A Machine Learning Approach to Understanding the Genetic Role in COVID-19 Prognosis: The Influence of Gene Polymorphisms Related to Inflammation, Vitamin D, and ACE2
Sofía Jaurrieta-Largo, José Pablo Miramontes-González, Luis Corral-Gudino, Miriam Gabella-Martín, Sofía Pérez-Arroyo, Ana M Torres, Jorge Mateo, José Luis Pérez-Castrillón, Ricardo Usategui-Martín
International Journal of Molecular Sciences, doi:10.3390/ijms26167975
The genetic background influences the outcomes of COVID-19. This study aimed to evaluate the incidence of polymorphisms in genes linked to the RAAS system, cytokine production, and vitamin D on COVID-19 severity, with the goal of gaining a deeper understanding of the genetic etiology related to COVID-19. This study involved 338 COVID-19 patients and employed machine learning methods to identify the genetic variants that most significantly affect COVID-19 severity. The results revealed that polymorphisms in the IL6, IL6R, IL1α, IL1R, IFNγ, TNFα, CRP, VDR, VDBP, and ACE2 genes are the most significant genetic factors influencing COVID-19 prognosis, particularly in terms of the risks of COVID-19 pneumonia, mortality, rehospitalization, and associated mortality. The machine learning methods achieved an AUC of 0.86 for predicting COVID-19 pneumonia, mortality, and mortality related to rehospitalization, as well as an AUC of 0.85 for rehospitalization within the first year. These results confirm the crucial role of genetic background in COVID-19 prognosis, facilitating the identification of patients at increased risk. In summary, this research demonstrates that genetics-driven machine learning models can pinpoint patients at heightened risk by primarily focusing on genetic variants associated with ACE2, inflammation, and vitamin D.
Conflicts of Interest: The authors declare no conflicts of interest.
References
Abobaker, Nagib, Alsoufi, The impact of certain genetic variants (single nucleotide polymorphisms) on incidence and severity of COVID-19, J. Gene Med,
doi:10.1002/jgm.3310
Ampomah, Nyame, Qin, Addo, Gyamfi et al., Stock Market Prediction with Gaussian Naïve Bayes Machine Learning Algorithm, Informatica,
doi:10.31449/inf.v45i2.3407
Annoni, Orbegozo, Rahmania, Irazabal, Mendoza et al., Angiotensin-converting enzymes in acute respiratory distress syndrome, Intensive Care Med,
doi:10.1007/s00134-019-05600-6
Bischoff-Ferrari, Dawson-Hughes, Stöcklin, Sidelnikov, Willett et al., Oral supplementation with 25(OH)D 3 versus vitamin D3: Effects on 25(OH)D levels, lower extremity function, blood pressure, and markers of innate immunity, J. Bone Miner. Res,
doi:10.1002/jbmr.551
Camps-Vilaró, Pinsach-Abuin, Degano, Ramos, Martí-Lluch et al., Genetic characteristics involved in COVID-19 severity. The CARGENCORS case-control study and meta-analysis, J. Med. Virol,
doi:10.1002/jmv.29404
Cervantes, Garcia-Lamont, Rodríguez-Mazahua, Lopez, A comprehensive survey on support vector machine classification: Applications, challenges and trends, Neurocomputing,
doi:10.1016/j.neucom.2019.10.118
Charbuty, Abdulazeez, Classification Based on Decision Tree Algorithm for Machine Learning, J. Appl. Sci. Technol. Trends,
doi:10.38094/jastt20165
Chen, Benesty, Khotilovich, Tang, Cho et al., Xgboost: Extreme gradient boosting, Sci. Res
Chen, Dewi, Huang, Caraka, Selecting critical features for data classification based on machine learning methods, J. Big Data,
doi:10.1186/s40537-020-00327-4
Cools, Goemaere, Baetens, Raes, Desloovere et al., Calcium and bone homeostasis in heterozygous carriers of CYP24A1 mutations: A cross-sectional study, Bone,
doi:10.1016/j.bone.2015.06.018
Cubillos, Wøhlk, Wulff, A bi-objective k-nearest-neighbors-based imputation method for multilevel data, Expert Syst. Appl,
doi:10.1016/j.eswa.2022.117298
Darbeheshti, Mahdiannasser, Uhal, Ogino, Gupta et al., Interindividual immunogenic variants: Susceptibility to coronavirus, respiratory syncytial virus and influenza virus, Rev. Med. Virol,
doi:10.1002/rmv.2234
Dobrijevic, Robajac, Gligorijevic, Šunderic, Penezic et al., The association of ACE1, ACE2, TMPRSS2, IFITM3 and VDR polymorphisms with COVID-19 severity: A systematic review and meta-analysis, EXCLI J
Fu, Wang, Yuan, Chen, Ao et al., Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis, J. Infect,
doi:10.1016/j.jinf.2020.03.041
Gong, Song, Hu, Che, Guo et al., Natural and socio-environmental factors in the transmission of COVID-19: A comprehensive analysis of epidemiology and mechanisms, BMC Public Health,
doi:10.1186/s12889-024-19749-3
Guan, Ni, Hu, Liang, Ou et al., Clinical Characteristics of Coronavirus Disease 2019 in China, N. Engl. J. Med,
doi:10.1056/NEJMoa2002032
Gómez, Albaiceta, García-Clemente, López-Larrea, Amado-Rodríguez et al., Angiotensin-converting enzymes (ACE, ACE2) gene variants and COVID-19 outcome, Gene,
doi:10.1016/j.gene.2020.145102
Handelman, Kok, Chandra, Razavi, Lee et al., eDoctor: Machine learning and the future of medicine, J. Intern. Med,
doi:10.1111/joim.12822
Herland, Khoshgoftaar, Wald, A review of data mining using big data in health informatics, J. Big Data
Imai, Kuba, Rao, Huan, Guo et al., Angiotensin-converting enzyme 2 protects from severe acute lung failure, Nature,
doi:10.1038/nature03712
Ingraham, Barakat, Reilkoff, Bezdicek, Schacker et al., Understanding the renin-angiotensin-aldosterone-SARS-CoV axis: A comprehensive review, Eur. Respir. J,
doi:10.1183/13993003.00912-2020
Jiang, Chi, Sun, Li, Vitamin D Binding Protein: A Potential Factor in Geriatric COVID-19 Acute Lung Injury, J. Inflamm. Res,
doi:10.2147/JIR.S470097
Karcıo Glu Batur, Dokur, Koç, Karabay, Akcay et al., Investigation of the Relationship between Vitamin D Deficiency and Vitamin D-Binding Protein Polymorphisms in Severe COVID-19 Patients, Diagnostics,
doi:10.3390/diagnostics14171941
Kuan, Martineau, Griffiths, Hyppönen, Walton, DHCR7 mutations linked to higher vitamin D status allowed early human migration to Northern latitudes, BMC Evol. Biol,
doi:10.1186/1471-2148-13-144
Kuba, Imai, Rao, Gao, Guo et al., A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury, Nat. Med,
doi:10.1038/nm1267
Litmanovich, Chung, Kirkbride, Kicska, Kanne, Review of Chest Radiograph Findings of COVID-19 Pneumonia and Suggested Reporting Language, J. Thorac. Imaging,
doi:10.1097/RTI.0000000000000541
Malmberg, Hanel, Taipale, Heikkinen, Carlberg, Vitamin D Treatment Sequence Is Critical for Transcriptome Modulation of Immune Challenged Primary Human Cells, Front. Immunol,
doi:10.3389/fimmu.2021.754056
Manousaki, Dudding, Haworth, Hsu, Liu et al., Low-Frequency Synonymous Coding Variation in CYP2R1 Has Large Effects on Vitamin D Levels and Risk of Multiple Sclerosis, Am. J. Hum. Genet,
doi:10.1016/j.ajhg.2017.06.014
Radujkovic, Hippchen, Tiwari-Heckler, Dreher, Boxberger et al., Vitamin D Deficiency and Outcome of COVID-19 Patients, Nutrients,
doi:10.3390/nu12092757
Ren, Lin, Huang, Xu, Luo et al., Association of genetic polymorphisms with COVID-19 infection and outcomes: An updated meta-analysis based on 62 studies, Heliyon,
doi:10.1016/j.heliyon.2023.e23662
Sabater Molina, Nicolás Rocamora, Bendicho, Vázquez, Zorio et al., Polymorphisms in ACE, ACE2, AGTR1 genes and severity of COVID-19 disease, PLoS ONE,
doi:10.1371/journal.pone.0263140
Saengsiwaritt, Jittikoon, Chaikledkaew, Udomsinprasert, Genetic polymorphisms of ACE1, ACE2, and TMPRSS2 associated with COVID-19 severity: A systematic review with meta-analysis, Rev. Med. Virol,
doi:10.1002/rmv.2323
Sanders, Monogue, Jodlowski, Cutrell, Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review, JAMA,
doi:10.1001/jama.2020.6019
Scazzone, Agnello, Bivona, Lo Sasso, Ciaccio, Vitamin D and Genetic Susceptibility to Multiple Sclerosis, Biochem. Genet,
doi:10.1007/s10528-020-10010-1
Schleinitz, Distefano, Kovacs, Targeted SNP genotyping using the TaqMan® assay
Tan, Komarasamy, Balasubramaniam, Hyperinflammatory Immune Response and COVID-19: A Double Edged Sword, Front. Immunol,
doi:10.3389/fimmu.2021.742941
Tentolouris, Achilla, Anastasiou, Eleftheriadou, Tentolouris et al., The Association of Vitamin D Receptor Polymorphisms with COVID-19 Severity, Nutrients,
doi:10.3390/nu16050727
Velavan, Pallerla, Rüter, Augustin, Kremsner et al., Host genetic factors determining COVID-19 susceptibility and severity, eBioMedicine,
doi:10.1016/j.ebiom.2021.103629
Vogi, Haschka, Forer, Schwendinger, Petzer et al., Severe COVID-19 disease is associated with genetic factors affecting plasma ACE2 receptor and CRP concentrations, Sci. Rep,
doi:10.1038/s41598-025-89306-4
Waring, Lindvall, Umeton, Automated machine learning: Review of the state-of-the-art and opportunities for healthcare, Artif. Intell. Med,
doi:10.1016/j.artmed.2020.101822
Yan, Zhang, Li, Xia, Guo et al., Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2, Science,
doi:10.1126/science.abb2762
Zdrenghea, Makrinioti, Bagacean, Bush, Johnston et al., Vitamin D modulation of innate immune responses to respiratory viral infections, Rev. Med. Virol,
doi:10.1002/rmv.1909
DOI record:
{
"DOI": "10.3390/ijms26167975",
"ISSN": [
"1422-0067"
],
"URL": "http://dx.doi.org/10.3390/ijms26167975",
"abstract": "<jats:p>The genetic background influences the outcomes of COVID-19. This study aimed to evaluate the incidence of polymorphisms in genes linked to the RAAS system, cytokine production, and vitamin D on COVID-19 severity, with the goal of gaining a deeper understanding of the genetic etiology related to COVID-19. This study involved 338 COVID-19 patients and employed machine learning methods to identify the genetic variants that most significantly affect COVID-19 severity. The results revealed that polymorphisms in the IL6, IL6R, IL1α, IL1R, IFNγ, TNFα, CRP, VDR, VDBP, and ACE2 genes are the most significant genetic factors influencing COVID-19 prognosis, particularly in terms of the risks of COVID-19 pneumonia, mortality, rehospitalization, and associated mortality. The machine learning methods achieved an AUC of 0.86 for predicting COVID-19 pneumonia, mortality, and mortality related to rehospitalization, as well as an AUC of 0.85 for rehospitalization within the first year. These results confirm the crucial role of genetic background in COVID-19 prognosis, facilitating the identification of patients at increased risk. In summary, this research demonstrates that genetics-driven machine learning models can pinpoint patients at heightened risk by primarily focusing on genetic variants associated with ACE2, inflammation, and vitamin D.</jats:p>",
"alternative-id": [
"ijms26167975"
],
"author": [
{
"affiliation": [
{
"name": "Department of Pneumonology, University Clinical Hospital of Valladolid, 47003 Valladolid, Spain"
}
],
"family": "Jaurrieta-Largo",
"given": "Sofía",
"sequence": "first"
},
{
"ORCID": "https://orcid.org/0000-0002-2247-9679",
"affiliation": [
{
"name": "Department of Internal Medicine, Río Hortega University Hospital, 47012 Valladolid, Spain"
},
{
"name": "Department of Medicine, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain"
}
],
"authenticated-orcid": false,
"family": "Miramontes-González",
"given": "José Pablo",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Department of Internal Medicine, Río Hortega University Hospital, 47012 Valladolid, Spain"
},
{
"name": "Department of Medicine, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain"
}
],
"family": "Corral-Gudino",
"given": "Luis",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Department of Internal Medicine, Río Hortega University Hospital, 47012 Valladolid, Spain"
}
],
"family": "Gabella-Martín",
"given": "Miriam",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Department of Internal Medicine, Río Hortega University Hospital, 47012 Valladolid, Spain"
}
],
"family": "Pérez-Arroyo",
"given": "Sofía",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0003-4603-9034",
"affiliation": [
{
"name": "Medical Analysis Expert Group, Castilla-La Mancha Institute of Health Research (IDISCAM), 45071 Toledo, Spain"
},
{
"name": "Medical Analysis Expert Group, Institute of Technology, University of Castilla-La Mancha, 16071 Cuenca, Spain"
}
],
"authenticated-orcid": false,
"family": "Torres",
"given": "Ana M.",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Medical Analysis Expert Group, Castilla-La Mancha Institute of Health Research (IDISCAM), 45071 Toledo, Spain"
},
{
"name": "Medical Analysis Expert Group, Institute of Technology, University of Castilla-La Mancha, 16071 Cuenca, Spain"
}
],
"family": "Mateo",
"given": "Jorge",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0002-1723-217X",
"affiliation": [
{
"name": "Department of Internal Medicine, Río Hortega University Hospital, 47012 Valladolid, Spain"
},
{
"name": "Department of Medicine, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain"
}
],
"authenticated-orcid": false,
"family": "Pérez-Castrillón",
"given": "José Luis",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0001-7699-4388",
"affiliation": [
{
"name": "Department of Cell Biology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain"
},
{
"name": "Unit of Excellence IOBA, University of Valladolid, 47005 Valladolid, Spain"
}
],
"authenticated-orcid": false,
"family": "Usategui-Martín",
"given": "Ricardo",
"sequence": "additional"
}
],
"container-title": "International Journal of Molecular Sciences",
"container-title-short": "IJMS",
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2025,
8,
18
]
],
"date-time": "2025-08-18T16:22:33Z",
"timestamp": 1755534153000
},
"deposited": {
"date-parts": [
[
2025,
8,
19
]
],
"date-time": "2025-08-19T07:57:35Z",
"timestamp": 1755590255000
},
"funder": [
{
"award": [
"GRS 2255/A/20",
"GRS COVID91/A/20"
],
"name": "Gerencia Regional de Salud, Castilla y León, Spain"
},
{
"name": "Institute of Technology"
},
{
"name": "Chair of Artificial Intelligence"
},
{
"name": "Castilla-La Mancha Institute of Health Research"
}
],
"indexed": {
"date-parts": [
[
2025,
8,
19
]
],
"date-time": "2025-08-19T08:10:09Z",
"timestamp": 1755591009166,
"version": "3.43.0"
},
"is-referenced-by-count": 0,
"issue": "16",
"issued": {
"date-parts": [
[
2025,
8,
18
]
]
},
"journal-issue": {
"issue": "16",
"published-online": {
"date-parts": [
[
2025,
8
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2025,
8,
18
]
],
"date-time": "2025-08-18T00:00:00Z",
"timestamp": 1755475200000
}
}
],
"link": [
{
"URL": "https://www.mdpi.com/1422-0067/26/16/7975/pdf",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "1968",
"original-title": [],
"page": "7975",
"prefix": "10.3390",
"published": {
"date-parts": [
[
2025,
8,
18
]
]
},
"published-online": {
"date-parts": [
[
2025,
8,
18
]
]
},
"publisher": "MDPI AG",
"reference": [
{
"DOI": "10.1056/NEJMoa2002032",
"article-title": "Clinical Characteristics of Coronavirus Disease 2019 in China",
"author": "Guan",
"doi-asserted-by": "crossref",
"first-page": "1708",
"journal-title": "N. Engl. J. Med.",
"key": "ref_1",
"volume": "382",
"year": "2020"
},
{
"DOI": "10.1186/s12889-024-19749-3",
"doi-asserted-by": "crossref",
"key": "ref_2",
"unstructured": "Gong, Z., Song, T., Hu, M., Che, Q., Guo, J., Zhang, H., Li, H., Wang, Y., Liu, B., and Shi, N. (2024). Natural and socio-environmental factors in the transmission of COVID-19: A comprehensive analysis of epidemiology and mechanisms. BMC Public Health, 24."
},
{
"DOI": "10.1183/13993003.00912-2020",
"article-title": "Understanding the renin-angiotensin-aldosterone-SARS-CoV axis: A comprehensive review",
"author": "Ingraham",
"doi-asserted-by": "crossref",
"first-page": "2000912",
"journal-title": "Eur. Respir. J.",
"key": "ref_3",
"volume": "56",
"year": "2020"
},
{
"DOI": "10.1126/science.abb2762",
"article-title": "Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2",
"author": "Yan",
"doi-asserted-by": "crossref",
"first-page": "1444",
"journal-title": "Science",
"key": "ref_4",
"volume": "367",
"year": "2020"
},
{
"DOI": "10.1038/s41586-020-2179-y",
"article-title": "Structural basis of receptor recognition by SARS-CoV-2",
"author": "Shang",
"doi-asserted-by": "crossref",
"first-page": "221",
"journal-title": "Nature",
"key": "ref_5",
"volume": "581",
"year": "2020"
},
{
"DOI": "10.1038/nature03712",
"article-title": "Angiotensin-converting enzyme 2 protects from severe acute lung failure",
"author": "Imai",
"doi-asserted-by": "crossref",
"first-page": "112",
"journal-title": "Nature",
"key": "ref_6",
"volume": "436",
"year": "2005"
},
{
"DOI": "10.1007/s00134-019-05600-6",
"article-title": "Angiotensin-converting enzymes in acute respiratory distress syndrome",
"author": "Annoni",
"doi-asserted-by": "crossref",
"first-page": "1159",
"journal-title": "Intensive Care Med.",
"key": "ref_7",
"volume": "45",
"year": "2019"
},
{
"DOI": "10.1038/nm1267",
"article-title": "A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury",
"author": "Kuba",
"doi-asserted-by": "crossref",
"first-page": "875",
"journal-title": "Nat. Med.",
"key": "ref_8",
"volume": "11",
"year": "2005"
},
{
"DOI": "10.1016/S0140-6736(20)30628-0",
"article-title": "COVID-19: Consider cytokine storm syndromes and immunosuppression",
"author": "Mehta",
"doi-asserted-by": "crossref",
"first-page": "1033",
"journal-title": "Lancet",
"key": "ref_9",
"volume": "395",
"year": "2020"
},
{
"DOI": "10.1016/S2213-2600(20)30216-2",
"article-title": "COVID-19 cytokine storm: The interplay between inflammation and coagulation",
"author": "Jose",
"doi-asserted-by": "crossref",
"first-page": "e46",
"journal-title": "Lancet Respir. Med.",
"key": "ref_10",
"volume": "8",
"year": "2020"
},
{
"DOI": "10.1016/j.ajpath.2020.08.009",
"article-title": "Immunopathology of Hyperinflammation in COVID-19",
"author": "Gustine",
"doi-asserted-by": "crossref",
"first-page": "4",
"journal-title": "Am. J. Pathol.",
"key": "ref_11",
"volume": "191",
"year": "2021"
},
{
"DOI": "10.3389/fimmu.2021.742941",
"doi-asserted-by": "crossref",
"key": "ref_12",
"unstructured": "Tan, L.Y., Komarasamy, T.V., and Balasubramaniam, V.R. (2021). Hyperinflammatory Immune Response and COVID-19: A Double Edged Sword. Front. Immunol., 12, Available online: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2021.742941/full."
},
{
"DOI": "10.1038/s41577-021-00663-3",
"article-title": "Vitamin D shuts down T cell-mediated inflammation",
"author": "Minton",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Nat. Rev. Immunol.",
"key": "ref_13",
"volume": "22",
"year": "2022"
},
{
"DOI": "10.1016/j.jaut.2017.07.007",
"article-title": "Modulation of inflammatory and immune responses by vitamin D",
"author": "Colotta",
"doi-asserted-by": "crossref",
"first-page": "78",
"journal-title": "J. Autoimmun.",
"key": "ref_14",
"volume": "85",
"year": "2017"
},
{
"DOI": "10.1002/rmv.1909",
"article-title": "Vitamin D modulation of innate immune responses to respiratory viral infections",
"author": "Zdrenghea",
"doi-asserted-by": "crossref",
"first-page": "e1909",
"journal-title": "Rev. Med. Virol.",
"key": "ref_15",
"volume": "27",
"year": "2017"
},
{
"DOI": "10.1371/journal.ppat.1008874",
"doi-asserted-by": "crossref",
"key": "ref_16",
"unstructured": "Mohan, M., Cherian, J.J., and Sharma, A. (2020). Exploring links between vitamin D deficiency and COVID-19. PLoS Pathog., 16."
},
{
"DOI": "10.7861/clinmed.2020-0301",
"article-title": "Does vitamin D deficiency increase the severity of COVID-19?",
"author": "Weir",
"doi-asserted-by": "crossref",
"first-page": "e107",
"journal-title": "Clin. Med.",
"key": "ref_17",
"volume": "20",
"year": "2020"
},
{
"DOI": "10.3390/nu12092757",
"doi-asserted-by": "crossref",
"key": "ref_18",
"unstructured": "Radujkovic, A., Hippchen, T., Tiwari-Heckler, S., Dreher, S., Boxberger, M., and Merle, U. (2020). Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients, 12."
},
{
"DOI": "10.1016/j.jinf.2020.03.041",
"article-title": "Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis",
"author": "Fu",
"doi-asserted-by": "crossref",
"first-page": "656",
"journal-title": "J. Infect.",
"key": "ref_19",
"volume": "80",
"year": "2020"
},
{
"DOI": "10.1002/jmv.29404",
"article-title": "Genetic characteristics involved in COVID-19 severity. The CARGENCORS case-control study and meta-analysis",
"author": "Degano",
"doi-asserted-by": "crossref",
"first-page": "e29404",
"journal-title": "J. Med. Virol.",
"key": "ref_20",
"volume": "96",
"year": "2024"
},
{
"DOI": "10.1016/j.ebiom.2021.103629",
"doi-asserted-by": "crossref",
"key": "ref_21",
"unstructured": "Velavan, T.P., Pallerla, S.R., Rüter, J., Augustin, Y., Kremsner, P.G., Krishna, S., and Meyer, C.G. (2021). Host genetic factors determining COVID-19 susceptibility and severity. eBioMedicine, 72, Available online: https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(21)00422-9/fulltext."
},
{
"DOI": "10.1038/s41576-022-00478-5",
"article-title": "The human genetic epidemiology of COVID-19",
"author": "Niemi",
"doi-asserted-by": "crossref",
"first-page": "533",
"journal-title": "Nat. Rev. Genet.",
"key": "ref_22",
"volume": "23",
"year": "2022"
},
{
"DOI": "10.1016/j.artmed.2020.101822",
"article-title": "Automated machine learning: Review of the state-of-the-art and opportunities for healthcare",
"author": "Waring",
"doi-asserted-by": "crossref",
"first-page": "101822",
"journal-title": "Artif. Intell. Med.",
"key": "ref_23",
"volume": "104",
"year": "2020"
},
{
"DOI": "10.1111/joim.12822",
"article-title": "eDoctor: Machine learning and the future of medicine",
"author": "Handelman",
"doi-asserted-by": "crossref",
"first-page": "603",
"journal-title": "J. Intern. Med.",
"key": "ref_24",
"volume": "284",
"year": "2018"
},
{
"DOI": "10.1007/s42979-021-00592-x",
"article-title": "Machine Learning: Algorithms, Real-World Applications and Research Directions",
"author": "Sarker",
"doi-asserted-by": "crossref",
"first-page": "160",
"journal-title": "SN Comput. Sci.",
"key": "ref_25",
"volume": "2",
"year": "2021"
},
{
"DOI": "10.1002/jgm.3310",
"article-title": "The impact of certain genetic variants (single nucleotide polymorphisms) on incidence and severity of COVID-19",
"author": "Abobaker",
"doi-asserted-by": "crossref",
"first-page": "e3310",
"journal-title": "J. Gene Med.",
"key": "ref_26",
"volume": "23",
"year": "2021"
},
{
"DOI": "10.1016/j.heliyon.2023.e23662",
"article-title": "Association of genetic polymorphisms with COVID-19 infection and outcomes: An updated meta-analysis based on 62 studies",
"author": "Ren",
"doi-asserted-by": "crossref",
"first-page": "e23662",
"journal-title": "Heliyon",
"key": "ref_27",
"volume": "10",
"year": "2024"
},
{
"DOI": "10.1016/j.gene.2020.145102",
"article-title": "Angiotensin-converting enzymes (ACE, ACE2) gene variants and COVID-19 outcome",
"author": "Albaiceta",
"doi-asserted-by": "crossref",
"first-page": "145102",
"journal-title": "Gene",
"key": "ref_28",
"volume": "762",
"year": "2020"
},
{
"DOI": "10.1002/rmv.2323",
"article-title": "Genetic polymorphisms of ACE1, ACE2, and TMPRSS2 associated with COVID-19 severity: A systematic review with meta-analysis",
"author": "Saengsiwaritt",
"doi-asserted-by": "crossref",
"first-page": "e2323",
"journal-title": "Rev. Med. Virol.",
"key": "ref_29",
"volume": "32",
"year": "2022"
},
{
"DOI": "10.1371/journal.pone.0263140",
"doi-asserted-by": "crossref",
"key": "ref_30",
"unstructured": "Sabater Molina, M., Nicolás Rocamora, E., Bendicho, A.I., Vázquez, E.G., Zorio, E., Rodriguez, F.D., Gil Ortuño, C., Rodríguez, A.I., Sánchez-López, A.J., and Jara Rubio, R. (2022). Polymorphisms in ACE, ACE2, AGTR1 genes and severity of COVID-19 disease. PLoS ONE, 17."
},
{
"DOI": "10.1126/science.abm8108",
"article-title": "The immunology and immunopathology of COVID-19",
"author": "Merad",
"doi-asserted-by": "crossref",
"first-page": "1122",
"journal-title": "Science",
"key": "ref_31",
"volume": "375",
"year": "2022"
},
{
"article-title": "Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review",
"author": "Sanders",
"first-page": "1824",
"journal-title": "JAMA",
"key": "ref_32",
"volume": "323",
"year": "2020"
},
{
"DOI": "10.1002/rmv.2234",
"article-title": "Interindividual immunogenic variants: Susceptibility to coronavirus, respiratory syncytial virus and influenza virus",
"author": "Darbeheshti",
"doi-asserted-by": "crossref",
"first-page": "e2234",
"journal-title": "Rev. Med. Virol.",
"key": "ref_33",
"volume": "31",
"year": "2021"
},
{
"DOI": "10.1186/s12985-024-02597-3",
"article-title": "The role of inflammatory gene polymorphisms in severe COVID-19: A review",
"author": "Yip",
"doi-asserted-by": "crossref",
"first-page": "327",
"journal-title": "Virol. J.",
"key": "ref_34",
"volume": "21",
"year": "2024"
},
{
"DOI": "10.1038/s41598-025-89306-4",
"doi-asserted-by": "crossref",
"key": "ref_35",
"unstructured": "Vogi, V., Haschka, D., Forer, L., Schwendinger, S., Petzer, V., Coassin, S., Tancevski, I., Sonnweber, T., Löffler-Ragg, J., and Puchhammer-Stöckl, E. (2025). Severe COVID-19 disease is associated with genetic factors affecting plasma ACE2 receptor and CRP concentrations. Sci. Rep., 15."
},
{
"DOI": "10.1002/jbmr.551",
"article-title": "Oral supplementation with 25(OH)D3 versus vitamin D3: Effects on 25(OH)D levels, lower extremity function, blood pressure, and markers of innate immunity",
"author": "Sidelnikov",
"doi-asserted-by": "crossref",
"first-page": "160",
"journal-title": "J. Bone Miner. Res.",
"key": "ref_36",
"volume": "27",
"year": "2012"
},
{
"DOI": "10.3389/fimmu.2021.754056",
"doi-asserted-by": "crossref",
"key": "ref_37",
"unstructured": "Malmberg, H.-R., Hanel, A., Taipale, M., Heikkinen, S., and Carlberg, C. (2021). Vitamin D Treatment Sequence Is Critical for Transcriptome Modulation of Immune Challenged Primary Human Cells. Front. Immunol., 12."
},
{
"DOI": "10.1002/jbmr.3884",
"article-title": "Vitamin D Metabolism Revised: Fall of Dogmas",
"author": "Bouillon",
"doi-asserted-by": "crossref",
"first-page": "1985",
"journal-title": "J. Bone Miner. Res.",
"key": "ref_38",
"volume": "34",
"year": "2019"
},
{
"DOI": "10.1016/j.ajhg.2017.06.014",
"article-title": "Low-Frequency Synonymous Coding Variation in CYP2R1 Has Large Effects on Vitamin D Levels and Risk of Multiple Sclerosis",
"author": "Manousaki",
"doi-asserted-by": "crossref",
"first-page": "227",
"journal-title": "Am. J. Hum. Genet.",
"key": "ref_39",
"volume": "101",
"year": "2017"
},
{
"DOI": "10.1007/s10528-020-10010-1",
"article-title": "Vitamin D and Genetic Susceptibility to Multiple Sclerosis",
"author": "Scazzone",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Biochem. Genet.",
"key": "ref_40",
"volume": "59",
"year": "2021"
},
{
"DOI": "10.1016/j.bone.2015.06.018",
"article-title": "Calcium and bone homeostasis in heterozygous carriers of CYP24A1 mutations: A cross-sectional study",
"author": "Cools",
"doi-asserted-by": "crossref",
"first-page": "89",
"journal-title": "Bone",
"key": "ref_41",
"volume": "81",
"year": "2015"
},
{
"DOI": "10.1186/1471-2148-13-144",
"doi-asserted-by": "crossref",
"key": "ref_42",
"unstructured": "Kuan, V., Martineau, A.R., Griffiths, C.J., Hyppönen, E., and Walton, R. (2013). DHCR7 mutations linked to higher vitamin D status allowed early human migration to Northern latitudes. BMC Evol. Biol., 13."
},
{
"DOI": "10.1016/j.gene.2015.02.024",
"article-title": "Regulation of the vitamin D receptor gene by environment, genetics and epigenetics",
"author": "Saccone",
"doi-asserted-by": "crossref",
"first-page": "171",
"journal-title": "Gene",
"key": "ref_43",
"volume": "561",
"year": "2015"
},
{
"DOI": "10.3390/diagnostics14171941",
"doi-asserted-by": "crossref",
"key": "ref_44",
"unstructured": "Karcıoğlu Batur, L., Dokur, M., Koç, S., Karabay, M., Akcay, Z.N., Gunger, E., and Hekim, N. (2024). Investigation of the Relationship between Vitamin D Deficiency and Vitamin D-Binding Protein Polymorphisms in Severe COVID-19 Patients. Diagnostics, 14."
},
{
"DOI": "10.2147/JIR.S470097",
"article-title": "Vitamin D Binding Protein: A Potential Factor in Geriatric COVID-19 Acute Lung Injury",
"author": "Jiang",
"doi-asserted-by": "crossref",
"first-page": "4419",
"journal-title": "J. Inflamm. Res.",
"key": "ref_45",
"volume": "17",
"year": "2024"
},
{
"article-title": "The association of ACE1, ACE2, TMPRSS2, IFITM3 and VDR polymorphisms with COVID-19 severity: A systematic review and meta-analysis",
"author": "Dobrijevic",
"first-page": "818",
"journal-title": "EXCLI J.",
"key": "ref_46",
"volume": "21",
"year": "2022"
},
{
"DOI": "10.3390/nu16050727",
"doi-asserted-by": "crossref",
"key": "ref_47",
"unstructured": "Tentolouris, N., Achilla, C., Anastasiou, I.A., Eleftheriadou, I., Tentolouris, A., Basoulis, D., Kosta, O., Lambropoulos, A., Yavropoulou, M.P., and Chatzikyriakidou, A. (2024). The Association of Vitamin D Receptor Polymorphisms with COVID-19 Severity. Nutrients, 16."
},
{
"DOI": "10.1097/RTI.0000000000000541",
"article-title": "Review of Chest Radiograph Findings of COVID-19 Pneumonia and Suggested Reporting Language",
"author": "Litmanovich",
"doi-asserted-by": "crossref",
"first-page": "354",
"journal-title": "J. Thorac. Imaging",
"key": "ref_48",
"volume": "35",
"year": "2020"
},
{
"DOI": "10.1007/978-1-61737-954-3_6",
"article-title": "Targeted SNP genotyping using the TaqMan® assay",
"author": "Schleinitz",
"doi-asserted-by": "crossref",
"first-page": "77",
"journal-title": "Disease Gene Identification: Methods and Protocols",
"key": "ref_49",
"volume": "Volume 700",
"year": "2011"
},
{
"article-title": "Xgboost: Extreme gradient boosting",
"author": "Chen",
"first-page": "1",
"journal-title": "Sci. Res.",
"key": "ref_50",
"volume": "1",
"year": "2015"
},
{
"DOI": "10.1016/j.neucom.2019.10.118",
"article-title": "A comprehensive survey on support vector machine classification: Applications, challenges and trends",
"author": "Cervantes",
"doi-asserted-by": "crossref",
"first-page": "189",
"journal-title": "Neurocomputing",
"key": "ref_51",
"volume": "408",
"year": "2020"
},
{
"DOI": "10.38094/jastt20165",
"article-title": "Classification Based on Decision Tree Algorithm for Machine Learning",
"author": "Charbuty",
"doi-asserted-by": "crossref",
"first-page": "20",
"journal-title": "J. Appl. Sci. Technol. Trends",
"key": "ref_52",
"volume": "2",
"year": "2021"
},
{
"DOI": "10.31449/inf.v45i2.3407",
"article-title": "Stock Market Prediction with Gaussian Naïve Bayes Machine Learning Algorithm",
"author": "Ampomah",
"doi-asserted-by": "crossref",
"first-page": "3407",
"journal-title": "Informatica",
"key": "ref_53",
"volume": "45",
"year": "2021"
},
{
"DOI": "10.1016/j.eswa.2022.117298",
"article-title": "A bi-objective k-nearest-neighbors-based imputation method for multilevel data",
"author": "Cubillos",
"doi-asserted-by": "crossref",
"first-page": "117298",
"journal-title": "Expert Syst. Appl.",
"key": "ref_54",
"volume": "204",
"year": "2022"
},
{
"key": "ref_55",
"unstructured": "(2025, April 23). MATLAB Runtime—MATLAB Compiler. Available online: https://es.mathworks.com/products/compiler/matlab-runtime.html."
},
{
"DOI": "10.1007/978-3-030-05318-5",
"doi-asserted-by": "crossref",
"key": "ref_56",
"unstructured": "Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). Hyperparameter Optimization. Automated Machine Learning: Methods, Systems, Challenges, Springer International Publishing."
},
{
"DOI": "10.1186/s40537-020-00327-4",
"article-title": "Selecting critical features for data classification based on machine learning methods",
"author": "Chen",
"doi-asserted-by": "crossref",
"first-page": "52",
"journal-title": "J. Big Data",
"key": "ref_57",
"volume": "7",
"year": "2020"
},
{
"DOI": "10.1186/2196-1115-1-2",
"article-title": "A review of data mining using big data in health informatics",
"author": "Herland",
"doi-asserted-by": "crossref",
"first-page": "2",
"journal-title": "J. Big Data",
"key": "ref_58",
"volume": "1",
"year": "2014"
}
],
"reference-count": 58,
"references-count": 58,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.mdpi.com/1422-0067/26/16/7975"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "A Machine Learning Approach to Understanding the Genetic Role in COVID-19 Prognosis: The Influence of Gene Polymorphisms Related to Inflammation, Vitamin D, and ACE2",
"type": "journal-article",
"volume": "26"
}