Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchVitamin DVitamin D (more..)
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

 

A Machine Learning Approach to Understanding the Genetic Role in COVID-19 Prognosis: The Influence of Gene Polymorphisms Related to Inflammation, Vitamin D, and ACE2

Jaurrieta-Largo et al., International Journal of Molecular Sciences, doi:10.3390/ijms26167975, Aug 2025
https://c19early.org/jaurrietalargo.html
Vitamin D for COVID-19
8th treatment shown to reduce risk in October 2020, now with p < 0.00000000001 from 126 studies, recognized in 18 countries.
No treatment is 100% effective. Protocols combine treatments.
6,100+ studies for 170+ treatments. c19early.org
Retrospective 338 hospitalized COVID-19 patients in Spain showing that genetic polymorphisms in inflammation, vitamin D, and ACE2-related genes can predict COVID-19 pneumonia, mortality, and rehospitalization with high accuracy.
Reviews covering vitamin D for COVID-19 include1-42.
Jaurrieta-Largo et al., 18 Aug 2025, Spain, peer-reviewed, 9 authors. Contact: joseluis.perez@uva.es (corresponding author), sofia.jaurrieta@uva.es, jpmiramontes@uva.es, luis.corral@uva.es, miriam.gabella@uva.es, sofia.perez.arroyo@estudiantes.uva.es, ana.torres@uclm.es, jorge.mateo@uclm.es, ricardo.usategui@uva.es.
A Machine Learning Approach to Understanding the Genetic Role in COVID-19 Prognosis: The Influence of Gene Polymorphisms Related to Inflammation, Vitamin D, and ACE2
Sofía Jaurrieta-Largo, José Pablo Miramontes-González, Luis Corral-Gudino, Miriam Gabella-Martín, Sofía Pérez-Arroyo, Ana M Torres, Jorge Mateo, José Luis Pérez-Castrillón, Ricardo Usategui-Martín
International Journal of Molecular Sciences, doi:10.3390/ijms26167975
The genetic background influences the outcomes of COVID-19. This study aimed to evaluate the incidence of polymorphisms in genes linked to the RAAS system, cytokine production, and vitamin D on COVID-19 severity, with the goal of gaining a deeper understanding of the genetic etiology related to COVID-19. This study involved 338 COVID-19 patients and employed machine learning methods to identify the genetic variants that most significantly affect COVID-19 severity. The results revealed that polymorphisms in the IL6, IL6R, IL1α, IL1R, IFNγ, TNFα, CRP, VDR, VDBP, and ACE2 genes are the most significant genetic factors influencing COVID-19 prognosis, particularly in terms of the risks of COVID-19 pneumonia, mortality, rehospitalization, and associated mortality. The machine learning methods achieved an AUC of 0.86 for predicting COVID-19 pneumonia, mortality, and mortality related to rehospitalization, as well as an AUC of 0.85 for rehospitalization within the first year. These results confirm the crucial role of genetic background in COVID-19 prognosis, facilitating the identification of patients at increased risk. In summary, this research demonstrates that genetics-driven machine learning models can pinpoint patients at heightened risk by primarily focusing on genetic variants associated with ACE2, inflammation, and vitamin D.
Conflicts of Interest: The authors declare no conflicts of interest.
References
Abobaker, Nagib, Alsoufi, The impact of certain genetic variants (single nucleotide polymorphisms) on incidence and severity of COVID-19, J. Gene Med, doi:10.1002/jgm.3310
Ampomah, Nyame, Qin, Addo, Gyamfi et al., Stock Market Prediction with Gaussian Naïve Bayes Machine Learning Algorithm, Informatica, doi:10.31449/inf.v45i2.3407
Annoni, Orbegozo, Rahmania, Irazabal, Mendoza et al., Angiotensin-converting enzymes in acute respiratory distress syndrome, Intensive Care Med, doi:10.1007/s00134-019-05600-6
Bischoff-Ferrari, Dawson-Hughes, Stöcklin, Sidelnikov, Willett et al., Oral supplementation with 25(OH)D 3 versus vitamin D3: Effects on 25(OH)D levels, lower extremity function, blood pressure, and markers of innate immunity, J. Bone Miner. Res, doi:10.1002/jbmr.551
Bouillon, Bikle, Vitamin D Metabolism Revised: Fall of Dogmas, J. Bone Miner. Res, doi:10.1002/jbmr.3884
Camps-Vilaró, Pinsach-Abuin, Degano, Ramos, Martí-Lluch et al., Genetic characteristics involved in COVID-19 severity. The CARGENCORS case-control study and meta-analysis, J. Med. Virol, doi:10.1002/jmv.29404
Cervantes, Garcia-Lamont, Rodríguez-Mazahua, Lopez, A comprehensive survey on support vector machine classification: Applications, challenges and trends, Neurocomputing, doi:10.1016/j.neucom.2019.10.118
Charbuty, Abdulazeez, Classification Based on Decision Tree Algorithm for Machine Learning, J. Appl. Sci. Technol. Trends, doi:10.38094/jastt20165
Chen, Benesty, Khotilovich, Tang, Cho et al., Xgboost: Extreme gradient boosting, Sci. Res
Chen, Dewi, Huang, Caraka, Selecting critical features for data classification based on machine learning methods, J. Big Data, doi:10.1186/s40537-020-00327-4
Colotta, Jansson, Bonelli, Modulation of inflammatory and immune responses by vitamin D, J. Autoimmun, doi:10.1016/j.jaut.2017.07.007
Cools, Goemaere, Baetens, Raes, Desloovere et al., Calcium and bone homeostasis in heterozygous carriers of CYP24A1 mutations: A cross-sectional study, Bone, doi:10.1016/j.bone.2015.06.018
Cubillos, Wøhlk, Wulff, A bi-objective k-nearest-neighbors-based imputation method for multilevel data, Expert Syst. Appl, doi:10.1016/j.eswa.2022.117298
Darbeheshti, Mahdiannasser, Uhal, Ogino, Gupta et al., Interindividual immunogenic variants: Susceptibility to coronavirus, respiratory syncytial virus and influenza virus, Rev. Med. Virol, doi:10.1002/rmv.2234
Dobrijevic, Robajac, Gligorijevic, Šunderic, Penezic et al., The association of ACE1, ACE2, TMPRSS2, IFITM3 and VDR polymorphisms with COVID-19 severity: A systematic review and meta-analysis, EXCLI J
Feurer, Hutter, Hyperparameter Optimization, doi:10.1007/978-3-030-05318-5_1
Fu, Wang, Yuan, Chen, Ao et al., Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis, J. Infect, doi:10.1016/j.jinf.2020.03.041
Gong, Song, Hu, Che, Guo et al., Natural and socio-environmental factors in the transmission of COVID-19: A comprehensive analysis of epidemiology and mechanisms, BMC Public Health, doi:10.1186/s12889-024-19749-3
Guan, Ni, Hu, Liang, Ou et al., Clinical Characteristics of Coronavirus Disease 2019 in China, N. Engl. J. Med, doi:10.1056/NEJMoa2002032
Gustine, Jones, Immunopathology of Hyperinflammation in COVID-19, Am. J. Pathol, doi:10.1016/j.ajpath.2020.08.009
Gómez, Albaiceta, García-Clemente, López-Larrea, Amado-Rodríguez et al., Angiotensin-converting enzymes (ACE, ACE2) gene variants and COVID-19 outcome, Gene, doi:10.1016/j.gene.2020.145102
Handelman, Kok, Chandra, Razavi, Lee et al., eDoctor: Machine learning and the future of medicine, J. Intern. Med, doi:10.1111/joim.12822
Herland, Khoshgoftaar, Wald, A review of data mining using big data in health informatics, J. Big Data
Imai, Kuba, Rao, Huan, Guo et al., Angiotensin-converting enzyme 2 protects from severe acute lung failure, Nature, doi:10.1038/nature03712
Ingraham, Barakat, Reilkoff, Bezdicek, Schacker et al., Understanding the renin-angiotensin-aldosterone-SARS-CoV axis: A comprehensive review, Eur. Respir. J, doi:10.1183/13993003.00912-2020
Jiang, Chi, Sun, Li, Vitamin D Binding Protein: A Potential Factor in Geriatric COVID-19 Acute Lung Injury, J. Inflamm. Res, doi:10.2147/JIR.S470097
Jose, Manuel, COVID-19 cytokine storm: The interplay between inflammation and coagulation, Lancet Respir. Med, doi:10.1016/S2213-2600(20)30216-2
Karcıo Glu Batur, Dokur, Koç, Karabay, Akcay et al., Investigation of the Relationship between Vitamin D Deficiency and Vitamin D-Binding Protein Polymorphisms in Severe COVID-19 Patients, Diagnostics, doi:10.3390/diagnostics14171941
Kuan, Martineau, Griffiths, Hyppönen, Walton, DHCR7 mutations linked to higher vitamin D status allowed early human migration to Northern latitudes, BMC Evol. Biol, doi:10.1186/1471-2148-13-144
Kuba, Imai, Rao, Gao, Guo et al., A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury, Nat. Med, doi:10.1038/nm1267
Litmanovich, Chung, Kirkbride, Kicska, Kanne, Review of Chest Radiograph Findings of COVID-19 Pneumonia and Suggested Reporting Language, J. Thorac. Imaging, doi:10.1097/RTI.0000000000000541
Malmberg, Hanel, Taipale, Heikkinen, Carlberg, Vitamin D Treatment Sequence Is Critical for Transcriptome Modulation of Immune Challenged Primary Human Cells, Front. Immunol, doi:10.3389/fimmu.2021.754056
Manousaki, Dudding, Haworth, Hsu, Liu et al., Low-Frequency Synonymous Coding Variation in CYP2R1 Has Large Effects on Vitamin D Levels and Risk of Multiple Sclerosis, Am. J. Hum. Genet, doi:10.1016/j.ajhg.2017.06.014
Mehta, Mcauley, Brown, Sanchez, Tattersall et al., Consider cytokine storm syndromes and immunosuppression, Lancet, doi:10.1016/S0140-6736(20)30628-0
Merad, Blish, Sallusto, Iwasaki, The immunology and immunopathology of COVID-19, Science, doi:10.1126/science.abm8108
Minton, Vitamin D shuts down T cell-mediated inflammation, Nat. Rev. Immunol, doi:10.1038/s41577-021-00663-3
Mohan, Cherian, Sharma, Exploring links between vitamin D deficiency and COVID-19, PLoS Pathog, doi:10.1371/journal.ppat.1008874
Niemi, Daly, Ganna, The human genetic epidemiology of COVID-19, Nat. Rev. Genet, doi:10.1038/s41576-022-00478-5
Radujkovic, Hippchen, Tiwari-Heckler, Dreher, Boxberger et al., Vitamin D Deficiency and Outcome of COVID-19 Patients, Nutrients, doi:10.3390/nu12092757
Ren, Lin, Huang, Xu, Luo et al., Association of genetic polymorphisms with COVID-19 infection and outcomes: An updated meta-analysis based on 62 studies, Heliyon, doi:10.1016/j.heliyon.2023.e23662
Sabater Molina, Nicolás Rocamora, Bendicho, Vázquez, Zorio et al., Polymorphisms in ACE, ACE2, AGTR1 genes and severity of COVID-19 disease, PLoS ONE, doi:10.1371/journal.pone.0263140
Saccone, Asani, Bornman, Regulation of the vitamin D receptor gene by environment, genetics and epigenetics, Gene, doi:10.1016/j.gene.2015.02.024
Saengsiwaritt, Jittikoon, Chaikledkaew, Udomsinprasert, Genetic polymorphisms of ACE1, ACE2, and TMPRSS2 associated with COVID-19 severity: A systematic review with meta-analysis, Rev. Med. Virol, doi:10.1002/rmv.2323
Sanders, Monogue, Jodlowski, Cutrell, Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review, JAMA, doi:10.1001/jama.2020.6019
Sarker, Machine Learning: Algorithms, Real-World Applications and Research Directions, SN Comput. Sci, doi:10.1007/s42979-021-00592-x
Scazzone, Agnello, Bivona, Lo Sasso, Ciaccio, Vitamin D and Genetic Susceptibility to Multiple Sclerosis, Biochem. Genet, doi:10.1007/s10528-020-10010-1
Schleinitz, Distefano, Kovacs, Targeted SNP genotyping using the TaqMan® assay
Shang, Ye, Shi, Wan, Luo et al., Structural basis of receptor recognition by SARS-CoV-2, Nature, doi:10.1038/s41586-020-2179-y
Tan, Komarasamy, Balasubramaniam, Hyperinflammatory Immune Response and COVID-19: A Double Edged Sword, Front. Immunol, doi:10.3389/fimmu.2021.742941
Tentolouris, Achilla, Anastasiou, Eleftheriadou, Tentolouris et al., The Association of Vitamin D Receptor Polymorphisms with COVID-19 Severity, Nutrients, doi:10.3390/nu16050727
Velavan, Pallerla, Rüter, Augustin, Kremsner et al., Host genetic factors determining COVID-19 susceptibility and severity, eBioMedicine, doi:10.1016/j.ebiom.2021.103629
Vogi, Haschka, Forer, Schwendinger, Petzer et al., Severe COVID-19 disease is associated with genetic factors affecting plasma ACE2 receptor and CRP concentrations, Sci. Rep, doi:10.1038/s41598-025-89306-4
Waring, Lindvall, Umeton, Automated machine learning: Review of the state-of-the-art and opportunities for healthcare, Artif. Intell. Med, doi:10.1016/j.artmed.2020.101822
Weir, Thenappan, Bhargava, Chen, Does vitamin D deficiency increase the severity of COVID-19?, Clin. Med, doi:10.7861/clinmed.2020-0301
Yan, Zhang, Li, Xia, Guo et al., Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2, Science, doi:10.1126/science.abb2762
Yip, Oo, Ng, Chin, Tan et al., The role of inflammatory gene polymorphisms in severe COVID-19: A review, Virol. J, doi:10.1186/s12985-024-02597-3
Zdrenghea, Makrinioti, Bagacean, Bush, Johnston et al., Vitamin D modulation of innate immune responses to respiratory viral infections, Rev. Med. Virol, doi:10.1002/rmv.1909
DOI record: { "DOI": "10.3390/ijms26167975", "ISSN": [ "1422-0067" ], "URL": "http://dx.doi.org/10.3390/ijms26167975", "abstract": "<jats:p>The genetic background influences the outcomes of COVID-19. This study aimed to evaluate the incidence of polymorphisms in genes linked to the RAAS system, cytokine production, and vitamin D on COVID-19 severity, with the goal of gaining a deeper understanding of the genetic etiology related to COVID-19. This study involved 338 COVID-19 patients and employed machine learning methods to identify the genetic variants that most significantly affect COVID-19 severity. The results revealed that polymorphisms in the IL6, IL6R, IL1α, IL1R, IFNγ, TNFα, CRP, VDR, VDBP, and ACE2 genes are the most significant genetic factors influencing COVID-19 prognosis, particularly in terms of the risks of COVID-19 pneumonia, mortality, rehospitalization, and associated mortality. The machine learning methods achieved an AUC of 0.86 for predicting COVID-19 pneumonia, mortality, and mortality related to rehospitalization, as well as an AUC of 0.85 for rehospitalization within the first year. These results confirm the crucial role of genetic background in COVID-19 prognosis, facilitating the identification of patients at increased risk. In summary, this research demonstrates that genetics-driven machine learning models can pinpoint patients at heightened risk by primarily focusing on genetic variants associated with ACE2, inflammation, and vitamin D.</jats:p>", "alternative-id": [ "ijms26167975" ], "author": [ { "affiliation": [ { "name": "Department of Pneumonology, University Clinical Hospital of Valladolid, 47003 Valladolid, Spain" } ], "family": "Jaurrieta-Largo", "given": "Sofía", "sequence": "first" }, { "ORCID": "https://orcid.org/0000-0002-2247-9679", "affiliation": [ { "name": "Department of Internal Medicine, Río Hortega University Hospital, 47012 Valladolid, Spain" }, { "name": "Department of Medicine, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain" } ], "authenticated-orcid": false, "family": "Miramontes-González", "given": "José Pablo", "sequence": "additional" }, { "affiliation": [ { "name": "Department of Internal Medicine, Río Hortega University Hospital, 47012 Valladolid, Spain" }, { "name": "Department of Medicine, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain" } ], "family": "Corral-Gudino", "given": "Luis", "sequence": "additional" }, { "affiliation": [ { "name": "Department of Internal Medicine, Río Hortega University Hospital, 47012 Valladolid, Spain" } ], "family": "Gabella-Martín", "given": "Miriam", "sequence": "additional" }, { "affiliation": [ { "name": "Department of Internal Medicine, Río Hortega University Hospital, 47012 Valladolid, Spain" } ], "family": "Pérez-Arroyo", "given": "Sofía", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0003-4603-9034", "affiliation": [ { "name": "Medical Analysis Expert Group, Castilla-La Mancha Institute of Health Research (IDISCAM), 45071 Toledo, Spain" }, { "name": "Medical Analysis Expert Group, Institute of Technology, University of Castilla-La Mancha, 16071 Cuenca, Spain" } ], "authenticated-orcid": false, "family": "Torres", "given": "Ana M.", "sequence": "additional" }, { "affiliation": [ { "name": "Medical Analysis Expert Group, Castilla-La Mancha Institute of Health Research (IDISCAM), 45071 Toledo, Spain" }, { "name": "Medical Analysis Expert Group, Institute of Technology, University of Castilla-La Mancha, 16071 Cuenca, Spain" } ], "family": "Mateo", "given": "Jorge", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-1723-217X", "affiliation": [ { "name": "Department of Internal Medicine, Río Hortega University Hospital, 47012 Valladolid, Spain" }, { "name": "Department of Medicine, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain" } ], "authenticated-orcid": false, "family": "Pérez-Castrillón", "given": "José Luis", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0001-7699-4388", "affiliation": [ { "name": "Department of Cell Biology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain" }, { "name": "Unit of Excellence IOBA, University of Valladolid, 47005 Valladolid, Spain" } ], "authenticated-orcid": false, "family": "Usategui-Martín", "given": "Ricardo", "sequence": "additional" } ], "container-title": "International Journal of Molecular Sciences", "container-title-short": "IJMS", "content-domain": { "crossmark-restriction": false, "domain": [] }, "created": { "date-parts": [ [ 2025, 8, 18 ] ], "date-time": "2025-08-18T16:22:33Z", "timestamp": 1755534153000 }, "deposited": { "date-parts": [ [ 2025, 8, 19 ] ], "date-time": "2025-08-19T07:57:35Z", "timestamp": 1755590255000 }, "funder": [ { "award": [ "GRS 2255/A/20", "GRS COVID91/A/20" ], "name": "Gerencia Regional de Salud, Castilla y León, Spain" }, { "name": "Institute of Technology" }, { "name": "Chair of Artificial Intelligence" }, { "name": "Castilla-La Mancha Institute of Health Research" } ], "indexed": { "date-parts": [ [ 2025, 8, 19 ] ], "date-time": "2025-08-19T08:10:09Z", "timestamp": 1755591009166, "version": "3.43.0" }, "is-referenced-by-count": 0, "issue": "16", "issued": { "date-parts": [ [ 2025, 8, 18 ] ] }, "journal-issue": { "issue": "16", "published-online": { "date-parts": [ [ 2025, 8 ] ] } }, "language": "en", "license": [ { "URL": "https://creativecommons.org/licenses/by/4.0/", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 8, 18 ] ], "date-time": "2025-08-18T00:00:00Z", "timestamp": 1755475200000 } } ], "link": [ { "URL": "https://www.mdpi.com/1422-0067/26/16/7975/pdf", "content-type": "unspecified", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "1968", "original-title": [], "page": "7975", "prefix": "10.3390", "published": { "date-parts": [ [ 2025, 8, 18 ] ] }, "published-online": { "date-parts": [ [ 2025, 8, 18 ] ] }, "publisher": "MDPI AG", "reference": [ { "DOI": "10.1056/NEJMoa2002032", "article-title": "Clinical Characteristics of Coronavirus Disease 2019 in China", "author": "Guan", "doi-asserted-by": "crossref", "first-page": "1708", "journal-title": "N. Engl. J. Med.", "key": "ref_1", "volume": "382", "year": "2020" }, { "DOI": "10.1186/s12889-024-19749-3", "doi-asserted-by": "crossref", "key": "ref_2", "unstructured": "Gong, Z., Song, T., Hu, M., Che, Q., Guo, J., Zhang, H., Li, H., Wang, Y., Liu, B., and Shi, N. (2024). Natural and socio-environmental factors in the transmission of COVID-19: A comprehensive analysis of epidemiology and mechanisms. BMC Public Health, 24." }, { "DOI": "10.1183/13993003.00912-2020", "article-title": "Understanding the renin-angiotensin-aldosterone-SARS-CoV axis: A comprehensive review", "author": "Ingraham", "doi-asserted-by": "crossref", "first-page": "2000912", "journal-title": "Eur. Respir. J.", "key": "ref_3", "volume": "56", "year": "2020" }, { "DOI": "10.1126/science.abb2762", "article-title": "Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2", "author": "Yan", "doi-asserted-by": "crossref", "first-page": "1444", "journal-title": "Science", "key": "ref_4", "volume": "367", "year": "2020" }, { "DOI": "10.1038/s41586-020-2179-y", "article-title": "Structural basis of receptor recognition by SARS-CoV-2", "author": "Shang", "doi-asserted-by": "crossref", "first-page": "221", "journal-title": "Nature", "key": "ref_5", "volume": "581", "year": "2020" }, { "DOI": "10.1038/nature03712", "article-title": "Angiotensin-converting enzyme 2 protects from severe acute lung failure", "author": "Imai", "doi-asserted-by": "crossref", "first-page": "112", "journal-title": "Nature", "key": "ref_6", "volume": "436", "year": "2005" }, { "DOI": "10.1007/s00134-019-05600-6", "article-title": "Angiotensin-converting enzymes in acute respiratory distress syndrome", "author": "Annoni", "doi-asserted-by": "crossref", "first-page": "1159", "journal-title": "Intensive Care Med.", "key": "ref_7", "volume": "45", "year": "2019" }, { "DOI": "10.1038/nm1267", "article-title": "A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury", "author": "Kuba", "doi-asserted-by": "crossref", "first-page": "875", "journal-title": "Nat. Med.", "key": "ref_8", "volume": "11", "year": "2005" }, { "DOI": "10.1016/S0140-6736(20)30628-0", "article-title": "COVID-19: Consider cytokine storm syndromes and immunosuppression", "author": "Mehta", "doi-asserted-by": "crossref", "first-page": "1033", "journal-title": "Lancet", "key": "ref_9", "volume": "395", "year": "2020" }, { "DOI": "10.1016/S2213-2600(20)30216-2", "article-title": "COVID-19 cytokine storm: The interplay between inflammation and coagulation", "author": "Jose", "doi-asserted-by": "crossref", "first-page": "e46", "journal-title": "Lancet Respir. Med.", "key": "ref_10", "volume": "8", "year": "2020" }, { "DOI": "10.1016/j.ajpath.2020.08.009", "article-title": "Immunopathology of Hyperinflammation in COVID-19", "author": "Gustine", "doi-asserted-by": "crossref", "first-page": "4", "journal-title": "Am. J. Pathol.", "key": "ref_11", "volume": "191", "year": "2021" }, { "DOI": "10.3389/fimmu.2021.742941", "doi-asserted-by": "crossref", "key": "ref_12", "unstructured": "Tan, L.Y., Komarasamy, T.V., and Balasubramaniam, V.R. (2021). Hyperinflammatory Immune Response and COVID-19: A Double Edged Sword. Front. Immunol., 12, Available online: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2021.742941/full." }, { "DOI": "10.1038/s41577-021-00663-3", "article-title": "Vitamin D shuts down T cell-mediated inflammation", "author": "Minton", "doi-asserted-by": "crossref", "first-page": "1", "journal-title": "Nat. Rev. Immunol.", "key": "ref_13", "volume": "22", "year": "2022" }, { "DOI": "10.1016/j.jaut.2017.07.007", "article-title": "Modulation of inflammatory and immune responses by vitamin D", "author": "Colotta", "doi-asserted-by": "crossref", "first-page": "78", "journal-title": "J. Autoimmun.", "key": "ref_14", "volume": "85", "year": "2017" }, { "DOI": "10.1002/rmv.1909", "article-title": "Vitamin D modulation of innate immune responses to respiratory viral infections", "author": "Zdrenghea", "doi-asserted-by": "crossref", "first-page": "e1909", "journal-title": "Rev. Med. Virol.", "key": "ref_15", "volume": "27", "year": "2017" }, { "DOI": "10.1371/journal.ppat.1008874", "doi-asserted-by": "crossref", "key": "ref_16", "unstructured": "Mohan, M., Cherian, J.J., and Sharma, A. (2020). Exploring links between vitamin D deficiency and COVID-19. PLoS Pathog., 16." }, { "DOI": "10.7861/clinmed.2020-0301", "article-title": "Does vitamin D deficiency increase the severity of COVID-19?", "author": "Weir", "doi-asserted-by": "crossref", "first-page": "e107", "journal-title": "Clin. Med.", "key": "ref_17", "volume": "20", "year": "2020" }, { "DOI": "10.3390/nu12092757", "doi-asserted-by": "crossref", "key": "ref_18", "unstructured": "Radujkovic, A., Hippchen, T., Tiwari-Heckler, S., Dreher, S., Boxberger, M., and Merle, U. (2020). Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients, 12." }, { "DOI": "10.1016/j.jinf.2020.03.041", "article-title": "Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis", "author": "Fu", "doi-asserted-by": "crossref", "first-page": "656", "journal-title": "J. Infect.", "key": "ref_19", "volume": "80", "year": "2020" }, { "DOI": "10.1002/jmv.29404", "article-title": "Genetic characteristics involved in COVID-19 severity. The CARGENCORS case-control study and meta-analysis", "author": "Degano", "doi-asserted-by": "crossref", "first-page": "e29404", "journal-title": "J. Med. Virol.", "key": "ref_20", "volume": "96", "year": "2024" }, { "DOI": "10.1016/j.ebiom.2021.103629", "doi-asserted-by": "crossref", "key": "ref_21", "unstructured": "Velavan, T.P., Pallerla, S.R., Rüter, J., Augustin, Y., Kremsner, P.G., Krishna, S., and Meyer, C.G. (2021). Host genetic factors determining COVID-19 susceptibility and severity. eBioMedicine, 72, Available online: https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(21)00422-9/fulltext." }, { "DOI": "10.1038/s41576-022-00478-5", "article-title": "The human genetic epidemiology of COVID-19", "author": "Niemi", "doi-asserted-by": "crossref", "first-page": "533", "journal-title": "Nat. Rev. Genet.", "key": "ref_22", "volume": "23", "year": "2022" }, { "DOI": "10.1016/j.artmed.2020.101822", "article-title": "Automated machine learning: Review of the state-of-the-art and opportunities for healthcare", "author": "Waring", "doi-asserted-by": "crossref", "first-page": "101822", "journal-title": "Artif. Intell. Med.", "key": "ref_23", "volume": "104", "year": "2020" }, { "DOI": "10.1111/joim.12822", "article-title": "eDoctor: Machine learning and the future of medicine", "author": "Handelman", "doi-asserted-by": "crossref", "first-page": "603", "journal-title": "J. Intern. Med.", "key": "ref_24", "volume": "284", "year": "2018" }, { "DOI": "10.1007/s42979-021-00592-x", "article-title": "Machine Learning: Algorithms, Real-World Applications and Research Directions", "author": "Sarker", "doi-asserted-by": "crossref", "first-page": "160", "journal-title": "SN Comput. Sci.", "key": "ref_25", "volume": "2", "year": "2021" }, { "DOI": "10.1002/jgm.3310", "article-title": "The impact of certain genetic variants (single nucleotide polymorphisms) on incidence and severity of COVID-19", "author": "Abobaker", "doi-asserted-by": "crossref", "first-page": "e3310", "journal-title": "J. Gene Med.", "key": "ref_26", "volume": "23", "year": "2021" }, { "DOI": "10.1016/j.heliyon.2023.e23662", "article-title": "Association of genetic polymorphisms with COVID-19 infection and outcomes: An updated meta-analysis based on 62 studies", "author": "Ren", "doi-asserted-by": "crossref", "first-page": "e23662", "journal-title": "Heliyon", "key": "ref_27", "volume": "10", "year": "2024" }, { "DOI": "10.1016/j.gene.2020.145102", "article-title": "Angiotensin-converting enzymes (ACE, ACE2) gene variants and COVID-19 outcome", "author": "Albaiceta", "doi-asserted-by": "crossref", "first-page": "145102", "journal-title": "Gene", "key": "ref_28", "volume": "762", "year": "2020" }, { "DOI": "10.1002/rmv.2323", "article-title": "Genetic polymorphisms of ACE1, ACE2, and TMPRSS2 associated with COVID-19 severity: A systematic review with meta-analysis", "author": "Saengsiwaritt", "doi-asserted-by": "crossref", "first-page": "e2323", "journal-title": "Rev. Med. Virol.", "key": "ref_29", "volume": "32", "year": "2022" }, { "DOI": "10.1371/journal.pone.0263140", "doi-asserted-by": "crossref", "key": "ref_30", "unstructured": "Sabater Molina, M., Nicolás Rocamora, E., Bendicho, A.I., Vázquez, E.G., Zorio, E., Rodriguez, F.D., Gil Ortuño, C., Rodríguez, A.I., Sánchez-López, A.J., and Jara Rubio, R. (2022). Polymorphisms in ACE, ACE2, AGTR1 genes and severity of COVID-19 disease. PLoS ONE, 17." }, { "DOI": "10.1126/science.abm8108", "article-title": "The immunology and immunopathology of COVID-19", "author": "Merad", "doi-asserted-by": "crossref", "first-page": "1122", "journal-title": "Science", "key": "ref_31", "volume": "375", "year": "2022" }, { "article-title": "Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review", "author": "Sanders", "first-page": "1824", "journal-title": "JAMA", "key": "ref_32", "volume": "323", "year": "2020" }, { "DOI": "10.1002/rmv.2234", "article-title": "Interindividual immunogenic variants: Susceptibility to coronavirus, respiratory syncytial virus and influenza virus", "author": "Darbeheshti", "doi-asserted-by": "crossref", "first-page": "e2234", "journal-title": "Rev. Med. Virol.", "key": "ref_33", "volume": "31", "year": "2021" }, { "DOI": "10.1186/s12985-024-02597-3", "article-title": "The role of inflammatory gene polymorphisms in severe COVID-19: A review", "author": "Yip", "doi-asserted-by": "crossref", "first-page": "327", "journal-title": "Virol. J.", "key": "ref_34", "volume": "21", "year": "2024" }, { "DOI": "10.1038/s41598-025-89306-4", "doi-asserted-by": "crossref", "key": "ref_35", "unstructured": "Vogi, V., Haschka, D., Forer, L., Schwendinger, S., Petzer, V., Coassin, S., Tancevski, I., Sonnweber, T., Löffler-Ragg, J., and Puchhammer-Stöckl, E. (2025). Severe COVID-19 disease is associated with genetic factors affecting plasma ACE2 receptor and CRP concentrations. Sci. Rep., 15." }, { "DOI": "10.1002/jbmr.551", "article-title": "Oral supplementation with 25(OH)D3 versus vitamin D3: Effects on 25(OH)D levels, lower extremity function, blood pressure, and markers of innate immunity", "author": "Sidelnikov", "doi-asserted-by": "crossref", "first-page": "160", "journal-title": "J. Bone Miner. Res.", "key": "ref_36", "volume": "27", "year": "2012" }, { "DOI": "10.3389/fimmu.2021.754056", "doi-asserted-by": "crossref", "key": "ref_37", "unstructured": "Malmberg, H.-R., Hanel, A., Taipale, M., Heikkinen, S., and Carlberg, C. (2021). Vitamin D Treatment Sequence Is Critical for Transcriptome Modulation of Immune Challenged Primary Human Cells. Front. Immunol., 12." }, { "DOI": "10.1002/jbmr.3884", "article-title": "Vitamin D Metabolism Revised: Fall of Dogmas", "author": "Bouillon", "doi-asserted-by": "crossref", "first-page": "1985", "journal-title": "J. Bone Miner. Res.", "key": "ref_38", "volume": "34", "year": "2019" }, { "DOI": "10.1016/j.ajhg.2017.06.014", "article-title": "Low-Frequency Synonymous Coding Variation in CYP2R1 Has Large Effects on Vitamin D Levels and Risk of Multiple Sclerosis", "author": "Manousaki", "doi-asserted-by": "crossref", "first-page": "227", "journal-title": "Am. J. Hum. Genet.", "key": "ref_39", "volume": "101", "year": "2017" }, { "DOI": "10.1007/s10528-020-10010-1", "article-title": "Vitamin D and Genetic Susceptibility to Multiple Sclerosis", "author": "Scazzone", "doi-asserted-by": "crossref", "first-page": "1", "journal-title": "Biochem. Genet.", "key": "ref_40", "volume": "59", "year": "2021" }, { "DOI": "10.1016/j.bone.2015.06.018", "article-title": "Calcium and bone homeostasis in heterozygous carriers of CYP24A1 mutations: A cross-sectional study", "author": "Cools", "doi-asserted-by": "crossref", "first-page": "89", "journal-title": "Bone", "key": "ref_41", "volume": "81", "year": "2015" }, { "DOI": "10.1186/1471-2148-13-144", "doi-asserted-by": "crossref", "key": "ref_42", "unstructured": "Kuan, V., Martineau, A.R., Griffiths, C.J., Hyppönen, E., and Walton, R. (2013). DHCR7 mutations linked to higher vitamin D status allowed early human migration to Northern latitudes. BMC Evol. Biol., 13." }, { "DOI": "10.1016/j.gene.2015.02.024", "article-title": "Regulation of the vitamin D receptor gene by environment, genetics and epigenetics", "author": "Saccone", "doi-asserted-by": "crossref", "first-page": "171", "journal-title": "Gene", "key": "ref_43", "volume": "561", "year": "2015" }, { "DOI": "10.3390/diagnostics14171941", "doi-asserted-by": "crossref", "key": "ref_44", "unstructured": "Karcıoğlu Batur, L., Dokur, M., Koç, S., Karabay, M., Akcay, Z.N., Gunger, E., and Hekim, N. (2024). Investigation of the Relationship between Vitamin D Deficiency and Vitamin D-Binding Protein Polymorphisms in Severe COVID-19 Patients. Diagnostics, 14." }, { "DOI": "10.2147/JIR.S470097", "article-title": "Vitamin D Binding Protein: A Potential Factor in Geriatric COVID-19 Acute Lung Injury", "author": "Jiang", "doi-asserted-by": "crossref", "first-page": "4419", "journal-title": "J. Inflamm. Res.", "key": "ref_45", "volume": "17", "year": "2024" }, { "article-title": "The association of ACE1, ACE2, TMPRSS2, IFITM3 and VDR polymorphisms with COVID-19 severity: A systematic review and meta-analysis", "author": "Dobrijevic", "first-page": "818", "journal-title": "EXCLI J.", "key": "ref_46", "volume": "21", "year": "2022" }, { "DOI": "10.3390/nu16050727", "doi-asserted-by": "crossref", "key": "ref_47", "unstructured": "Tentolouris, N., Achilla, C., Anastasiou, I.A., Eleftheriadou, I., Tentolouris, A., Basoulis, D., Kosta, O., Lambropoulos, A., Yavropoulou, M.P., and Chatzikyriakidou, A. (2024). The Association of Vitamin D Receptor Polymorphisms with COVID-19 Severity. Nutrients, 16." }, { "DOI": "10.1097/RTI.0000000000000541", "article-title": "Review of Chest Radiograph Findings of COVID-19 Pneumonia and Suggested Reporting Language", "author": "Litmanovich", "doi-asserted-by": "crossref", "first-page": "354", "journal-title": "J. Thorac. Imaging", "key": "ref_48", "volume": "35", "year": "2020" }, { "DOI": "10.1007/978-1-61737-954-3_6", "article-title": "Targeted SNP genotyping using the TaqMan® assay", "author": "Schleinitz", "doi-asserted-by": "crossref", "first-page": "77", "journal-title": "Disease Gene Identification: Methods and Protocols", "key": "ref_49", "volume": "Volume 700", "year": "2011" }, { "article-title": "Xgboost: Extreme gradient boosting", "author": "Chen", "first-page": "1", "journal-title": "Sci. Res.", "key": "ref_50", "volume": "1", "year": "2015" }, { "DOI": "10.1016/j.neucom.2019.10.118", "article-title": "A comprehensive survey on support vector machine classification: Applications, challenges and trends", "author": "Cervantes", "doi-asserted-by": "crossref", "first-page": "189", "journal-title": "Neurocomputing", "key": "ref_51", "volume": "408", "year": "2020" }, { "DOI": "10.38094/jastt20165", "article-title": "Classification Based on Decision Tree Algorithm for Machine Learning", "author": "Charbuty", "doi-asserted-by": "crossref", "first-page": "20", "journal-title": "J. Appl. Sci. Technol. Trends", "key": "ref_52", "volume": "2", "year": "2021" }, { "DOI": "10.31449/inf.v45i2.3407", "article-title": "Stock Market Prediction with Gaussian Naïve Bayes Machine Learning Algorithm", "author": "Ampomah", "doi-asserted-by": "crossref", "first-page": "3407", "journal-title": "Informatica", "key": "ref_53", "volume": "45", "year": "2021" }, { "DOI": "10.1016/j.eswa.2022.117298", "article-title": "A bi-objective k-nearest-neighbors-based imputation method for multilevel data", "author": "Cubillos", "doi-asserted-by": "crossref", "first-page": "117298", "journal-title": "Expert Syst. Appl.", "key": "ref_54", "volume": "204", "year": "2022" }, { "key": "ref_55", "unstructured": "(2025, April 23). MATLAB Runtime—MATLAB Compiler. Available online: https://es.mathworks.com/products/compiler/matlab-runtime.html." }, { "DOI": "10.1007/978-3-030-05318-5", "doi-asserted-by": "crossref", "key": "ref_56", "unstructured": "Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). Hyperparameter Optimization. Automated Machine Learning: Methods, Systems, Challenges, Springer International Publishing." }, { "DOI": "10.1186/s40537-020-00327-4", "article-title": "Selecting critical features for data classification based on machine learning methods", "author": "Chen", "doi-asserted-by": "crossref", "first-page": "52", "journal-title": "J. Big Data", "key": "ref_57", "volume": "7", "year": "2020" }, { "DOI": "10.1186/2196-1115-1-2", "article-title": "A review of data mining using big data in health informatics", "author": "Herland", "doi-asserted-by": "crossref", "first-page": "2", "journal-title": "J. Big Data", "key": "ref_58", "volume": "1", "year": "2014" } ], "reference-count": 58, "references-count": 58, "relation": {}, "resource": { "primary": { "URL": "https://www.mdpi.com/1422-0067/26/16/7975" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "A Machine Learning Approach to Understanding the Genetic Role in COVID-19 Prognosis: The Influence of Gene Polymorphisms Related to Inflammation, Vitamin D, and ACE2", "type": "journal-article", "volume": "26" }
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Submit