Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro
et al., Cell Res. 30, 269–271, doi:10.1038/s41422-020-0282-0, Feb 2020
HCQ for COVID-19
1st treatment shown to reduce risk in
March 2020, now with p < 0.00000000001 from 424 studies, used in 59 countries.
No treatment is 100% effective. Protocols
combine treatments.
6,200+ studies for
200+ treatments. c19early.org
|
In vitro study showing that Remdesivir and CQ potently blocked SARS-CoV-2 infection.
39 preclinical studies support the efficacy of HCQ for COVID-19:
1.
Shang et al., Identification of Cathepsin L as the molecular target of hydroxychloroquine with chemical proteomics, Molecular & Cellular Proteomics, doi:10.1016/j.mcpro.2025.101314.
2.
González-Paz et al., Biophysical Analysis of Potential Inhibitors of SARS-CoV-2 Cell Recognition and Their Effect on Viral Dynamics in Different Cell Types: A Computational Prediction from In Vitro Experimental Data, ACS Omega, doi:10.1021/acsomega.3c06968.
3.
Alkafaas et al., A study on the effect of natural products against the transmission of B.1.1.529 Omicron, Virology Journal, doi:10.1186/s12985-023-02160-6.
4.
Guimarães Silva et al., Are Non-Structural Proteins From SARS-CoV-2 the Target of Hydroxychloroquine? An in Silico Study, ACTA MEDICA IRANICA, doi:10.18502/acta.v61i2.12533.
5.
Nguyen et al., The Potential of Ameliorating COVID-19 and Sequelae From Andrographis paniculata via Bioinformatics, Bioinformatics and Biology Insights, doi:10.1177/11779322221149622.
7.
Yadav et al., Repurposing the Combination Drug of Favipiravir, Hydroxychloroquine and Oseltamivir as a Potential Inhibitor Against SARS-CoV-2: A Computational Study, Research Square, doi:10.21203/rs.3.rs-628277/v1.
8.
Hussein et al., Molecular Docking Identification for the efficacy of Some Zinc Complexes with Chloroquine and Hydroxychloroquine against Main Protease of COVID-19, Journal of Molecular Structure, doi:10.1016/j.molstruc.2021.129979.
9.
Baildya et al., Inhibitory capacity of Chloroquine against SARS-COV-2 by effective binding with Angiotensin converting enzyme-2 receptor: An insight from molecular docking and MD-simulation studies, Journal of Molecular Structure, doi:10.1016/j.molstruc.2021.129891.
10.
Noureddine et al., Quantum chemical studies on molecular structure, AIM, ELF, RDG and antiviral activities of hybrid hydroxychloroquine in the treatment of COVID-19: molecular docking and DFT calculations, Journal of King Saud University - Science, doi:10.1016/j.jksus.2020.101334.
11.
Tarek et al., Pharmacokinetic Basis of the Hydroxychloroquine Response in COVID-19: Implications for Therapy and Prevention, European Journal of Drug Metabolism and Pharmacokinetics, doi:10.1007/s13318-020-00640-6.
12.
Rowland Yeo et al., Impact of Disease on Plasma and Lung Exposure of Chloroquine, Hydroxychloroquine and Azithromycin: Application of PBPK Modeling, Clinical Pharmacology & Therapeutics, doi:10.1002/cpt.1955.
13.
Hitti et al., Hydroxychloroquine attenuates double-stranded RNA-stimulated hyper-phosphorylation of tristetraprolin/ZFP36 and AU-rich mRNA stabilization, Immunology, doi:10.1111/imm.13835.
14.
Yan et al., Super-resolution imaging reveals the mechanism of endosomal acidification inhibitors against SARS-CoV-2 infection, ChemBioChem, doi:10.1002/cbic.202400404.
15.
Mohd Abd Razak et al., In Vitro Anti-SARS-CoV-2 Activities of Curcumin and Selected Phenolic Compounds, Natural Product Communications, doi:10.1177/1934578X231188861.
16.
Alsmadi et al., The In Vitro, In Vivo, and PBPK Evaluation of a Novel Lung-Targeted Cardiac-Safe Hydroxychloroquine Inhalation Aerogel, AAPS PharmSciTech, doi:10.1208/s12249-023-02627-3.
17.
Wen et al., Cholinergic α7 nAChR signaling suppresses SARS-CoV-2 infection and inflammation in lung epithelial cells, Journal of Molecular Cell Biology, doi:10.1093/jmcb/mjad048.
18.
Kamga Kapchoup et al., In vitro effect of hydroxychloroquine on pluripotent stem cells and their cardiomyocytes derivatives, Frontiers in Pharmacology, doi:10.3389/fphar.2023.1128382.
19.
Milan Bonotto et al., Cathepsin inhibitors nitroxoline and its derivatives inhibit SARS-CoV-2 infection, Antiviral Research, doi:10.1016/j.antiviral.2023.105655.
20.
Miao et al., SIM imaging resolves endocytosis of SARS-CoV-2 spike RBD in living cells, Cell Chemical Biology, doi:10.1016/j.chembiol.2023.02.001.
21.
Yuan et al., Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway in mammalian cell culture, Communications Biology, doi:10.1038/s42003-022-03841-8.
22.
Faísca et al., Enhanced In Vitro Antiviral Activity of Hydroxychloroquine Ionic Liquids against SARS-CoV-2, Pharmaceutics, doi:10.3390/pharmaceutics14040877.
23.
Delandre et al., Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants, Pharmaceuticals, doi:10.3390/ph15040445.
24.
Purwati et al., An in vitro study of dual drug combinations of anti-viral agents, antibiotics, and/or hydroxychloroquine against the SARS-CoV-2 virus isolated from hospitalized patients in Surabaya, Indonesia, PLOS One, doi:10.1371/journal.pone.0252302.
25.
Zhang et al., SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination, Cell Death & Differentiation, doi:10.1038/s41418-021-00782-3.
26.
Dang et al., Structural basis of anti-SARS-CoV-2 activity of hydroxychloroquine: specific binding to NTD/CTD and disruption of LLPS of N protein, bioRxiv, doi:10.1101/2021.03.16.435741.
27.
Shang (B) et al., Inhibitors of endosomal acidification suppress SARS-CoV-2 replication and relieve viral pneumonia in hACE2 transgenic mice, Virology Journal, doi:10.1186/s12985-021-01515-1.
28.
Wang et al., Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus, Phytomedicine, doi:10.1016/j.phymed.2020.153333.
29.
Sheaff, R., A New Model of SARS-CoV-2 Infection Based on (Hydroxy)Chloroquine Activity, bioRxiv, doi:10.1101/2020.08.02.232892.
30.
Ou et al., Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2, PLOS Pathogens, doi:10.1371/journal.ppat.1009212.
31.
Andreani et al., In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect, Microbial Pathogenesis, doi:10.1016/j.micpath.2020.104228.
32.
Clementi et al., Combined Prophylactic and Therapeutic Use Maximizes Hydroxychloroquine Anti-SARS-CoV-2 Effects in vitro, Front. Microbiol., 10 July 2020, doi:10.3389/fmicb.2020.01704.
33.
Liu et al., Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell Discovery 6, 16 (2020), doi:10.1038/s41421-020-0156-0.
34.
Yao et al., In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Clin. Infect. Dis., 2020 Mar 9, doi:10.1093/cid/ciaa237.
Wang et al., 4 Feb 2020, peer-reviewed, 10 authors.
In vitro studies are an important part of preclinical research, however results may be very different in vivo.
Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro
Cell Research, doi:10.1038/s41422-020-0282-0
a novel pneumonia caused by a previously unknown pathogen emerged in Wuhan, a city of 11 million people in central China. The initial cases were linked to exposures in a seafood market in Wuhan. 1 As of January 27, 2020, the Chinese authorities reported 2835 confirmed cases in mainland China, including 81 deaths. Additionally, 19 confirmed cases were identified in Hong Kong, Macao and Taiwan, and 39 imported cases were identified in Thailand,
AUTHOR CONTRIBUTIONS G.X., W.Z., Z.H., M.W., R.C., and L.Z. conceived and designed the experiments. X.Y., J.L., M.X., M.W., R.C., and L.Z. participated in multiple experiments; G.X., W.Z., Z.H., Z.S., M.W., R.C., and L.Z. analyzed the data. M.W., L.Z., R.C., and Z.H. wrote the manuscript. G.X., W.Z., and Z.H. provided the final approval of the manuscript.
ADDITIONAL INFORMATION Supplementary information accompanies this paper at https://doi.org/10.1038/ s41422-020-0282-0.
Competing interests: The authors declare no competing interests. Manli Wang
References
Huang, None, The Lancet, doi:10.1016/S0140-6736(20)30183-5
Mackenzie, None, Am. J. Med
Mulangu, None, N. Engl. J. Med
Oestereich, None, Antivir. Res
Savarino, Di Trani, Donatelli, Cauda, Cassone, None, Lancet Infect. Dis
Sheahan, None, Sci. Transl. Med
Vincent, None, Virol. J
Warren, None, Nature
Yan, None, Cell Res
Zhou, None, Nature
Zumla, Chan, Azhar, Hui, Yuen, None, Nat. Rev. Drug Discov
DOI record:
{
"DOI": "10.1038/s41422-020-0282-0",
"ISSN": [
"1001-0602",
"1748-7838"
],
"URL": "http://dx.doi.org/10.1038/s41422-020-0282-0",
"alternative-id": [
"282"
],
"assertion": [
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Received",
"name": "received",
"order": 1,
"value": "25 January 2020"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Accepted",
"name": "accepted",
"order": 2,
"value": "28 January 2020"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "First Online",
"name": "first_online",
"order": 3,
"value": "4 February 2020"
},
{
"group": {
"label": "Competing interests",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 1,
"value": "The authors declare no competing interests."
}
],
"author": [
{
"affiliation": [],
"family": "Wang",
"given": "Manli",
"sequence": "first"
},
{
"affiliation": [],
"family": "Cao",
"given": "Ruiyuan",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Zhang",
"given": "Leike",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Yang",
"given": "Xinglou",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Liu",
"given": "Jia",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Xu",
"given": "Mingyue",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Shi",
"given": "Zhengli",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0002-1560-0928",
"affiliation": [],
"authenticated-orcid": false,
"family": "Hu",
"given": "Zhihong",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Zhong",
"given": "Wu",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Xiao",
"given": "Gengfu",
"sequence": "additional"
}
],
"container-title": "Cell Research",
"container-title-short": "Cell Res",
"content-domain": {
"crossmark-restriction": false,
"domain": [
"link.springer.com"
]
},
"created": {
"date-parts": [
[
2020,
2,
4
]
],
"date-time": "2020-02-04T10:03:11Z",
"timestamp": 1580810591000
},
"deposited": {
"date-parts": [
[
2023,
5,
20
]
],
"date-time": "2023-05-20T21:19:09Z",
"timestamp": 1684617549000
},
"indexed": {
"date-parts": [
[
2024,
5,
14
]
],
"date-time": "2024-05-14T13:57:40Z",
"timestamp": 1715695060687
},
"is-referenced-by-count": 4958,
"issue": "3",
"issued": {
"date-parts": [
[
2020,
2,
4
]
]
},
"journal-issue": {
"issue": "3",
"published-print": {
"date-parts": [
[
2020,
3
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2020,
2,
4
]
],
"date-time": "2020-02-04T00:00:00Z",
"timestamp": 1580774400000
}
},
{
"URL": "https://creativecommons.org/licenses/by/4.0",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2020,
2,
4
]
],
"date-time": "2020-02-04T00:00:00Z",
"timestamp": 1580774400000
}
}
],
"link": [
{
"URL": "http://www.nature.com/articles/s41422-020-0282-0.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "http://www.nature.com/articles/s41422-020-0282-0",
"content-type": "text/html",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "http://www.nature.com/articles/s41422-020-0282-0.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "297",
"original-title": [],
"page": "269-271",
"prefix": "10.1038",
"published": {
"date-parts": [
[
2020,
2,
4
]
]
},
"published-online": {
"date-parts": [
[
2020,
2,
4
]
]
},
"published-print": {
"date-parts": [
[
2020,
3
]
]
},
"publisher": "Springer Science and Business Media LLC",
"reference": [
{
"DOI": "10.1016/S0140-6736(20)30183-5",
"author": "Chaolin Huang",
"doi-asserted-by": "publisher",
"first-page": "497",
"issue": "10223",
"journal-title": "The Lancet",
"key": "282_CR1",
"unstructured": "Huang, C. L. et al. The Lancet https://doi.org/10.1016/S0140-6736(20)30183-5 (2020).",
"volume": "395",
"year": "2020"
},
{
"key": "282_CR2",
"unstructured": "Zhou, P. et al. Nature (accepted)."
},
{
"DOI": "10.1038/nrd.2015.37",
"author": "A Zumla",
"doi-asserted-by": "publisher",
"first-page": "327",
"journal-title": "Nat. Rev. Drug Discov.",
"key": "282_CR3",
"unstructured": "Zumla, A., Chan, J. F., Azhar, E. I., Hui, D. S. & Yuen, K. Y. Nat. Rev. Drug Discov. 15, 327–347 (2016).",
"volume": "15",
"year": "2016"
},
{
"DOI": "10.1016/j.antiviral.2014.02.014",
"author": "L Oestereich",
"doi-asserted-by": "publisher",
"first-page": "17",
"journal-title": "Antivir. Res.",
"key": "282_CR4",
"unstructured": "Oestereich, L. et al. Antivir. Res. 105, 17–21 (2014).",
"volume": "105",
"year": "2014"
},
{
"DOI": "10.1126/scitranslmed.aal3653",
"author": "TP Sheahan",
"doi-asserted-by": "publisher",
"first-page": "eaal3653",
"journal-title": "Sci. Transl. Med.",
"key": "282_CR5",
"unstructured": "Sheahan, T. P. et al. Sci. Transl. Med. 9, eaal3653 (2017).",
"volume": "9",
"year": "2017"
},
{
"DOI": "10.1056/NEJMoa1910993",
"author": "S Mulangu",
"doi-asserted-by": "publisher",
"first-page": "2293",
"journal-title": "N. Engl. J. Med.",
"key": "282_CR6",
"unstructured": "Mulangu, S. et al. N. Engl. J. Med. 381, 2293–2303 (2019).",
"volume": "381",
"year": "2019"
},
{
"DOI": "10.1038/nature17180",
"author": "TK Warren",
"doi-asserted-by": "publisher",
"first-page": "381",
"journal-title": "Nature",
"key": "282_CR7",
"unstructured": "Warren, T. K. et al. Nature 531, 381–385 (2016).",
"volume": "531",
"year": "2016"
},
{
"DOI": "10.1016/S1473-3099(06)70361-9",
"author": "A Savarino",
"doi-asserted-by": "publisher",
"first-page": "67",
"journal-title": "Lancet Infect. Dis.",
"key": "282_CR8",
"unstructured": "Savarino, A., Di Trani, L., Donatelli, I., Cauda, R. & Cassone, A. Lancet Infect. Dis. 6, 67–69 (2006).",
"volume": "6",
"year": "2006"
},
{
"DOI": "10.1038/cr.2012.165",
"author": "Y Yan",
"doi-asserted-by": "publisher",
"first-page": "300",
"journal-title": "Cell Res.",
"key": "282_CR9",
"unstructured": "Yan, Y. et al. Cell Res. 23, 300–302 (2013).",
"volume": "23",
"year": "2013"
},
{
"DOI": "10.1186/1743-422X-2-69",
"author": "MJ Vincent",
"doi-asserted-by": "publisher",
"first-page": "69",
"journal-title": "Virol. J.",
"key": "282_CR10",
"unstructured": "Vincent, M. J. et al. Virol. J. 2, 69 (2005).",
"volume": "2",
"year": "2005"
},
{
"DOI": "10.1016/0002-9343(83)91269-X",
"author": "AH Mackenzie",
"doi-asserted-by": "publisher",
"first-page": "40",
"journal-title": "Am. J. Med.",
"key": "282_CR11",
"unstructured": "Mackenzie, A. H. Am. J. Med. 75, 40–45 (1983).",
"volume": "75",
"year": "1983"
}
],
"reference-count": 11,
"references-count": 11,
"relation": {
"has-review": [
{
"asserted-by": "object",
"id": "10.3410/f.737311964.793575075",
"id-type": "doi"
},
{
"asserted-by": "object",
"id": "10.3410/f.737311964.793572693",
"id-type": "doi"
},
{
"asserted-by": "object",
"id": "10.3410/f.737311964.793581931",
"id-type": "doi"
}
]
},
"resource": {
"primary": {
"URL": "https://www.nature.com/articles/s41422-020-0282-0"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro",
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1007/springer_crossmark_policy",
"volume": "30"
}

