-020-00369-w', 'volume': '6', 'author': 'M Yang', 'year': '2020', 'unstructured': 'Yang M, Lai CL. SARS-CoV-2 infection: can ferroptosis be a potential ' 'treatment target for multiple organ involvement? Cell Death Discovery. ' '2020;6(1):130.', 'journal-title': 'Cell Death Discovery'}, { 'key': '728_CR284', 'doi-asserted-by': 'publisher', 'first-page': '312', 'DOI': '10.1016/j.bbi.2021.01.003', 'volume': '93', 'author': 'Y Cui', 'year': '2021', 'unstructured': 'Cui Y, et al. ACSL4 exacerbates ischemic stroke by promoting ' 'ferroptosis-induced brain injury and neuroinflammation. Brain Behav ' 'Immun. 2021;93:312–21.', 'journal-title': 'Brain Behav Immun'}, { 'key': '728_CR285', 'doi-asserted-by': 'publisher', 'first-page': '1035986', 'DOI': '10.3389/fpsyt.2022.1035986', 'volume': '13', 'author': 'OA Abulseoud', 'year': '2022', 'unstructured': 'Abulseoud OA, et al. Attenuated initial serum ferritin concentration in ' 'critically ill coronavirus disease 2019 geriatric patients with comorbid ' 'psychiatric conditions. Front Psychiatry. 2022;13:1035986.', 'journal-title': 'Front Psychiatry'}, { 'key': '728_CR286', 'doi-asserted-by': 'publisher', 'first-page': '1110540', 'DOI': '10.3389/fimmu.2023.1110540', 'volume': '14', 'author': 'M Hortová-Kohoutková', 'year': '2023', 'unstructured': 'Hortová-Kohoutková M, et al. Hepcidin and ferritin levels as markers of ' 'immune cell activation during septic shock, severe COVID-19 and sterile ' 'inflammation. Front Immunol. 2023;14:1110540.', 'journal-title': 'Front Immunol'}, { 'key': '728_CR287', 'doi-asserted-by': 'publisher', 'first-page': '127109', 'DOI': '10.1016/j.jtemb.2022.127109', 'volume': '76', 'author': 'ACM Gaiatto', 'year': '2023', 'unstructured': 'Gaiatto ACM, et al. COVID-19 compromises iron homeostasis: Transferrin ' 'as a target of investigation. J Trace Elem Med Biol. 2023;76:127109.', 'journal-title': 'J Trace Elem Med Biol'}, { 'key': '728_CR288', 'doi-asserted-by': 'publisher', 'first-page': '74', 'DOI': '10.1016/j.ijid.2021.12.340', 'volume': '116', 'author': 'C Claise', 'year': '2022', 'unstructured': 'Claise C, et al. Low transferrin levels predict heightened inflammation ' 'in patients with COVID-19: New insights. Int J Infect Dis. ' '2022;116:74–9.', 'journal-title': 'Int J Infect Dis'}, { 'key': '728_CR289', 'doi-asserted-by': 'publisher', 'first-page': '172', 'DOI': '10.1016/j.jcrc.2021.09.023', 'volume': '67', 'author': 'K Kaushal', 'year': '2022', 'unstructured': 'Kaushal K, et al. Serum ferritin as a predictive biomarker in COVID-19. ' 'A systematic review, meta-analysis and meta-regression analysis. J Crit ' 'Care. 2022;67:172–81.', 'journal-title': 'J Crit Care'}, { 'key': '728_CR290', 'doi-asserted-by': 'publisher', 'first-page': 'e926178', 'DOI': '10.12659/MSM.926178', 'volume': '26', 'author': 'C Zhou', 'year': '2020', 'unstructured': 'Zhou C, et al. Increased serum levels of hepcidin and ferritin are ' 'associated with severity of COVID-19. Med Sci Monitor. ' '2020;26:e926178–81.', 'journal-title': 'Med Sci Monitor'}, { 'key': '728_CR291', 'doi-asserted-by': 'crossref', 'unstructured': 'Suriawinata E, Mehta KJ. Iron and iron-related proteins in COVID-19. ' 'Clin Exp Med. 2022:1–23.', 'DOI': '10.1007/s10238-022-00851-y'}, { 'issue': '5–6', 'key': '728_CR292', 'doi-asserted-by': 'publisher', 'first-page': '402', 'DOI': '10.1177/1073858420941476', 'volume': '26', 'author': 'D Kempuraj', 'year': '2020', 'unstructured': 'Kempuraj D, et al. COVID-19, mast cells, cytokine storm, psychological ' 'stress, and neuroinflammation. Neuroscientist. 2020;26(5–6):402–14.', 'journal-title': 'Neuroscientist'}, { 'issue': '9', 'key': '728_CR293', 'doi-asserted-by': 'publisher', 'first-page': '200160', 'DOI': '10.1098/rsob.200160', 'volume': '10', 'author': 'A Fara', 'year': '2020', 'unstructured': 'Fara A, et al. Cytokine storm and COVID-19: a chronicle of ' 'pro-inflammatory cytokines. Open Biol. 2020;10(9):200160.', 'journal-title': 'Open Biol'}, { 'issue': '11', 'key': '728_CR294', 'doi-asserted-by': 'publisher', 'first-page': '1397', 'DOI': '10.1080/14787210.2021.1915129', 'volume': '19', 'author': 'SR Savla', 'year': '2021', 'unstructured': 'Savla SR, Prabhavalkar KS, Bhatt LK. Cytokine storm associated ' 'coagulation complications in COVID-19 patients: pathogenesis and ' 'management. Expert Rev Anti Infect Ther. 2021;19(11):1397–413.', 'journal-title': 'Expert Rev Anti Infect Ther'}, { 'key': '728_CR295', 'doi-asserted-by': 'crossref', 'unstructured': 'Lino K et al. Serum ferritin at admission in hospitalized COVID-19 ' 'patients as a predictor of mortality. Brazilian J Infect Dis. 2021;25.', 'DOI': '10.1016/j.bjid.2021.101569'}, { 'issue': '10', 'key': '728_CR296', 'doi-asserted-by': 'publisher', 'first-page': 'e23618', 'DOI': '10.1002/jcla.23618', 'volume': '34', 'author': 'L Cheng', 'year': '2020', 'unstructured': 'Cheng L, et al. Ferritin in the coronavirus disease 2019 (COVID-19): a ' 'systematic review and meta-analysis. J Clin Lab Anal. ' '2020;34(10):e23618.', 'journal-title': 'J Clin Lab Anal'}, { 'key': '728_CR297', 'doi-asserted-by': 'publisher', 'first-page': '745789', 'DOI': '10.3389/fmed.2021.745789', 'volume': '8', 'author': 'MM Almutairi', 'year': '2021', 'unstructured': 'Almutairi MM, et al. Neuroinflammation and Its Impact on the ' 'Pathogenesis of COVID-19. Front Med. 2021;8:745789.', 'journal-title': 'Front Med'}, { 'issue': '1', 'key': '728_CR298', 'doi-asserted-by': 'publisher', 'first-page': '61', 'DOI': '10.3390/antiox10010061', 'volume': '10', 'author': 'PJ Urrutia', 'year': '2021', 'unstructured': 'Urrutia PJ, Bórquez DA, Núñez MT. Inflaming the Brain with Iron. ' 'Antioxidants. 2021;10(1):61.', 'journal-title': 'Antioxidants'}, { 'issue': '8', 'key': '728_CR299', 'doi-asserted-by': 'publisher', 'first-page': '500', 'DOI': '10.1038/nri3863', 'volume': '15', 'author': 'T Ganz', 'year': '2015', 'unstructured': 'Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat ' 'Rev Immunol. 2015;15(8):500–10.', 'journal-title': 'Nat Rev Immunol'}, { 'issue': '17', 'key': '728_CR300', 'doi-asserted-by': 'publisher', 'first-page': '1806', 'DOI': '10.1016/j.scib.2021.02.010', 'volume': '66', 'author': 'Q Mu', 'year': '2021', 'unstructured': 'Mu Q, et al. The role of iron homeostasis in remodeling immune function ' 'and regulating inflammatory disease. Science Bulletin. ' '2021;66(17):1806–16.', 'journal-title': 'Science Bulletin'}, { 'issue': '2', 'key': '728_CR301', 'doi-asserted-by': 'publisher', 'first-page': '745', 'DOI': '10.1128/IAI.00983-13', 'volume': '82', 'author': 'R Rodriguez', 'year': '2014', 'unstructured': 'Rodriguez R, et al. Hepcidin induction by pathogens and pathogen-derived ' 'molecules is strongly dependent on interleukin-6. Infect Immun. ' '2014;82(2):745–52.', 'journal-title': 'Infect Immun'}, { 'key': '728_CR302', 'doi-asserted-by': 'publisher', 'first-page': '367', 'DOI': '10.3389/fnmol.2017.00367', 'volume': '10', 'author': 'F-L Zhang', 'year': '2017', 'unstructured': 'Zhang F-L, et al. Impairment of hepcidin upregulation by ' 'lipopolysaccharide in the interleukin-6 knockout mouse brain. Front Mol ' 'Neurosci. 2017;10:367.', 'journal-title': 'Front Mol Neurosci'}, { 'issue': '4', 'key': '728_CR303', 'doi-asserted-by': 'publisher', 'first-page': '541', 'DOI': '10.1111/jnc.12244', 'volume': '126', 'author': 'P Urrutia', 'year': '2013', 'unstructured': 'Urrutia P, et al. Inflammation alters the expression of DMT1, FPN1 and ' 'hepcidin, and it causes iron accumulation in central nervous system ' 'cells. J Neurochem. 2013;126(4):541–9.', 'journal-title': 'J Neurochem'}, { 'issue': '3', 'key': '728_CR304', 'doi-asserted-by': 'publisher', 'first-page': 'e2676', 'DOI': '10.1038/cddis.2017.93', 'volume': '8', 'author': 'L-H You', 'year': '2017', 'unstructured': 'You L-H, et al. Astrocyte hepcidin is a key factor in LPS-induced ' 'neuronal apoptosis. Cell Death Dis. 2017;8(3):e2676–e2676.', 'journal-title': 'Cell Death Dis'}, { 'key': '728_CR305', 'doi-asserted-by': 'publisher', 'first-page': '740', 'DOI': '10.3389/fnins.2018.00740', 'volume': '12', 'author': 'D Vela', 'year': '2018', 'unstructured': 'Vela D. The dual role of hepcidin in brain iron load and inflammation. ' 'Front Neurosci. 2018;12:740.', 'journal-title': 'Front Neurosci'}, { 'issue': '5', 'key': '728_CR306', 'doi-asserted-by': 'publisher', 'first-page': '1098', 'DOI': '10.1016/j.neuron.2014.07.027', 'volume': '83', 'author': 'A Kroner', 'year': '2014', 'unstructured': 'Kroner A, et al. TNF and increased intracellular iron alter macrophage ' 'polarization to a detrimental M1 phenotype in the injured spinal cord. ' 'Neuron. 2014;83(5):1098–116.', 'journal-title': 'Neuron'}, { 'issue': '8', 'key': '728_CR307', 'doi-asserted-by': 'publisher', 'first-page': '795', 'DOI': '10.1002/glia.20416', 'volume': '54', 'author': 'X Zhang', 'year': '2006', 'unstructured': 'Zhang X, et al. Cellular iron status influences the functional ' 'relationship between microglia and oligodendrocytes. Glia. ' '2006;54(8):795–804.', 'journal-title': 'Glia'}, {'key': '728_CR308', 'unstructured': '!!! INVALID CITATION !!!'}, { 'key': '728_CR309', 'doi-asserted-by': 'publisher', 'first-page': '101984', 'DOI': '10.1016/j.redox.2021.101984', 'volume': '43', 'author': 'Z Feng', 'year': '2021', 'unstructured': 'Feng Z, et al. Iron overload in the motor cortex induces neuronal ' 'ferroptosis following spinal cord injury. Redox Biol. 2021;43:101984.', 'journal-title': 'Redox Biol'}, { 'key': '728_CR310', 'doi-asserted-by': 'publisher', 'first-page': '110387', 'DOI': '10.1016/j.cbi.2023.110387', 'volume': '375', 'author': 'M Wang', 'year': '2023', 'unstructured': 'Wang M, et al. Revisiting the intersection of microglial activation and ' 'neuroinflammation in Alzheimer’s disease from the perspective of ' 'ferroptosis. Chem Biol Interact. 2023;375:110387.', 'journal-title': 'Chem Biol Interact'}, { 'key': '728_CR311', 'doi-asserted-by': 'publisher', 'first-page': '114', 'DOI': '10.3389/fnins.2019.00114', 'volume': '13', 'author': 'C Liu', 'year': '2019', 'unstructured': 'Liu C, Liang MC, Soong TW. Nitric oxide, iron and neurodegeneration. ' 'Front Neurosci. 2019;13:114.', 'journal-title': 'Front Neurosci'}, { 'issue': '3', 'key': '728_CR312', 'doi-asserted-by': 'publisher', 'first-page': '278', 'DOI': '10.1038/s41589-019-0462-8', 'volume': '16', 'author': 'AA Kapralov', 'year': '2020', 'unstructured': 'Kapralov AA, et al. Redox lipid reprogramming commands susceptibility of ' 'macrophages and microglia to ferroptotic death. Nat Chem Biol. ' '2020;16(3):278–90.', 'journal-title': 'Nat Chem Biol'}, { 'key': '728_CR313', 'volume-title': 'Aging and immune function: molecular mechanisms to interventions', 'author': 'S Ponnappan', 'year': '2011', 'unstructured': 'Ponnappan S, Ponnappan U. Aging and immune function: molecular ' 'mechanisms to interventions. 2011.'}, { 'key': '728_CR314', 'doi-asserted-by': 'crossref', 'unstructured': 'Liguori I et al. Oxidative stress, aging, and diseases. Clin Interv ' 'Aging. 2018:757–772.', 'DOI': '10.2147/CIA.S158513'}, { 'key': '728_CR315', 'doi-asserted-by': 'crossref', 'unstructured': 'Xia S et al. An update on inflamm-aging: mechanisms, prevention, and ' 'treatment. J Immunol Res. 2016;2016.', 'DOI': '10.1155/2016/8426874'}, { 'issue': '12', 'key': '728_CR316', 'doi-asserted-by': 'publisher', 'first-page': '3367', 'DOI': '10.3390/cells10123367', 'volume': '10', 'author': 'SM Lynch', 'year': '2021', 'unstructured': 'Lynch SM, et al. Role of senescence and aging in SARS-CoV-2 infection ' 'and COVID-19 disease. Cells. 2021;10(12):3367.', 'journal-title': 'Cells'}, { 'issue': '9', 'key': '728_CR317', 'doi-asserted-by': 'publisher', 'first-page': 'e34', 'DOI': '10.1093/gerona/glaa149', 'volume': '75', 'author': 'S Salimi', 'year': '2020', 'unstructured': 'Salimi S, Hamlyn JM. COVID-19 and crosstalk with the hallmarks of aging. ' 'J Gerontol Series A. 2020;75(9):e34–41.', 'journal-title': 'J Gerontol Series A'}, { 'issue': '1', 'key': '728_CR318', 'doi-asserted-by': 'publisher', 'first-page': '66', 'DOI': '10.1007/s12016-021-08848-3', 'volume': '64', 'author': 'B Oronsky', 'year': '2023', 'unstructured': 'Oronsky B, et al. A review of persistent post-COVID syndrome (PPCS). ' 'Clin Rev Allergy Immunol. 2023;64(1):66–74.', 'journal-title': 'Clin Rev Allergy Immunol'}, { 'issue': '1', 'key': '728_CR319', 'doi-asserted-by': 'publisher', 'first-page': '12', 'DOI': '10.1186/s12979-022-00271-2', 'volume': '19', 'author': 'X Jing', 'year': '2022', 'unstructured': 'Jing X, et al. Association between inflammatory cytokines and ' 'anti-SARS-CoV-2 antibodies in hospitalized patients with COVID-19. ' 'Immunity Ageing. 2022;19(1):12.', 'journal-title': 'Immunity Ageing'}, { 'key': '728_CR320', 'doi-asserted-by': 'publisher', 'first-page': '120023', 'DOI': '10.1016/j.jns.2021.120023', 'volume': '430', 'author': 'E Normandin', 'year': '2021', 'unstructured': 'Normandin E, et al. Intrathecal inflammatory responses in the absence of ' 'SARS-CoV-2 nucleic acid in the CSF of COVID-19 hospitalized patients. J ' 'Neurol Sci. 2021;430:120023.', 'journal-title': 'J Neurol Sci'}, { 'key': '728_CR321', 'doi-asserted-by': 'publisher', 'first-page': 'e73456', 'DOI': '10.7554/eLife.73456', 'volume': '11', 'author': 'T Sato', 'year': '2022', 'unstructured': 'Sato T, et al. Aging is associated with increased brain iron through ' 'cortex-derived hepcidin expression. Elife. 2022;11:e73456.', 'journal-title': 'Elife'}, { 'key': '728_CR322', 'doi-asserted-by': 'publisher', 'first-page': '22', 'DOI': '10.1016/j.mad.2013.11.005', 'volume': '136', 'author': 'SJ Fairweather-Tait', 'year': '2014', 'unstructured': 'Fairweather-Tait SJ, et al. Iron status in the elderly. Mech Ageing Dev. ' '2014;136:22–8.', 'journal-title': 'Mech Ageing Dev'}, { 'issue': '8', 'key': '728_CR323', 'doi-asserted-by': 'publisher', 'first-page': '2665', 'DOI': '10.1111/cas.14496', 'volume': '111', 'author': 'S Toyokuni', 'year': '2020', 'unstructured': 'Toyokuni S, et al. Ferroptosis at the crossroads of infection, aging and ' 'cancer. Cancer Sci. 2020;111(8):2665–71.', 'journal-title': 'Cancer Sci'}, { 'issue': '11', 'key': '728_CR324', 'doi-asserted-by': 'publisher', 'first-page': 'e13235', 'DOI': '10.1111/acel.13235', 'volume': '19', 'author': 'WD Bao', 'year': '2020', 'unstructured': 'Bao WD, et al. Targeting miR-124/Ferroportin signaling ameliorated ' 'neuronal cell death through inhibiting apoptosis and ferroptosis in aged ' 'intracerebral hemorrhage murine model. Aging Cell. 2020;19(11):e13235.', 'journal-title': 'Aging Cell'}, { 'issue': '1', 'key': '728_CR325', 'doi-asserted-by': 'publisher', 'first-page': '149', 'DOI': '10.1038/s41420-021-00553-6', 'volume': '7', 'author': 'M Mazhar', 'year': '2021', 'unstructured': 'Mazhar M, et al. Implication of ferroptosis in aging. Cell Death ' 'Discovery. 2021;7(1):149.', 'journal-title': 'Cell Death Discovery'}, { 'key': '728_CR326', 'doi-asserted-by': 'publisher', 'first-page': '111228', 'DOI': '10.1016/j.biopha.2021.111228', 'volume': '136', 'author': 'HM Habib', 'year': '2021', 'unstructured': 'Habib HM, et al. The role of iron in the pathogenesis of COVID-19 and ' 'possible treatment with lactoferrin and other iron chelators. Biomed ' 'Pharmacother. 2021;136:111228.', 'journal-title': 'Biomed Pharmacother'}, { 'key': '728_CR327', 'doi-asserted-by': 'publisher', 'first-page': '63', 'DOI': '10.1016/j.mad.2017.11.012', 'volume': '174', 'author': 'A Sfera', 'year': '2018', 'unstructured': 'Sfera A, et al. Ferrosenescence: the iron age of neurodegeneration? Mech ' 'Ageing Dev. 2018;174:63–75.', 'journal-title': 'Mech Ageing Dev'}, { 'issue': '4', 'key': '728_CR328', 'doi-asserted-by': 'publisher', 'first-page': '756', 'DOI': '10.14336/AD.2020.0601', 'volume': '11', 'author': 'PC Lara', 'year': '2020', 'unstructured': 'Lara PC, Macías-Verde D, Burgos-Burgos J. Age-induced NLRP3 inflammasome ' 'over-activation increases lethality of SARS-CoV-2 pneumonia in elderly ' 'patients. Aging Dis. 2020;11(4):756.', 'journal-title': 'Aging Dis'}, { 'issue': '8', 'key': '728_CR329', 'doi-asserted-by': 'publisher', 'first-page': '4012', 'DOI': '10.1002/cam4.1670', 'volume': '7', 'author': 'Y Zhou', 'year': '2018', 'unstructured': 'Zhou Y, et al. Iron overloaded polarizes macrophage to proinflammation ' 'phenotype through ROS/acetyl-p53 pathway. Cancer Med. 2018;7(8):4012–22.', 'journal-title': 'Cancer Med'}, { 'issue': '1', 'key': '728_CR330', 'doi-asserted-by': 'publisher', 'first-page': '11724', 'DOI': '10.1038/s41598-022-15812-4', 'volume': '12', 'author': 'M Mezzanotte', 'year': '2022', 'unstructured': 'Mezzanotte M, et al. Activation of the Hepcidin-Ferroportin1 pathway in ' 'the brain and astrocytic–neuronal crosstalk to counteract iron ' 'dyshomeostasis during aging. Sci Rep. 2022;12(1):11724.', 'journal-title': 'Sci Rep'}, { 'issue': '4', 'key': '728_CR331', 'doi-asserted-by': 'publisher', 'first-page': '388', 'DOI': '10.1016/S1474-4422(15)70016-5', 'volume': '14', 'author': 'MT Heneka', 'year': '2015', 'unstructured': 'Heneka MT, et al. Neuroinflammation in Alzheimer’s disease. The Lancet ' 'Neurology. 2015;14(4):388–405.', 'journal-title': 'The Lancet Neurology'}, { 'issue': '3', 'key': '728_CR332', 'doi-asserted-by': 'publisher', 'first-page': '503', 'DOI': '10.1016/j.nbd.2009.10.006', 'volume': '37', 'author': 'B Cameron', 'year': '2010', 'unstructured': 'Cameron B, Landreth GE. Inflammation, microglia, and Alzheimer’s ' 'disease. Neurobiol Dis. 2010;37(3):503–9.', 'journal-title': 'Neurobiol Dis'}, { 'issue': '13', 'key': '728_CR333', 'doi-asserted-by': 'publisher', 'first-page': '2091', 'DOI': '10.3390/cells11132091', 'volume': '11', 'author': 'MY Wendimu', 'year': '2022', 'unstructured': 'Wendimu MY, Hooks SB. Microglia phenotypes in aging and ' 'neurodegenerative diseases. Cells. 2022;11(13):2091.', 'journal-title': 'Cells'}, { 'issue': '11', 'key': '728_CR334', 'doi-asserted-by': 'publisher', 'first-page': '2932', 'DOI': '10.1038/s41380-019-0375-7', 'volume': '25', 'author': 'S Ayton', 'year': '2020', 'unstructured': 'Ayton S, et al. Brain iron is associated with accelerated cognitive ' 'decline in people with Alzheimer pathology. Mol Psychiatry. ' '2020;25(11):2932–41.', 'journal-title': 'Mol Psychiatry'}, { 'key': '728_CR335', 'doi-asserted-by': 'publisher', 'first-page': '607', 'DOI': '10.3389/fneur.2019.00607', 'volume': '10', 'author': 'W Wan', 'year': '2019', 'unstructured': 'Wan W, et al. Iron deposition leads to hyperphosphorylation of tau and ' 'disruption of insulin signaling. Front Neurol. 2019;10:607.', 'journal-title': 'Front Neurol'}, { 'key': '728_CR336', 'doi-asserted-by': 'crossref', 'unstructured': 'Zhang R et al. COVID-19-related brain injury: the potential role of ' 'ferroptosis. J Inflammation Res. 2022: 2181–2198.', 'DOI': '10.2147/JIR.S353467'}, { 'issue': '11', 'key': '728_CR337', 'doi-asserted-by': 'publisher', 'first-page': '1677', 'DOI': '10.3390/antiox10111677', 'volume': '10', 'author': 'AM Fratta Pasini', 'year': '2021', 'unstructured': 'Fratta Pasini AM, et al. Is ferroptosis a key component of the process ' 'leading to multiorgan damage in COVID-19? Antioxidants. ' '2021;10(11):1677.', 'journal-title': 'Antioxidants'}, { 'issue': '2', 'key': '728_CR338', 'doi-asserted-by': 'publisher', 'first-page': '326', 'DOI': '10.3390/antiox12020326', 'volume': '12', 'author': 'SS Jankauskas', 'year': '2023', 'unstructured': 'Jankauskas SS, et al. COVID-19 causes ferroptosis and oxidative stress ' 'in human endothelial cells. Antioxidants. 2023;12(2):326.', 'journal-title': 'Antioxidants'}, { 'issue': '3', 'key': '728_CR339', 'first-page': '1650', 'volume': '25', 'author': 'H Tu', 'year': '2021', 'unstructured': 'Tu H, et al. Insights into the novel function of system Xc-in regulated ' 'cell death. Eur Rev Med Pharmacol Sci. 2021;25(3):1650–62.', 'journal-title': 'Eur Rev Med Pharmacol Sci'}, { 'issue': '1', 'key': '728_CR340', 'doi-asserted-by': 'publisher', 'first-page': '205', 'DOI': '10.1007/s10571-022-01196-6', 'volume': '43', 'author': 'Y Xu', 'year': '2023', 'unstructured': 'Xu Y, et al. Role of ferroptosis in stroke. Cell Mol Neurobiol. ' '2023;43(1):205–22.', 'journal-title': 'Cell Mol Neurobiol'}, { 'key': '728_CR341', 'doi-asserted-by': 'publisher', 'first-page': '147216', 'DOI': '10.1016/j.brainres.2020.147216', 'volume': '1752', 'author': 'W Chen', 'year': '2021', 'unstructured': 'Chen W, et al. Ferritin reduction is essential for cerebral ' 'ischemia-induced hippocampal neuronal death through p53/SLC7A11-mediated ' 'ferroptosis. Brain Res. 2021;1752:147216.', 'journal-title': 'Brain Res'}, { 'issue': '5', 'key': '728_CR342', 'doi-asserted-by': 'publisher', 'first-page': '832', 'DOI': '10.1016/j.stemcr.2019.09.002', 'volume': '13', 'author': 'A Cozzi', 'year': '2019', 'unstructured': 'Cozzi A, et al. Stem cell modeling of neuroferritinopathy reveals iron ' 'as a determinant of senescence and ferroptosis during neuronal aging. ' 'Stem Cell Reports. 2019;13(5):832–46.', 'journal-title': 'Stem Cell Reports'}, { 'issue': '1', 'key': '728_CR343', 'doi-asserted-by': 'publisher', 'first-page': '151', 'DOI': '10.7150/ijbs.53126', 'volume': '17', 'author': 'Y Huang', 'year': '2021', 'unstructured': 'Huang Y, et al. Ferroptosis in a sarcopenia model of senescence ' 'accelerated mouse prone 8 (SAMP8). Int J Biol Sci. 2021;17(1):151–62.', 'journal-title': 'Int J Biol Sci'}, { 'issue': '26', 'key': '728_CR344', 'doi-asserted-by': 'publisher', 'first-page': '11976', 'DOI': '10.7150/thno.50663', 'volume': '10', 'author': 'RP Zhou', 'year': '2020', 'unstructured': 'Zhou RP, et al. Novel insights into ferroptosis: Implications for ' 'age-related diseases. Theranostics. 2020;10(26):11976–97.', 'journal-title': 'Theranostics'}, { 'key': '728_CR345', 'doi-asserted-by': 'publisher', 'first-page': '592', 'DOI': '10.1016/j.freeradbiomed.2020.11.019', 'volume': '162', 'author': 'K Han', 'year': '2021', 'unstructured': 'Han K, et al. Nrf2 knockout altered brain iron deposition and mitigated ' 'age-related motor dysfunction in aging mice. Free Radical Biol Med. ' '2021;162:592–602.', 'journal-title': 'Free Radical Biol Med'}, { 'issue': '6', 'key': '728_CR346', 'doi-asserted-by': 'publisher', 'first-page': '1361', 'DOI': '10.1016/j.cell.2016.05.017', 'volume': '165', 'author': 'N Kubben', 'year': '2016', 'unstructured': 'Kubben N, et al. Repression of the antioxidant NRF2 pathway in premature ' 'aging. Cell. 2016;165(6):1361–74.', 'journal-title': 'Cell'}, { 'issue': '1', 'key': '728_CR347', 'doi-asserted-by': 'publisher', 'first-page': '4938', 'DOI': '10.1038/s41467-020-18764-3', 'volume': '11', 'author': 'D Olagnier', 'year': '2020', 'unstructured': 'Olagnier D, et al. SARS-CoV2-mediated suppression of NRF2-signaling ' 'reveals potent antiviral and anti-inflammatory activity of ' '4-octyl-itaconate and dimethyl fumarate. Nat Commun. 2020;11(1):4938.', 'journal-title': 'Nat Commun'}, { 'issue': '12', 'key': '728_CR348', 'first-page': 'e32361', 'volume': '14', 'author': 'AM Kyriakopoulos', 'year': '2022', 'unstructured': 'Kyriakopoulos AM, et al. Mitogen Activated Protein Kinase (MAPK) ' 'Activation, p53, and Autophagy Inhibition Characterize the Severe Acute ' 'Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike Protein Induced ' 'Neurotoxicity. Cureus. 2022;14(12):e32361.', 'journal-title': 'Cureus'}, { 'key': '728_CR349', 'doi-asserted-by': 'crossref', 'unstructured': 'Zhang Y et al. SARS-COV-2 spike protein promotes RPE cell senescence via ' 'the ROS/P53/P21 pathway. Biogerontology. 2023.', 'DOI': '10.1007/s10522-023-10019-0'}, { 'key': '728_CR350', 'doi-asserted-by': 'publisher', 'first-page': '110102', 'DOI': '10.1016/j.mehy.2020.110102', 'volume': '143', 'author': 'R Cecchini', 'year': '2020', 'unstructured': 'Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to ' 'oxidative stress as a response to aggression. Med Hypotheses. ' '2020;143:110102.', 'journal-title': 'Med Hypotheses'}, { 'issue': '3', 'key': '728_CR351', 'doi-asserted-by': 'publisher', 'first-page': '418', 'DOI': '10.1016/S0891-5849(99)00258-0', 'volume': '28', 'author': 'MA Lovell', 'year': '2000', 'unstructured': 'Lovell MA, et al. Decreased thioredoxin and increased thioredoxin ' 'reductase levels in Alzheimer’s disease brain. Free Radical Biol Med. ' '2000;28(3):418–27.', 'journal-title': 'Free Radical Biol Med'}, { 'issue': '6', 'key': '728_CR352', 'doi-asserted-by': 'publisher', 'first-page': '1130', 'DOI': '10.3174/ajnr.A5143', 'volume': '38', 'author': 'GC Chiang', 'year': '2017', 'unstructured': 'Chiang GC, et al. Relationships among cortical glutathione levels, brain ' 'amyloidosis, and memory in healthy older adults investigated in vivo ' 'with 1H-MRS and Pittsburgh compound-B PET. Am J Neuroradiol. ' '2017;38(6):1130–7.', 'journal-title': 'Am J Neuroradiol'}, { 'key': '728_CR353', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1016/j.freeradbiomed.2022.01.002', 'volume': '180', 'author': 'L Chen', 'year': '2022', 'unstructured': 'Chen L, et al. Enhanced defense against ferroptosis ameliorates ' 'cognitive impairment and reduces neurodegeneration in 5xFAD mice. Free ' 'Radical Biol Med. 2022;180:1–12.', 'journal-title': 'Free Radical Biol Med'}, { 'key': '728_CR354', 'doi-asserted-by': 'publisher', 'first-page': '129', 'DOI': '10.3389/fnagi.2017.00129', 'volume': '9', 'author': 'JL Labandeira-Garcia', 'year': '2017', 'unstructured': 'Labandeira-Garcia JL, et al. Brain renin-angiotensin system and ' 'microglial polarization: implications for aging and neurodegeneration. ' 'Front Aging Neurosci. 2017;9:129.', 'journal-title': 'Front Aging Neurosci'}, { 'issue': '10', 'key': '728_CR355', 'doi-asserted-by': 'publisher', 'first-page': 'e13480', 'DOI': '10.1111/acel.13480', 'volume': '20', 'author': 'R Dang', 'year': '2021', 'unstructured': 'Dang R, et al. Activation of angiotensin-converting enzyme 2/angiotensin ' '(1–7)/mas receptor axis triggers autophagy and suppresses microglia ' 'proinflammatory polarization via forkhead box class O1 signaling. Aging ' 'Cell. 2021;20(10):e13480.', 'journal-title': 'Aging Cell'}, { 'issue': '2', 'key': '728_CR356', 'doi-asserted-by': 'publisher', 'first-page': '113', 'DOI': '10.1016/j.arr.2008.12.002', 'volume': '8', 'author': 'L-J Min', 'year': '2009', 'unstructured': 'Min L-J, et al. Signaling mechanisms of angiotensin II in regulating ' 'vascular senescence. Ageing Res Rev. 2009;8(2):113–21.', 'journal-title': 'Ageing Res Rev'}, { 'issue': '1', 'key': '728_CR357', 'doi-asserted-by': 'publisher', 'first-page': '2180019', 'DOI': '10.1080/10641963.2023.2180019', 'volume': '45', 'author': 'C Liu', 'year': '2023', 'unstructured': 'Liu C, et al. Angiotensin II-induced vascular endothelial cells ' 'ferroptosis via P53-ALOX12 signal axis. Clin Exp Hypertens. ' '2023;45(1):2180019.', 'journal-title': 'Clin Exp Hypertens'}, { 'issue': '6', 'key': '728_CR358', 'doi-asserted-by': 'publisher', 'first-page': '781', 'DOI': '10.1007/s10571-009-9368-4', 'volume': '29', 'author': 'J Benicky', 'year': '2009', 'unstructured': 'Benicky J, et al. Anti-Inflammatory Effects of Angiotensin Receptor ' 'Blockers in the Brain and the Periphery. Cell Mol Neurobiol. ' '2009;29(6):781–92.', 'journal-title': 'Cell Mol Neurobiol'}, { 'issue': '3', 'key': '728_CR359', 'doi-asserted-by': 'publisher', 'first-page': '247', 'DOI': '10.1016/j.regpep.2004.12.027', 'volume': '128', 'author': 'N Basso', 'year': '2005', 'unstructured': 'Basso N, et al. Protective effect of the inhibition of the ' 'renin–angiotensin system on aging. Regul Pept. 2005;128(3):247–52.', 'journal-title': 'Regul Pept'}, { 'key': '728_CR360', 'doi-asserted-by': 'publisher', 'first-page': '384', 'DOI': '10.1016/j.expneurol.2013.10.013', 'volume': '250', 'author': 'P Garrido-Gil', 'year': '2013', 'unstructured': 'Garrido-Gil P, et al. Brain angiotensin regulates iron homeostasis in ' 'dopaminergic neurons and microglial cells. Exp Neurol. 2013;250:384–96.', 'journal-title': 'Exp Neurol'}, { 'issue': '2', 'key': '728_CR361', 'first-page': '255', 'volume': '4', 'author': 'X Feng', 'year': '2011', 'unstructured': 'Feng X, Wang L, Li Y. Change of telomere length in angiotensin ' 'II-induced human glomerular mesangial cell senescence and the protective ' 'role of losartan. Mol Med Rep. 2011;4(2):255–60.', 'journal-title': 'Mol Med Rep'}, { 'issue': '14', 'key': '728_CR362', 'doi-asserted-by': 'publisher', 'first-page': '14819', 'DOI': '10.18632/aging.103544', 'volume': '12', 'author': 'R Duan', 'year': '2020', 'unstructured': 'Duan R, et al. ACE2 activator diminazene aceturate ameliorates ' 'Alzheimer’s disease-like neuropathology and rescues cognitive impairment ' 'in SAMP8 mice. Aging (Albany NY). 2020;12(14):14819–29.', 'journal-title': 'Aging (Albany NY)'}, { 'issue': '4', 'key': '728_CR363', 'doi-asserted-by': 'publisher', 'first-page': '1085', 'DOI': '10.3233/JAD-180282', 'volume': '64', 'author': 'NP Rocha', 'year': '2018', 'unstructured': 'Rocha NP, et al. Cerebrospinal fluid levels of angiotensin-converting ' 'enzyme are associated with amyloid-β 42 burden in Alzheimer’s disease. J ' 'Alzheimers Dis. 2018;64(4):1085–90.', 'journal-title': 'J Alzheimers Dis'}, { 'issue': '3', 'key': '728_CR364', 'doi-asserted-by': 'publisher', 'first-page': '485', 'DOI': '10.1007/s00401-019-02098-6', 'volume': '139', 'author': 'CE Evans', 'year': '2020', 'unstructured': 'Evans CE, et al. ACE2 activation protects against cognitive decline and ' 'reduces amyloid pathology in the Tg2576 mouse model of Alzheimer’s ' 'disease. Acta Neuropathol. 2020;139(3):485–502.', 'journal-title': 'Acta Neuropathol'}, { 'issue': '1', 'key': '728_CR365', 'doi-asserted-by': 'publisher', 'first-page': '50', 'DOI': '10.1186/s13195-016-0217-7', 'volume': '8', 'author': 'PG Kehoe', 'year': '2016', 'unstructured': 'Kehoe PG, et al. Angiotensin-converting enzyme 2 is reduced in ' 'Alzheimer’s disease in association with increasing amyloid-β and tau ' 'pathology. Alzheimer’s Res Ther. 2016;8(1):50.', 'journal-title': "Alzheimer's Res Ther"}, { 'issue': '1', 'key': '728_CR366', 'doi-asserted-by': 'publisher', 'first-page': '16024', 'DOI': '10.1038/npjamd.2016.24', 'volume': '2', 'author': 'X-L Wang', 'year': '2016', 'unstructured': 'Wang X-L, et al. Deficiency of angiotensin-converting enzyme 2 causes ' 'deterioration of cognitive function. npj Aging Mechanisms Dis. ' '2016;2(1):16024.', 'journal-title': 'npj Aging Mechanisms Dis'}, { 'issue': '1', 'key': '728_CR367', 'doi-asserted-by': 'publisher', 'first-page': '23', 'DOI': '10.1177/0748730420987669', 'volume': '36', 'author': 'S Sengupta', 'year': '2021', 'unstructured': 'Sengupta S, et al. Clocks, viruses, and immunity: lessons for the ' 'COVID-19 pandemic. J Biol Rhythms. 2021;36(1):23–34.', 'journal-title': 'J Biol Rhythms'}, { 'issue': '2', 'key': '728_CR368', 'doi-asserted-by': 'publisher', 'first-page': '233', 'DOI': '10.32598/bcn.11.covid19.2584.1', 'volume': '11', 'author': 'A Bakhtazad', 'year': '2020', 'unstructured': 'Bakhtazad A, et al. Paying attention to circadian rhythms in the ' 'treatment of COVID-19. Basic Clin Neurosci J. 2020;11(2):233–46.', 'journal-title': 'Basic Clin Neurosci J'}, { 'issue': '2', 'key': '728_CR369', 'doi-asserted-by': 'publisher', 'first-page': '60', 'DOI': '10.33069/cim.2021.0010', 'volume': '3', 'author': 'R Tomar', 'year': '2021', 'unstructured': 'Tomar R, Raghav A. Association of circadian clock and severe acute ' 'respiratory syndrome coronavirus 2 infection. Chronobiol Med. ' '2021;3(2):60–3.', 'journal-title': 'Chronobiol Med'}, { 'issue': '10', 'key': '728_CR370', 'doi-asserted-by': 'publisher', 'first-page': '103144', 'DOI': '10.1016/j.isci.2021.103144', 'volume': '24', 'author': 'X Zhuang', 'year': '2021', 'unstructured': 'Zhuang X, et al. The circadian clock component BMAL1 regulates ' 'SARS-CoV-2 entry and replication in lung epithelial cells. IScience. ' '2021;24(10):103144.', 'journal-title': 'IScience'}, { 'key': '728_CR371', 'doi-asserted-by': 'publisher', 'first-page': '105067', 'DOI': '10.1016/j.micpath.2021.105067', 'volume': '158', 'author': 'AB Diallo', 'year': '2021', 'unstructured': 'Diallo AB, et al. Daytime variation in SARS-CoV-2 infection and cytokine ' 'production. Microb Pathog. 2021;158:105067.', 'journal-title': 'Microb Pathog'}, { 'issue': '1', 'key': '728_CR372', 'doi-asserted-by': 'publisher', 'first-page': '9', 'DOI': '10.1177/0748730420967768', 'volume': '36', 'author': 'H Borrmann', 'year': '2021', 'unstructured': 'Borrmann H, McKeating JA, Zhuang X. The circadian clock and viral ' 'infections. J Biol Rhythms. 2021;36(1):9–22.', 'journal-title': 'J Biol Rhythms'}, { 'issue': '5', 'key': '728_CR373', 'doi-asserted-by': 'publisher', 'first-page': '4061', 'DOI': '10.1007/s11033-022-07419-9', 'volume': '49', 'author': 'IC Haskologlu', 'year': '2022', 'unstructured': 'Haskologlu IC, et al. Melatonin and REGN-CoV2 combination as a vaccine ' 'adjuvant for Omicron variant of SARS-CoV-2. Mol Biol Rep. ' '2022;49(5):4061–8.', 'journal-title': 'Mol Biol Rep'}, { 'issue': '4', 'key': '728_CR374', 'doi-asserted-by': 'publisher', 'first-page': '1135', 'DOI': '10.1038/s41418-020-00728-1', 'volume': '28', 'author': 'X Chen', 'year': '2021', 'unstructured': 'Chen X, et al. Cellular degradation systems in ferroptosis. Cell Death ' 'Differ. 2021;28(4):1135–48.', 'journal-title': 'Cell Death Differ'}, { 'issue': '3', 'key': '728_CR375', 'doi-asserted-by': 'publisher', 'first-page': '1123', 'DOI': '10.1007/s11357-014-9626-3', 'volume': '36', 'author': 'A Bitto', 'year': '2014', 'unstructured': 'Bitto A, et al. p62/SQSTM1 at the interface of aging, autophagy, and ' 'disease. Age. 2014;36(3):1123–37.', 'journal-title': 'Age'}, { 'key': '728_CR376', 'doi-asserted-by': 'publisher', 'first-page': '793328', 'DOI': '10.3389/fcell.2022.793328', 'volume': '10', 'author': 'AV Kumar', 'year': '2022', 'unstructured': 'Kumar AV, Mills J, Lapierre LR. Selective autophagy receptor p62/SQSTM1, ' 'a pivotal player in stress and aging. Front Cell Dev Biol. ' '2022;10:793328.', 'journal-title': 'Front Cell Dev Biol'}, { 'key': '728_CR377', 'doi-asserted-by': 'crossref', 'unstructured': 'Liu J et al. Iron accumulation with age alters metabolic pattern and ' 'circadian clock gene expression through the reduction of AMP-modulated ' 'histone methylation. J Biol Chem. 2022;298(6).', 'DOI': '10.1016/j.jbc.2022.101968'}, { 'issue': '5', 'key': '728_CR378', 'doi-asserted-by': 'publisher', 'first-page': '325', 'DOI': '10.1038/nrn3208', 'volume': '13', 'author': 'AA Kondratova', 'year': '2012', 'unstructured': 'Kondratova AA, Kondratov RV. The circadian clock and pathology of the ' 'ageing brain. Nat Rev Neurosci. 2012;13(5):325–35.', 'journal-title': 'Nat Rev Neurosci'}, { 'key': '728_CR379', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.pnpbp.2023.110721', 'volume': '123', 'author': 'M Amidfar', 'year': '2023', 'unstructured': 'Amidfar M, Garcez ML, Kim Y-K. The shared molecular mechanisms ' 'underlying aging of the brain, major depressive disorder, and ' 'Alzheimer’s disease: The role of circadian rhythm disturbances. Prog ' 'Neuropsychopharmacol Biol Psychiatry. 2023;123: 110721.', 'journal-title': 'Prog Neuropsychopharmacol Biol Psychiatry'}, { 'issue': '14', 'key': '728_CR380', 'doi-asserted-by': 'publisher', 'first-page': '1868', 'DOI': '10.1101/gad.1432206', 'volume': '20', 'author': 'RV Kondratov', 'year': '2006', 'unstructured': 'Kondratov RV, et al. Early aging and age-related pathologies in mice ' 'deficient in BMAL1, the core componentof the circadian clock. Genes Dev. ' '2006;20(14):1868–73.', 'journal-title': 'Genes Dev'}, { 'issue': '6', 'key': '728_CR381', 'doi-asserted-by': 'publisher', 'first-page': '435', 'DOI': '10.18632/aging.100764', 'volume': '7', 'author': 'AA Ali', 'year': '2015', 'unstructured': 'Ali AA, et al. Premature aging of the hippocampal neurogenic niche in ' 'adult Bmal1-deficient mice. Aging (Albany NY). 2015;7(6):435.', 'journal-title': 'Aging (Albany NY)'}, { 'key': '728_CR382', 'doi-asserted-by': 'crossref', 'unstructured': 'Musiek ES. Circadian clock disruption in neurodegenerative diseases: ' 'cause and effect? Front Pharmacol. 2015;6.', 'DOI': '10.3389/fphar.2015.00029'}, { 'issue': '5', 'key': '728_CR383', 'doi-asserted-by': 'publisher', 'first-page': '6570', 'DOI': '10.1096/fj.201901565RR', 'volume': '34', 'author': 'W-W Liu', 'year': '2020', 'unstructured': 'Liu W-W, et al. BMAL1 regulation of microglia-mediated neuroinflammation ' 'in MPTP-induced Parkinson’s disease mouse model. FASEB J. ' '2020;34(5):6570–81.', 'journal-title': 'FASEB J'}, { 'issue': '1', 'key': '728_CR384', 'doi-asserted-by': 'publisher', 'first-page': '173', 'DOI': '10.1186/s12974-019-1562-9', 'volume': '16', 'author': 'J Ni', 'year': '2019', 'unstructured': 'Ni J, et al. An impaired intrinsic microglial clock system induces ' 'neuroinflammatory alterations in the early stage of amyloid precursor ' 'protein knock-in mouse brain. J Neuroinflammation. 2019;16(1):173.', 'journal-title': 'J Neuroinflammation'}, { 'issue': '4', 'key': '728_CR385', 'doi-asserted-by': 'publisher', 'first-page': '420', 'DOI': '10.1016/j.chembiol.2020.02.005', 'volume': '27', 'author': 'J Liu', 'year': '2020', 'unstructured': 'Liu J, et al. Autophagy-dependent ferroptosis: machinery and regulation. ' 'Cell Chem Biol. 2020;27(4):420–35.', 'journal-title': 'Cell Chem Biol'}, { 'issue': '2', 'key': '728_CR386', 'doi-asserted-by': 'publisher', 'first-page': 'e0212138', 'DOI': '10.1371/journal.pone.0212138', 'volume': '14', 'author': 'L Hu', 'year': '2019', 'unstructured': 'Hu L, et al. Melatonin decreases M1 polarization via attenuating ' 'mitochondrial oxidative damage depending on UCP2 pathway in ' 'prorenin-treated microglia. PLoS ONE. 2019;14(2):e0212138.', 'journal-title': 'PLoS ONE'}, { 'issue': '12', 'key': '728_CR387', 'doi-asserted-by': 'publisher', 'first-page': '6552', 'DOI': '10.1007/s12035-021-02568-7', 'volume': '58', 'author': 'Q Zhou', 'year': '2021', 'unstructured': 'Zhou Q, et al. Melatonin reduces neuroinflammation and improves axonal ' 'hypomyelination by modulating M1/M2 microglia polarization via ' 'JAK2-STAT3-telomerase pathway in postnatal rats exposed to ' 'lipopolysaccharide. Mol Neurobiol. 2021;58(12):6552–76.', 'journal-title': 'Mol Neurobiol'}, { 'issue': '15', 'key': '728_CR388', 'doi-asserted-by': 'publisher', 'first-page': '8296', 'DOI': '10.3390/ijms22158296', 'volume': '22', 'author': 'R Hardeland', 'year': '2021', 'unstructured': 'Hardeland R. Melatonin and Microglia. Int J Mol Sci. 2021;22(15):8296.', 'journal-title': 'Int J Mol Sci'}, { 'issue': '1', 'key': '728_CR389', 'doi-asserted-by': 'publisher', 'first-page': '90', 'DOI': '10.1038/s41531-022-00352-5', 'volume': '8', 'author': 'J Li', 'year': '2022', 'unstructured': 'Li J, et al. Melatonin ameliorates Parkinson’s disease via regulating ' 'microglia polarization in a RORα-depend4ent pathway. npj Parkinson’s ' 'Dis. 2022;8(1):90.', 'journal-title': "npj Parkinson's Dis"}, { 'issue': '1', 'key': '728_CR390', 'doi-asserted-by': 'publisher', 'first-page': '71', 'DOI': '10.1111/jpi.12194', 'volume': '58', 'author': 'T Ali', 'year': '2015', 'unstructured': 'Ali T, et al. Melatonin attenuates D-galactose-induced memory ' 'impairment, neuroinflammation and neurodegeneration via RAGE/NF-KB/JNK ' 'signaling pathway in aging mouse model. J Pineal Res. 2015;58(1):71–85.', 'journal-title': 'J Pineal Res'}, { 'key': '728_CR391', 'doi-asserted-by': 'crossref', 'unstructured': 'Dou X et al. Therapeutic potential of melatonin in the intervertebral ' 'disc degeneration through inhibiting the ferroptosis of nucleus pulpous ' 'cells. J Cell Mol Med. 2023.', 'DOI': '10.1111/jcmm.17818'}, { 'issue': '5', 'key': '728_CR392', 'doi-asserted-by': 'publisher', 'first-page': '3124', 'DOI': '10.1007/s12035-022-02788-5', 'volume': '59', 'author': 'W Qu', 'year': '2022', 'unstructured': 'Qu W, et al. Targeting iNOS alleviates early brain injury after ' 'experimental subarachnoid hemorrhage via promoting ferroptosis of M1 ' 'microglia and reducing neuroinflammation. Mol Neurobiol. ' '2022;59(5):3124–39.', 'journal-title': 'Mol Neurobiol'}, { 'issue': '4', 'key': '728_CR393', 'doi-asserted-by': 'publisher', 'first-page': '278', 'DOI': '10.1034/j.1600-079X.2003.00042.x', 'volume': '34', 'author': 'İ Gulcin', 'year': '2003', 'unstructured': 'Gulcin İ, Buyukokuroglu ME, Kufrevioglu OI. Metal chelating and hydrogen ' 'peroxide scavenging effects of melatonin. J Pineal Res. ' '2003;34(4):278–81.', 'journal-title': 'J Pineal Res'}, { 'issue': '1', 'key': '728_CR394', 'doi-asserted-by': 'publisher', 'first-page': '15', 'DOI': '10.1111/j.1600-079X.1998.tb00361.x', 'volume': '24', 'author': 'J Limson', 'year': '1998', 'unstructured': 'Limson J, Nyokong T, Daya S. The interaction of melatonin and its ' 'precursors with aluminium, cadmium, copper, iron, lead, and zinc: an ' 'adsorptive voltammetric study. J Pineal Res. 1998;24(1):15–21.', 'journal-title': 'J Pineal Res'}, { 'issue': '4', 'key': '728_CR395', 'doi-asserted-by': 'publisher', 'first-page': '343', 'DOI': '10.1111/jpi.12132', 'volume': '56', 'author': 'A Romero', 'year': '2014', 'unstructured': 'Romero A, et al. A review of metal-catalyzed molecular damage: ' 'protection by melatonin. J Pineal Res. 2014;56(4):343–70.', 'journal-title': 'J Pineal Res'}, { 'issue': '3', 'key': '728_CR396', 'doi-asserted-by': 'publisher', 'first-page': '182', 'DOI': '10.1016/j.neulet.2004.02.024', 'volume': '362', 'author': 'CL Hayter', 'year': '2004', 'unstructured': 'Hayter CL, Bishop GM, Robinson SR. Pharmacological but not physiological ' 'concentrations of melatonin reduce iron-induced neuronal death in rat ' 'cerebral cortex. Neurosci Lett. 2004;362(3):182–4.', 'journal-title': 'Neurosci Lett'}, { 'issue': '1', 'key': '728_CR397', 'doi-asserted-by': 'publisher', 'first-page': '78', 'DOI': '10.1111/j.1471-4159.2005.03532.x', 'volume': '96', 'author': 'DS Maharaj', 'year': '2006', 'unstructured': 'Maharaj DS, et al. Melatonin and 6-hydroxymelatonin protect against ' 'iron-induced neurotoxicity. J Neurochem. 2006;96(1):78–81.', 'journal-title': 'J Neurochem'}, { 'issue': '1', 'key': '728_CR398', 'doi-asserted-by': 'publisher', 'first-page': '32', 'DOI': '10.1034/j.1600-079X.2003.02934.x', 'volume': '34', 'author': 'E Kaptanoglu', 'year': '2003', 'unstructured': 'Kaptanoglu E, et al. Different responsiveness of central nervous system ' 'tissues to oxidative conditions and to the antioxidant effect of ' 'melatonin. J Pineal Res. 2003;34(1):32–5.', 'journal-title': 'J Pineal Res'}, { 'issue': '6', 'key': '728_CR399', 'doi-asserted-by': 'publisher', 'first-page': '904', 'DOI': '10.1016/S0891-5849(00)00169-6', 'volume': '28', 'author': 'AM-Y Lin', 'year': '2000', 'unstructured': 'Lin AM-Y, Ho L-T. Melatonin suppresses iron-induced neurodegeneration in ' 'rat brain. Free Radical Biol Med. 2000;28(6):904–11.', 'journal-title': 'Free Radical Biol Med'}, { 'issue': '1', 'key': '728_CR400', 'doi-asserted-by': 'publisher', 'first-page': '55', 'DOI': '10.1016/S0304-3940(01)02530-7', 'volume': '323', 'author': 'S Ortega-Gutiérrez', 'year': '2002', 'unstructured': 'Ortega-Gutiérrez S, et al. Melatonin improves deferoxamine antioxidant ' 'activity in protecting against lipid peroxidation caused by hydrogen ' 'peroxide in rat brain homogenates. Neurosci Lett. 2002;323(1):55–9.', 'journal-title': 'Neurosci Lett'}, { 'key': '728_CR401', 'doi-asserted-by': 'publisher', 'first-page': '114048', 'DOI': '10.1016/j.biopha.2022.114048', 'volume': '157', 'author': 'Y Mi', 'year': '2023', 'unstructured': 'Mi Y, et al. Melatonin inhibits ferroptosis and delays age-related ' 'cataract by regulating SIRT6/p-Nrf2/GPX4 and SIRT6/NCOA4/FTH1 pathways. ' 'Biomed Pharmacother. 2023;157:114048.', 'journal-title': 'Biomed Pharmacother'}, { 'key': '728_CR402', 'doi-asserted-by': 'publisher', 'first-page': '97', 'DOI': '10.1016/j.freeradbiomed.2023.02.014', 'volume': '199', 'author': 'Y Gao', 'year': '2023', 'unstructured': 'Gao Y, et al. Melatonin ameliorates neurological deficits through ' 'MT2/IL-33/ferritin H signaling-mediated inhibition of neuroinflammation ' 'and ferroptosis after traumatic brain injury. Free Radical Biol Med. ' '2023;199:97–112.', 'journal-title': 'Free Radical Biol Med'}, { 'key': '728_CR403', 'doi-asserted-by': 'publisher', 'first-page': '708645', 'DOI': '10.3389/fphar.2021.708645', 'volume': '12', 'author': 'X Wang', 'year': '2021', 'unstructured': 'Wang X, et al. Melatonin alleviates acute sleep deprivation-induced ' 'memory loss in mice by suppressing hippocampal ferroptosis. Front ' 'Pharmacol. 2021;12:708645.', 'journal-title': 'Front Pharmacol'}, { 'key': '728_CR404', 'doi-asserted-by': 'publisher', 'first-page': '101717', 'DOI': '10.1016/j.arr.2022.101717', 'volume': '81', 'author': 'J Yang', 'year': '2022', 'unstructured': 'Yang J, Tang Q, Zeng Y. Melatonin: potential avenue for treating iron ' 'overload disorders. Ageing Res Rev. 2022;81:101717.', 'journal-title': 'Ageing Res Rev'}, { 'issue': '1', 'key': '728_CR405', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1046/j.1600-079X.2003.00092.x', 'volume': '36', 'author': 'C Rodriguez', 'year': '2004', 'unstructured': 'Rodriguez C, et al. Regulation of antioxidant enzymes: a significant ' 'role for melatonin. J Pineal Res. 2004;36(1):1–9.', 'journal-title': 'J Pineal Res'}, { 'issue': '3', 'key': '728_CR406', 'doi-asserted-by': 'publisher', 'first-page': '253', 'DOI': '10.1111/jpi.12360', 'volume': '61', 'author': 'RJ Reiter', 'year': '2016', 'unstructured': 'Reiter RJ, et al. Melatonin as an antioxidant: under promises but over ' 'delivers. J Pineal Res. 2016;61(3):253–78.', 'journal-title': 'J Pineal Res'}, { 'issue': '1', 'key': '728_CR407', 'doi-asserted-by': 'publisher', 'first-page': '11', 'DOI': '10.1111/fcp.12498', 'volume': '34', 'author': 'Z Ahmadi', 'year': '2020', 'unstructured': 'Ahmadi Z, Ashrafizadeh M. Melatonin as a potential modulator of Nrf2. ' 'Fundam Clin Pharmacol. 2020;34(1):11–9.', 'journal-title': 'Fundam Clin Pharmacol'}, { 'key': '728_CR408', 'doi-asserted-by': 'publisher', 'first-page': '555', 'DOI': '10.1016/j.freeradbiomed.2023.09.012', 'volume': '208', 'author': 'S-J Ma', 'year': '2023', 'unstructured': 'Ma S-J, et al. Melatonin alleviates early brain injury by inhibiting the ' 'NRF2-mediated ferroptosis pathway after subarachnoid hemorrhage. Free ' 'Radical Biol Med. 2023;208:555–70.', 'journal-title': 'Free Radical Biol Med'}, { 'key': '728_CR409', 'doi-asserted-by': 'publisher', 'first-page': '110777', 'DOI': '10.1016/j.pnpbp.2023.110777', 'volume': '126', 'author': 'C Ren', 'year': '2023', 'unstructured': 'Ren C, et al. Melatonin reduces radiation-induced ferroptosis in ' 'hippocampal neurons by activating the PKM2/NRF2/GPX4 signaling pathway. ' 'Prog Neuropsychopharmacol Biol Psychiatry. 2023;126:110777.', 'journal-title': 'Prog Neuropsychopharmacol Biol Psychiatry'}, { 'key': '728_CR410', 'doi-asserted-by': 'publisher', 'first-page': '40', 'DOI': '10.1016/j.brainresbull.2020.07.011', 'volume': '163', 'author': 'Z Gou', 'year': '2020', 'unstructured': 'Gou Z, et al. Melatonin improves hypoxic-ischemic brain damage through ' 'the Akt/Nrf2/Gpx4 signaling pathway. Brain Res Bull. 2020;163:40–8.', 'journal-title': 'Brain Res Bull'}, { 'key': '728_CR411', 'doi-asserted-by': 'crossref', 'unstructured': 'Huang Y-B et al. Melatonin alleviates acute kidney injury by inhibiting ' 'NRF2/Slc7a11 axis-mediated ferroptosis. Oxidative Med Cell Longevity. ' '2022;2022.', 'DOI': '10.1155/2022/4776243'}, { 'key': '728_CR412', 'doi-asserted-by': 'publisher', 'first-page': '112588', 'DOI': '10.1016/j.ecoenv.2021.112588', 'volume': '223', 'author': 'F Guohua', 'year': '2021', 'unstructured': 'Guohua F, et al. Melatonin protects against PM2. 5-induced lung injury ' 'by inhibiting ferroptosis of lung epithelial cells in a Nrf2-dependent ' 'manner. Ecotoxicol Environ Safety. 2021;223:112588.', 'journal-title': 'Ecotoxicol Environ Safety'}, { 'key': '728_CR413', 'doi-asserted-by': 'crossref', 'unstructured': 'Ma H et al. Melatonin suppresses ferroptosis induced by high glucose via ' 'activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic ' 'osteoporosis. Oxidative Med Cell Longevity. 2020;2020.', 'DOI': '10.1155/2020/9067610'}, { 'issue': '6', 'key': '728_CR414', 'doi-asserted-by': 'publisher', 'first-page': '1173', 'DOI': '10.3390/antiox12061173', 'volume': '12', 'author': 'F Zhang', 'year': '2023', 'unstructured': 'Zhang F, et al. Melatonin alleviates retinal ischemia-reperfusion injury ' 'by inhibiting p53–mediated ferroptosis. Antioxidants. 2023;12(6):1173.', 'journal-title': 'Antioxidants'}, { 'key': '728_CR415', 'doi-asserted-by': 'crossref', 'unstructured': 'Li N et al. PM2. 5 contributed to pulmonary epithelial senescence and ' 'ferroptosis by regulating USP3-SIRT3-P53 axis. Free Radical Biol Med. ' '2023.', 'DOI': '10.1016/j.freeradbiomed.2023.06.017'}, { 'issue': '1', 'key': '728_CR416', 'doi-asserted-by': 'publisher', 'first-page': '171', 'DOI': '10.1186/s13287-023-03371-y', 'volume': '14', 'author': 'W Li', 'year': '2023', 'unstructured': 'Li W, et al. Exogenous melatonin ameliorates steroid-induced ' 'osteonecrosis of the femoral head by modulating ferroptosis through ' 'GDF15-mediated signaling. Stem Cell Res Ther. 2023;14(1):171.', 'journal-title': 'Stem Cell Res Ther'}, { 'key': '728_CR417', 'doi-asserted-by': 'publisher', 'first-page': '115902', 'DOI': '10.1016/j.taap.2022.115902', 'volume': '437', 'author': 'X Sun', 'year': '2022', 'unstructured': 'Sun X, et al. Melatonin alleviates doxorubicin-induced mitochondrial ' 'oxidative damage and ferroptosis in cardiomyocytes by regulating YAP ' 'expression. Toxicol Appl Pharmacol. 2022;437:115902.', 'journal-title': 'Toxicol Appl Pharmacol'}, { 'key': '728_CR418', 'doi-asserted-by': 'publisher', 'first-page': '271', 'DOI': '10.1016/j.freeradbiomed.2021.12.007', 'volume': '178', 'author': 'C Wu', 'year': '2022', 'unstructured': 'Wu C, et al. A novel mechanism linking ferroptosis and endoplasmic ' 'reticulum stress via the circPtpn14/miR-351-5p/5-LOX signaling in ' 'melatonin-mediated treatment of traumatic brain injury. Free Radical ' 'Biol Med. 2022;178:271–94.', 'journal-title': 'Free Radical Biol Med'}, { 'issue': '1', 'key': '728_CR419', 'doi-asserted-by': 'publisher', 'first-page': '110', 'DOI': '10.1111/jpi.12148', 'volume': '57', 'author': 'H Li', 'year': '2014', 'unstructured': 'Li H, et al. Alterations in the time course of expression of the Nox ' 'family in the brain in a rat experimental cerebral ischemia and ' 'reperfusion model: effects of melatonin. J Pineal Res. 2014;57(1):110–9.', 'journal-title': 'J Pineal Res'}, { 'key': '728_CR420', 'doi-asserted-by': 'publisher', 'first-page': '61', 'DOI': '10.1016/j.neuro.2016.09.002', 'volume': '57', 'author': 'P Patiño', 'year': '2016', 'unstructured': 'Patiño P, et al. Melatonin protects against oxygen and glucose ' 'deprivation by decreasing extracellular glutamate and Nox-derived ROS in ' 'rat hippocampal slices. Neurotoxicology. 2016;57:61–8.', 'journal-title': 'Neurotoxicology'}, { 'key': '728_CR421', 'doi-asserted-by': 'publisher', 'first-page': '84', 'DOI': '10.1016/j.brainres.2016.08.045', 'volume': '1650', 'author': 'P Jumnongprakhon', 'year': '2016', 'unstructured': 'Jumnongprakhon P, et al. Inhibitory effect of melatonin on cerebral ' 'endothelial cells dysfunction induced by methamphetamine via NADPH ' 'oxidase-2. Brain Res. 2016;1650:84–92.', 'journal-title': 'Brain Res'}, { 'issue': '3', 'key': '728_CR422', 'doi-asserted-by': 'publisher', 'first-page': '224', 'DOI': '10.2174/1574884714666190502151733', 'volume': '14', 'author': 'M Najafi', 'year': '2019', 'unstructured': 'Najafi M, et al. Melatonin modulates regulation of NOX2 and NOX4 ' 'following irradiation in the lung. Curr Clin Pharmacol. ' '2019;14(3):224–31.', 'journal-title': 'Curr Clin Pharmacol'}, { 'key': '728_CR423', 'doi-asserted-by': 'crossref', 'unstructured': 'Yılmaz S, Öner P. Melatonin levels are low in COVID-19 positive patients ' 'and these levels are associated with depression, death anxiety and ' 'insomnia. Scandinavian J Clin Lab Investig. 2023: 1–9.', 'DOI': '10.1080/00365513.2023.2175236'}, { 'key': '728_CR424', 'doi-asserted-by': 'publisher', 'first-page': '107179', 'DOI': '10.1016/j.intimp.2020.107179', 'volume': '90', 'author': 'S Li', 'year': '2021', 'unstructured': 'Li S, et al. Ferrostatin-1 alleviates angiotensin II (Ang II)-induced ' 'inflammation and ferroptosis in astrocytes. Int Immunopharmacol. ' '2021;90:107179.', 'journal-title': 'Int Immunopharmacol'}, { 'key': '728_CR425', 'doi-asserted-by': 'crossref', 'unstructured': 'Liu C et al. Paeonol improves angiotensin II-induced cardiac hypertrophy ' 'by suppressing ferroptosis. Heliyon. 2023;9(9).', 'DOI': '10.1016/j.heliyon.2023.e19149'}, { 'issue': '1', 'key': '728_CR426', 'doi-asserted-by': 'publisher', 'first-page': '920', 'DOI': '10.3892/mmr.2016.5313', 'volume': '14', 'author': 'ZZ Ji', 'year': '2016', 'unstructured': 'Ji ZZ, Xu YC. Melatonin protects podocytes from angiotensin II-induced ' 'injury in an in vitro diabetic nephropathy model. Mol Med Rep. ' '2016;14(1):920–6.', 'journal-title': 'Mol Med Rep'}, { 'key': '728_CR427', 'doi-asserted-by': 'publisher', 'first-page': '85', 'DOI': '10.1007/s11010-016-2808-9', 'volume': '422', 'author': 'H Su', 'year': '2016', 'unstructured': 'Su H, et al. Melatonin attenuates angiotensin II-induced cardiomyocyte ' 'hypertrophy through the CyPA/CD147 signaling pathway. Mol Cell Biochem. ' '2016;422:85–95.', 'journal-title': 'Mol Cell Biochem'}, { 'issue': '9', 'key': '728_CR428', 'doi-asserted-by': 'publisher', 'first-page': '14283', 'DOI': '10.18632/oncotarget.15093', 'volume': '8', 'author': 'J Kong', 'year': '2017', 'unstructured': 'Kong J, et al. Melatonin attenuates angiotensin II-induced abdominal ' 'aortic aneurysm through the down-regulation of matrix ' 'metalloproteinases. Oncotarget. 2017;8(9):14283.', 'journal-title': 'Oncotarget'}, { 'issue': '1', 'key': '728_CR429', 'doi-asserted-by': 'publisher', 'first-page': '493', 'DOI': '10.18632/aging.202159', 'volume': '13', 'author': 'Y Yang', 'year': '2021', 'unstructured': 'Yang Y, et al. Melatonin alleviates angiotensin-II-induced cardiac ' 'hypertrophy via activating MICU1 pathway. Aging (Albany NY). ' '2021;13(1):493.', 'journal-title': 'Aging (Albany NY)'}, { 'key': '728_CR430', 'doi-asserted-by': 'publisher', 'first-page': '202', 'DOI': '10.1016/j.freeradbiomed.2021.11.043', 'volume': '178', 'author': 'L-M Yu', 'year': '2022', 'unstructured': 'Yu L-M, et al. Activation of PKG-CREB-KLF15 by melatonin attenuates ' 'Angiotensin II-induced vulnerability to atrial fibrillation via ' 'enhancing branched-chain amino acids catabolism. Free Radical Biol Med. ' '2022;178:202–14.', 'journal-title': 'Free Radical Biol Med'}, { 'issue': '10', 'key': '728_CR431', 'doi-asserted-by': 'publisher', 'first-page': 'e23163', 'DOI': '10.1002/jbt.23163', 'volume': '36', 'author': 'S Mahalanobish', 'year': '2022', 'unstructured': 'Mahalanobish S, et al. Melatonin counteracts necroptosis and pulmonary ' 'edema in cadmium-induced chronic lung injury through the inhibition of ' 'angiotensin II. J Biochem Mol Toxicol. 2022;36(10):e23163.', 'journal-title': 'J Biochem Mol Toxicol'}, { 'issue': '40', 'key': '728_CR432', 'doi-asserted-by': 'publisher', 'first-page': '12953', 'DOI': '10.1021/acs.jafc.2c04337', 'volume': '70', 'author': 'Y Zhao', 'year': '2022', 'unstructured': 'Zhao Y, et al. Melatonin prevents against ethanol-induced liver injury ' 'by mitigating ferroptosis via targeting brain and muscle ARNT-like 1 in ' 'mice liver and HepG2 cells. J Agric Food Chem. 2022;70(40):12953–67.', 'journal-title': 'J Agric Food Chem'}, { 'key': '728_CR433', 'doi-asserted-by': 'crossref', 'unstructured': "Fan L et al. Melatonin ameliorates the progression of Alzheimer's " 'disease by inducing TFEB nuclear translocation, promoting mitophagy, and ' 'regulating NLRP3 inflammasome activity. BioMed Res Int. 2022. 2022.', 'DOI': '10.1155/2022/8099459'}, { 'key': '728_CR434', 'doi-asserted-by': 'crossref', 'unstructured': 'Li T et al. Peripheral clock system abnormalities in patients with ' 'Parkinson’s disease. Front Aging Neurosci. 2021;13.', 'DOI': '10.3389/fnagi.2021.736026'}, { 'key': '728_CR435', 'doi-asserted-by': 'publisher', 'first-page': '110485', 'DOI': '10.1016/j.biopha.2020.110485', 'volume': '129', 'author': 'D Delgado-Lara', 'year': '2020', 'unstructured': 'Delgado-Lara D, et al. Effect of melatonin administration on the PER1 ' 'and BMAL1 clock genes in patients with Parkinson’s disease. Biomed ' 'Pharmacother. 2020;129:110485.', 'journal-title': 'Biomed Pharmacother'}, { 'key': '728_CR436', 'doi-asserted-by': 'publisher', 'first-page': '257', 'DOI': '10.1007/s10522-014-9495-2', 'volume': '15', 'author': 'U Mattam', 'year': '2014', 'unstructured': 'Mattam U, Jagota A. Differential role of melatonin in restoration of ' 'age-induced alterations in daily rhythms of expression of various clock ' 'genes in suprachiasmatic nucleus of male Wistar rats. Biogerontology. ' '2014;15:257–68.', 'journal-title': 'Biogerontology'}], 'container-title': 'Molecular Neurodegeneration', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://link.springer.com/content/pdf/10.1186/s13024-024-00728-6.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/article/10.1186/s13024-024-00728-6/fulltext.html', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/content/pdf/10.1186/s13024-024-00728-6.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 4, 19]], 'date-time': '2024-04-19T14:03:31Z', 'timestamp': 1713535411000}, 'score': 1, 'resource': { 'primary': { 'URL': 'https://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-024-00728-6'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 4, 19]]}, 'references-count': 436, 'journal-issue': {'issue': '1', 'published-online': {'date-parts': [[2024, 12]]}}, 'alternative-id': ['728'], 'URL': 'http://dx.doi.org/10.1186/s13024-024-00728-6', 'relation': {}, 'ISSN': ['1750-1326'], 'subject': ['Cellular and Molecular Neuroscience', 'Neurology (clinical)', 'Molecular Biology'], 'container-title-short': 'Mol Neurodegeneration', 'published': {'date-parts': [[2024, 4, 19]]}, 'assertion': [ { 'value': '7 February 2024', 'order': 1, 'name': 'received', 'label': 'Received', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '15 April 2024', 'order': 2, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '19 April 2024', 'order': 3, 'name': 'first_online', 'label': 'First Online', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, {'order': 1, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Declarations'}}, { 'value': 'This manuscript does not contain data from any individual person so the consent ' 'for publication is not applicable.', 'order': 2, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Consent for publication'}}, { 'value': 'Not applicable. Ethics approval and consent are not indicated due to the review ' 'nature of this paper.', 'order': 3, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Ethics approval and consent to participate'}}, { 'value': 'The authors declare that they have no competing interests.', 'order': 4, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Competing interests'}}], 'article-number': '36'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit