Pharmacokinetic Basis of the Hydroxychloroquine Response in COVID-19: Implications for Therapy and Prevention
et al., European Journal of Drug Metabolism and Pharmacokinetics, doi:10.1007/s13318-020-00640-6, Aug 2020
HCQ for COVID-19
1st treatment shown to reduce risk in
March 2020, now with p < 0.00000000001 from 424 studies, used in 59 countries.
No treatment is 100% effective. Protocols
combine treatments.
6,200+ studies for
200+ treatments. c19early.org
|
In silico analysis of HCQ treatment showing concluding that HCQ may affect viral clearance if administered early enough when the virus is still confined to the pharyngeal cavity; HCQ's effects against SARS-CoV-2 might be exerted more through enhanced cell-mediated immunity than direct antiviral effects; and the effects of HCQ on SARS-CoV-2 viral load may be missed in clinical trials if measurements are not done at the peak of viral replication; and the effects are only evident at dosages able to guarantee a certain plasma drug concentration, i.e., > 400 mg/day.
39 preclinical studies support the efficacy of HCQ for COVID-19:
1.
Shang et al., Identification of Cathepsin L as the molecular target of hydroxychloroquine with chemical proteomics, Molecular & Cellular Proteomics, doi:10.1016/j.mcpro.2025.101314.
2.
González-Paz et al., Biophysical Analysis of Potential Inhibitors of SARS-CoV-2 Cell Recognition and Their Effect on Viral Dynamics in Different Cell Types: A Computational Prediction from In Vitro Experimental Data, ACS Omega, doi:10.1021/acsomega.3c06968.
3.
Alkafaas et al., A study on the effect of natural products against the transmission of B.1.1.529 Omicron, Virology Journal, doi:10.1186/s12985-023-02160-6.
4.
Guimarães Silva et al., Are Non-Structural Proteins From SARS-CoV-2 the Target of Hydroxychloroquine? An in Silico Study, ACTA MEDICA IRANICA, doi:10.18502/acta.v61i2.12533.
5.
Nguyen et al., The Potential of Ameliorating COVID-19 and Sequelae From Andrographis paniculata via Bioinformatics, Bioinformatics and Biology Insights, doi:10.1177/11779322221149622.
7.
Yadav et al., Repurposing the Combination Drug of Favipiravir, Hydroxychloroquine and Oseltamivir as a Potential Inhibitor Against SARS-CoV-2: A Computational Study, Research Square, doi:10.21203/rs.3.rs-628277/v1.
8.
Hussein et al., Molecular Docking Identification for the efficacy of Some Zinc Complexes with Chloroquine and Hydroxychloroquine against Main Protease of COVID-19, Journal of Molecular Structure, doi:10.1016/j.molstruc.2021.129979.
9.
Baildya et al., Inhibitory capacity of Chloroquine against SARS-COV-2 by effective binding with Angiotensin converting enzyme-2 receptor: An insight from molecular docking and MD-simulation studies, Journal of Molecular Structure, doi:10.1016/j.molstruc.2021.129891.
10.
Noureddine et al., Quantum chemical studies on molecular structure, AIM, ELF, RDG and antiviral activities of hybrid hydroxychloroquine in the treatment of COVID-19: molecular docking and DFT calculations, Journal of King Saud University - Science, doi:10.1016/j.jksus.2020.101334.
11.
Tarek et al., Pharmacokinetic Basis of the Hydroxychloroquine Response in COVID-19: Implications for Therapy and Prevention, European Journal of Drug Metabolism and Pharmacokinetics, doi:10.1007/s13318-020-00640-6.
12.
Rowland Yeo et al., Impact of Disease on Plasma and Lung Exposure of Chloroquine, Hydroxychloroquine and Azithromycin: Application of PBPK Modeling, Clinical Pharmacology & Therapeutics, doi:10.1002/cpt.1955.
13.
Hitti et al., Hydroxychloroquine attenuates double-stranded RNA-stimulated hyper-phosphorylation of tristetraprolin/ZFP36 and AU-rich mRNA stabilization, Immunology, doi:10.1111/imm.13835.
14.
Yan et al., Super-resolution imaging reveals the mechanism of endosomal acidification inhibitors against SARS-CoV-2 infection, ChemBioChem, doi:10.1002/cbic.202400404.
15.
Mohd Abd Razak et al., In Vitro Anti-SARS-CoV-2 Activities of Curcumin and Selected Phenolic Compounds, Natural Product Communications, doi:10.1177/1934578X231188861.
16.
Alsmadi et al., The In Vitro, In Vivo, and PBPK Evaluation of a Novel Lung-Targeted Cardiac-Safe Hydroxychloroquine Inhalation Aerogel, AAPS PharmSciTech, doi:10.1208/s12249-023-02627-3.
17.
Wen et al., Cholinergic α7 nAChR signaling suppresses SARS-CoV-2 infection and inflammation in lung epithelial cells, Journal of Molecular Cell Biology, doi:10.1093/jmcb/mjad048.
18.
Kamga Kapchoup et al., In vitro effect of hydroxychloroquine on pluripotent stem cells and their cardiomyocytes derivatives, Frontiers in Pharmacology, doi:10.3389/fphar.2023.1128382.
19.
Milan Bonotto et al., Cathepsin inhibitors nitroxoline and its derivatives inhibit SARS-CoV-2 infection, Antiviral Research, doi:10.1016/j.antiviral.2023.105655.
20.
Miao et al., SIM imaging resolves endocytosis of SARS-CoV-2 spike RBD in living cells, Cell Chemical Biology, doi:10.1016/j.chembiol.2023.02.001.
21.
Yuan et al., Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway in mammalian cell culture, Communications Biology, doi:10.1038/s42003-022-03841-8.
22.
Faísca et al., Enhanced In Vitro Antiviral Activity of Hydroxychloroquine Ionic Liquids against SARS-CoV-2, Pharmaceutics, doi:10.3390/pharmaceutics14040877.
23.
Delandre et al., Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants, Pharmaceuticals, doi:10.3390/ph15040445.
24.
Purwati et al., An in vitro study of dual drug combinations of anti-viral agents, antibiotics, and/or hydroxychloroquine against the SARS-CoV-2 virus isolated from hospitalized patients in Surabaya, Indonesia, PLOS One, doi:10.1371/journal.pone.0252302.
25.
Zhang et al., SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination, Cell Death & Differentiation, doi:10.1038/s41418-021-00782-3.
26.
Dang et al., Structural basis of anti-SARS-CoV-2 activity of hydroxychloroquine: specific binding to NTD/CTD and disruption of LLPS of N protein, bioRxiv, doi:10.1101/2021.03.16.435741.
27.
Shang (B) et al., Inhibitors of endosomal acidification suppress SARS-CoV-2 replication and relieve viral pneumonia in hACE2 transgenic mice, Virology Journal, doi:10.1186/s12985-021-01515-1.
28.
Wang et al., Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus, Phytomedicine, doi:10.1016/j.phymed.2020.153333.
29.
Sheaff, R., A New Model of SARS-CoV-2 Infection Based on (Hydroxy)Chloroquine Activity, bioRxiv, doi:10.1101/2020.08.02.232892.
30.
Ou et al., Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2, PLOS Pathogens, doi:10.1371/journal.ppat.1009212.
31.
Andreani et al., In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect, Microbial Pathogenesis, doi:10.1016/j.micpath.2020.104228.
32.
Clementi et al., Combined Prophylactic and Therapeutic Use Maximizes Hydroxychloroquine Anti-SARS-CoV-2 Effects in vitro, Front. Microbiol., 10 July 2020, doi:10.3389/fmicb.2020.01704.
33.
Liu et al., Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell Discovery 6, 16 (2020), doi:10.1038/s41421-020-0156-0.
34.
Yao et al., In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Clin. Infect. Dis., 2020 Mar 9, doi:10.1093/cid/ciaa237.
Tarek et al., 11 Aug 2020, peer-reviewed, 2 authors.
In silico studies are an important part of preclinical research, however results may be very different in vivo.
Pharmacokinetic Basis of the Hydroxychloroquine Response in COVID-19: Implications for Therapy and Prevention
European Journal of Drug Metabolism and Pharmacokinetics, doi:10.1007/s13318-020-00640-6
Background and Objectives Chloroquine/hydroxychloroquine has recently been the subject of intense debate regarding its potential antiviral activity against SARS-Cov-2, the etiologic agent of COVID-19. Some report possible curative effects; others do not. Therefore, the objective of this study was to simulate possible scenarios of response to hydroxychloroquine in COVID-19 patients using mathematical modeling. Methods To shed some light on this controversial topic, we simulated hydroxychloroquine-based interventions on virus/host cell dynamics using a basic system of previously published differential equations. Mathematical modeling was implemented using Python programming language v 3.7. Results According to mathematical modeling, hydroxychloroquine may have an impact on the amplitude of the viral load peak and viral clearance if the drug is administered early enough (i.e., when the virus is still confined within the pharyngeal cavity). The effects of chloroquine/hydroxychloroquine may be fully explained only when also considering the capacity of this drug to increase the death rate of SARS-CoV-2-infected cells, in this case by enhancing the cell-mediated immune response. Conclusions These considerations may not only be applied to chloroquine/hydroxychloroquine but may have more general implications for development of anti-COVID-19 combination therapies and prevention strategies through an increased death rate of the infected cells.
References
Accapezzato, Visco, Francavilla, Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo, J Exp Med
Arnold, Buckner, Hydroxychloroquine for treatment of SARS-CoV-2 infection? Improving our confidence in a model-based approach to dose selection, Clin Transl Sci, doi:10.1111/cts.12797
Baccam, Beauchemin, Macken, Hayden, Perelson, Kinetics of influenza A virus infection in humans, J Virol
Best, Guedj, Madelain, Zika plasma viral dynamics in nonhuman primates provides insights into early infection and antiviral strategies, Proc Natl Acad Sci
Boelaert, Piette, Sperber, The potential place of chloroquine in the treatment of HIV-1-infected patients, J Clin Virol
Borba, Val, Sampaio, Chloroquine diphosphate in two different dosages as adjunctive therapy of hospitalized patients with severe respiratory syndrome in the context of coronavirus (SARS-CoV-2) infection: preliminary safety results of a randomized, double-blinded, phase IIb clinical trial (CloroCovid-19 Study, doi:10.1101/2020.04.07.20056424
Boulware, Post-exposure prophylaxis/preemptive therapy for SARS-coronavirus-2 (COVID-19 PEP)
Carlsson, Hjorton, Abujrais, Rönnblom, Åkerfeldt et al., Measurement of hydroxychloroquine in blood from SLE patients using LC-HRMS-evaluation of whole blood, plasma, and serum as sample matrices, Arthritis Res Ther
Chang, Mo, Yuan, Time kinetics of viral clearance and resolution of symptoms in novel coronavirus infection, Am J Respir Crit Care Med
Chen, Liu, Liu, A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19), J Zhejiang Univ (Med Sci, doi:10.3785/j.issn.1008-9292.2020.03.03
Fan, Zhang, Liu, Connecting hydroxychloroquine in vitro antiviral activity to in vivo concentration for prediction of antiviral effect: a critical step in treating COVID-19 patients, Clin Infect Dis, doi:10.1093/cid/ciaa623
Fong, Wright, Hemozoin and antimalarial drug discovery, Future Med Chem
Gao, Tian, Yang, Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies, Biosci Trends, doi:10.5582/bst.2020.01047
Garcia-Cremades, Solans, Hughes, Ernest, Wallender et al., Optimizing hydroxychloroquine dosing for patients with COVID-19: an integrative modeling approach for effective drug repurposing, Clin Pharmacol Ther, doi:10.1002/cpt.1856
Gautret, Lagier, Parola, Meddeb, Mailhe et al., Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, Int J Antimicrob Agents
Gil-Moles, Basu, Büssing, Hoffmeister, Türck et al., Gold metallodrugs to fight the corona virus: inhibitory effects on the SpikeACE2 interaction and on PLpro protease activity by auranofin and gold organometallics, doi:10.26434/chemrxiv.12488390.v1
Gonçalves, Bertrand, Ke, Comets, De Lamballerie et al., Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load, CPT Pharmacometr Syst Pharmacol, doi:10.1002/psp4.12543
Guérin, Lévy, Thomas, Lardenois, Lacrosse et al., Azithromycin and hydroxychloroquine accelerate recovery of outpatients with mild/moderate COVID-19, doi:10.20944/preprints202005.0486.v1
Huang, Tang, Pang, Li, Ma et al., Treating COVID-19 with chloroquine, J Mol Cell Biol, doi:10.1093/jmcb/mjaa014
Hunter, Matplotlib: a 2D graphics environment, Comput Sci Eng
Kim, Ejima, Ito, Modelling SARS-CoV-2 dynamics: implications for therapy, medRxiv, doi:10.1101/2020.03.23.20040493
Langtangen, Pedersen, Scaling of differential equations, doi:10.1007/978-3-319-32726-6
Lee, Son, Peck, Can post-exposure prophylaxis for COVID-19 be considered as one of outbreak response strategies in long-term care hospitals?, Int J Antimicrob Agents, doi:10.1016/j.ijantimicag.2020.105988
Li, Xu, Liu, The within-host viral kinetics of SARS-CoV-2, Math Biosci Eng, doi:10.1101/2020.02.29.965418
Lim, Im, Cho, Pharmacokinetics of hydroxychloroquine and its clinical implications in chemoprophylaxis against malaria caused by Plasmodium vivax, Antimicrob Agents Chemother, doi:10.1128/AAC.00339-08
Morita, Takahashi, Yoshida, Yokota, Population pharmacokinetics of hydroxychloroquine in Japanese patients with cutaneous or systemic lupus erythematosus, Ther Drug Monit
Oscanoa, Romero-Ortuno, Carvajal, Savarino, A pharmacological perspective of chloroquine in SARS-CoV-2 infection, Int J Antimicrob Agents, doi:10.1016/j.ijantimicag.2020.106078
Pagliano, Piazza, Caro, Ascione, Filippelli, Is hydroxychloroquine a possible postexposure prophylaxis drug to limit the transmission to healthcare workers exposed to coronavirus disease 2019?, Clin Infect Dis, doi:10.1093/cid/ciaa320
Perelson, Rong, Hayden, Combination antiviral therapy for influenza: predictions from modeling of human infections, J Infect Dis
Principi, Esposito, Chloroquine or hydroxychloroquine for prophylaxis of COVID-19, Lancet Infect Dis, doi:10.1016/S1473-3099(20)30296-6
Pussard, Lepers, Clavier, Efficacy of a loading dose of oral chloroquine in a 36-hour treatment schedule for uncomplicated plasmodium falciparum malaria, Antimicrob Agents Chemother, doi:10.1128/aac.35.3.406
Pötsch, Fischer, Müller, Lexikon bedeutender Chemiker
Rong, Perelson, Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy, PLoS Comput Biol, doi:10.1371/journal.pcbi.1000533
Rothan, Stone, Natekar, Kumari, Arora et al., The FDA-approved gold drug Auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells, Virology, doi:10.1016/j.virol.2020.05.002
Sarayani, Cicali, Henriksen, Brown, Safety signals for QT prolongation or Torsades de Pointes associated with azithromycin with or without chloroquine or hydroxychloroquine, Res Soc Adm Pharm, doi:10.1016/j.sapharm.2020.04.016
Savarino, Boelaert, Cassone, Majori, Cauda, Effects of chloroquine on viral infections: an old drug against today's diseases?, Lancet Infect Dis
Savarino, Bottarel, Malavasi, Dianzani, Role of CD38 in HIV-1 infection: an epiphenomenon of T-cell activation or an active player in virus/host interactions?, Aids
Savarino, Buonavoglia, Norelli, Trani, Cassone, Potential therapies for coronaviruses, Expert Opin Ther Pat, doi:10.1517/13543776.16.9.1269
Shytaj, Chirullo, Wagner, Ferrari, Sgarbanti et al., Investigational treatment suspension and enhanced cell-mediated immunity at rebound followed by drug-free remission of simian AIDS, Retrovirology
Shytaj, Norelli, Chirullo, A highly intensified ART regimen induces long-term viral suppression and restriction of the viral reservoir in a simian AIDS model, PLoS Pathog, doi:10.1371/journal.ppat.1002774
Smit, Peeters, Van Den Anker, Knibbe, Chloroquine for SARS-CoV-2: implications of its unique pharmacokinetic and safety properties, Clin Pharmacokinet
Smit, Peeters, Van Den Anker, Knibbe, Chloroquine for SARS-CoV-2: implications of its unique pharmacokinetic and safety properties, Clin Pharmacokinet, doi:10.1007/s40262-020-00891-1
Virtanen, Gommers, Oliphant, Haberland, Reddy et al., SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat Methods
Wallace, Hahn, Dubois' lupus erythematosus
Walt, Colbert, Varoquaux, The NumPy array: a structure for efficient numerical computation, Comput Sci Eng
Wang, Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res, doi:10.1038/s41422-020-0282-0
Yao, Ye, Zhang, Cui, Huang et al., In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Clin Infect Dis, doi:10.1093/cid/ciaa237
Yen, Liao, Hsiao, Kao, Chen et al., Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro, J Virol
Zou, Ruan, Huang, Liang, Huang et al., SARS-CoV-2 viral load in upper respiratory specimens of infected patients, N Engl J Med
DOI record:
{
"DOI": "10.1007/s13318-020-00640-6",
"ISSN": [
"0378-7966",
"2107-0180"
],
"URL": "http://dx.doi.org/10.1007/s13318-020-00640-6",
"alternative-id": [
"640"
],
"assertion": [
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "First Online",
"name": "first_online",
"order": 1,
"value": "11 August 2020"
},
{
"group": {
"label": "Declarations",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 1
},
{
"group": {
"label": "Funding",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 2,
"value": "No funding source."
},
{
"group": {
"label": "Conflict of interest",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 3,
"value": "The authors declare that they have no competing interest."
},
{
"group": {
"label": "Ethics approval",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 4,
"value": "Not applicable."
},
{
"group": {
"label": "Consent to participate",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 5,
"value": "Not applicable."
},
{
"group": {
"label": "Consent for publication",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 6,
"value": "The authors have consent from their institutions."
},
{
"group": {
"label": "Availability of data and material",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 7,
"value": "Not applicable."
},
{
"group": {
"label": "Code availability",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 8,
"value": "Available at: ExternalRef removed."
},
{
"label": "Free to read",
"name": "free",
"value": "This content has been made available to all."
}
],
"author": [
{
"affiliation": [],
"family": "Tarek",
"given": "Mohammad",
"sequence": "first"
},
{
"ORCID": "http://orcid.org/0000-0003-0983-3693",
"affiliation": [],
"authenticated-orcid": false,
"family": "Savarino",
"given": "Andrea",
"sequence": "additional"
}
],
"container-title": "European Journal of Drug Metabolism and Pharmacokinetics",
"container-title-short": "Eur J Drug Metab Pharmacokinet",
"content-domain": {
"crossmark-restriction": false,
"domain": [
"link.springer.com"
]
},
"created": {
"date-parts": [
[
2020,
8,
11
]
],
"date-time": "2020-08-11T14:07:32Z",
"timestamp": 1597154852000
},
"deposited": {
"date-parts": [
[
2021,
8,
10
]
],
"date-time": "2021-08-10T23:19:13Z",
"timestamp": 1628637553000
},
"indexed": {
"date-parts": [
[
2024,
4,
25
]
],
"date-time": "2024-04-25T15:08:50Z",
"timestamp": 1714057730102
},
"is-referenced-by-count": 13,
"issue": "6",
"issued": {
"date-parts": [
[
2020,
8,
11
]
]
},
"journal-issue": {
"issue": "6",
"published-print": {
"date-parts": [
[
2020,
12
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://www.springer.com/tdm",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2020,
8,
11
]
],
"date-time": "2020-08-11T00:00:00Z",
"timestamp": 1597104000000
}
},
{
"URL": "https://www.springer.com/tdm",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2020,
8,
11
]
],
"date-time": "2020-08-11T00:00:00Z",
"timestamp": 1597104000000
}
}
],
"link": [
{
"URL": "https://link.springer.com/content/pdf/10.1007/s13318-020-00640-6.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://link.springer.com/article/10.1007/s13318-020-00640-6/fulltext.html",
"content-type": "text/html",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://link.springer.com/content/pdf/10.1007/s13318-020-00640-6.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "297",
"original-title": [],
"page": "715-723",
"prefix": "10.1007",
"published": {
"date-parts": [
[
2020,
8,
11
]
]
},
"published-online": {
"date-parts": [
[
2020,
8,
11
]
]
},
"published-print": {
"date-parts": [
[
2020,
12
]
]
},
"publisher": "Springer Science and Business Media LLC",
"reference": [
{
"author": "WR Pötsch",
"key": "640_CR1",
"unstructured": "Pötsch WR, Fischer A, Müller W. Lexikon bedeutender Chemiker. New Delhi: Anamika Publishers & Distributors; 1988.",
"volume-title": "Lexikon bedeutender Chemiker",
"year": "1988"
},
{
"key": "640_CR2",
"unstructured": "Wallace DJ, Hahn B, editors. Dubois’ lupus erythematosus. Philadelphia: Lippincott Williams & Wilkins; 2007.",
"volume-title": "Dubois’ lupus erythematosus",
"year": "2007"
},
{
"DOI": "10.1016/S1473-3099(03)00806-5",
"author": "A Savarino",
"doi-asserted-by": "publisher",
"first-page": "722",
"issue": "11",
"journal-title": "Lancet Infect Dis",
"key": "640_CR3",
"unstructured": "Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis. 2003;3(11):722–7.",
"volume": "3",
"year": "2003"
},
{
"DOI": "10.4155/fmc.13.113",
"author": "KY Fong",
"doi-asserted-by": "publisher",
"first-page": "1437",
"issue": "12",
"journal-title": "Future Med Chem",
"key": "640_CR4",
"unstructured": "Fong KY, Wright DW. Hemozoin and antimalarial drug discovery. Future Med Chem. 2013;5(12):1437–50.",
"volume": "5",
"year": "2013"
},
{
"DOI": "10.1111/cts.12797",
"author": "SLM Arnold",
"doi-asserted-by": "publisher",
"first-page": "642",
"issue": "4",
"journal-title": "Clin Transl Sci",
"key": "640_CR5",
"unstructured": "Arnold SLM, Buckner F. Hydroxychloroquine for treatment of SARS-CoV-2 infection? Improving our confidence in a model-based approach to dose selection. Clin Transl Sci. 2020;13(4):642–5. https://doi.org/10.1111/cts.12797.",
"volume": "13",
"year": "2020"
},
{
"DOI": "10.1016/j.ijantimicag.2020.105949",
"author": "P Gautret",
"doi-asserted-by": "publisher",
"first-page": "105949",
"journal-title": "Int J Antimicrob Agents",
"key": "640_CR6",
"unstructured": "Gautret P, Lagier JC, Parola P, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Dupont HT, Honoré S. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;20:105949.",
"volume": "20",
"year": "2020"
},
{
"DOI": "10.1097/FTD.0000000000000261",
"author": "S Morita",
"doi-asserted-by": "publisher",
"first-page": "259",
"issue": "2",
"journal-title": "Ther Drug Monit",
"key": "640_CR7",
"unstructured": "Morita S, Takahashi T, Yoshida Y, Yokota N. Population pharmacokinetics of hydroxychloroquine in Japanese patients with cutaneous or systemic lupus erythematosus. Ther Drug Monit. 2016;38(2):259–67.",
"volume": "38",
"year": "2016"
},
{
"DOI": "10.1007/s40262-020-00891-1",
"author": "C Smit",
"doi-asserted-by": "publisher",
"first-page": "659",
"issue": "6",
"journal-title": "Clin Pharmacokinet",
"key": "640_CR8",
"unstructured": "Smit C, Peeters MYM, van den Anker JN, Knibbe CAJ. Chloroquine for SARS-CoV-2: implications of its unique pharmacokinetic and safety properties. Clin Pharmacokinet. 2020;59(6):659–69.",
"volume": "59",
"year": "2020"
},
{
"DOI": "10.1016/j.ijantimicag.2020.106078",
"author": "TJ Oscanoa",
"doi-asserted-by": "publisher",
"first-page": "106078",
"journal-title": "Int J Antimicrob Agents",
"key": "640_CR9",
"unstructured": "Oscanoa TJ, Romero-Ortuno R, Carvajal A, Savarino A. A pharmacological perspective of chloroquine in SARS-CoV-2 infection. Int J Antimicrob Agents. 2020;4:106078. https://doi.org/10.1016/j.ijantimicag.2020.106078.",
"volume": "4",
"year": "2020"
},
{
"DOI": "10.1128/aac.35.3.406",
"author": "E Pussard",
"doi-asserted-by": "publisher",
"first-page": "406",
"issue": "3",
"journal-title": "Antimicrob Agents Chemother",
"key": "640_CR10",
"unstructured": "Pussard E, Lepers JP, Clavier F, et al. Efficacy of a loading dose of oral chloroquine in a 36-hour treatment schedule for uncomplicated plasmodium falciparum malaria. Antimicrob Agents Chemother. 1991;35(3):406–9. https://doi.org/10.1128/aac.35.3.406.",
"volume": "35",
"year": "1991"
},
{
"DOI": "10.1128/AAC.00339-08",
"author": "HS Lim",
"doi-asserted-by": "publisher",
"first-page": "1468",
"issue": "4",
"journal-title": "Antimicrob Agents Chemother.",
"key": "640_CR11",
"unstructured": "Lim HS, Im JS, Cho JY, et al. Pharmacokinetics of hydroxychloroquine and its clinical implications in chemoprophylaxis against malaria caused by Plasmodium vivax. Antimicrob Agents Chemother. 2009;53(4):1468–75. https://doi.org/10.1128/AAC.00339-08.",
"volume": "53",
"year": "2009"
},
{
"DOI": "10.1016/S1386-6532(00)00140-2",
"author": "JR Boelaert",
"doi-asserted-by": "publisher",
"first-page": "137",
"issue": "3",
"journal-title": "J Clin Virol",
"key": "640_CR12",
"unstructured": "Boelaert JR, Piette J, Sperber K. The potential place of chloroquine in the treatment of HIV-1-infected patients. J Clin Virol. 2001;20(3):137–40.",
"volume": "20",
"year": "2001"
},
{
"DOI": "10.1097/00002030-200006160-00004",
"author": "A Savarino",
"doi-asserted-by": "publisher",
"first-page": "1079",
"issue": "9",
"journal-title": "Aids",
"key": "640_CR13",
"unstructured": "Savarino A, Bottarel F, Malavasi F, Dianzani U. Role of CD38 in HIV-1 infection: an epiphenomenon of T-cell activation or an active player in virus/host interactions? Aids. 2000;14(9):1079–89.",
"volume": "14",
"year": "2000"
},
{
"DOI": "10.1084/jem.20051106",
"author": "D Accapezzato",
"doi-asserted-by": "publisher",
"first-page": "817",
"issue": "6",
"journal-title": "J Exp Med",
"key": "640_CR14",
"unstructured": "Accapezzato D, Visco V, Francavilla V, et al. Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo. J Exp Med. 2005;202(6):817–28.",
"volume": "202",
"year": "2005"
},
{
"DOI": "10.1164/rccm.202003-0524LE",
"author": "D Chang",
"doi-asserted-by": "publisher",
"first-page": "1150",
"issue": "9",
"journal-title": "Am J Respir Crit Care Med",
"key": "640_CR15",
"unstructured": "Chang D, Mo G, Yuan X, et al. Time kinetics of viral clearance and resolution of symptoms in novel coronavirus infection. Am J Respir Crit Care Med. 2020;201(9):1150–2",
"volume": "201",
"year": "2020"
},
{
"DOI": "10.1038/s41422-020-0282-0",
"author": "M Wang",
"doi-asserted-by": "publisher",
"journal-title": "Cell Res",
"key": "640_CR16",
"unstructured": "Wang M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020. https://doi.org/10.1038/s41422-020-0282-0.",
"year": "2020"
},
{
"DOI": "10.1093/cid/ciaa237",
"author": "X Yao",
"doi-asserted-by": "publisher",
"journal-title": "Clin Infect Dis",
"key": "640_CR17",
"unstructured": "Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Liu X, Zhao L, Dong E, Song C, Zhan S. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa237.",
"year": "2020"
},
{
"DOI": "10.1002/psp4.12543",
"author": "A Gonçalves",
"doi-asserted-by": "publisher",
"journal-title": "CPT Pharmacometr Syst Pharmacol",
"key": "640_CR18",
"unstructured": "Gonçalves A, Bertrand J, Ke R, Comets E, de Lamballerie X, Malvy D, Pizzorno A, Terrier O, Rosa Calatrava M, Mentré F, Smith P. Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load. CPT Pharmacometr Syst Pharmacol. 2020. https://doi.org/10.1002/psp4.12543.",
"year": "2020"
},
{
"DOI": "10.1073/pnas.1704011114",
"author": "K Best",
"doi-asserted-by": "publisher",
"first-page": "8847",
"issue": "33",
"journal-title": "Proc Natl Acad Sci",
"key": "640_CR19",
"unstructured": "Best K, Guedj J, Madelain V, et al. Zika plasma viral dynamics in nonhuman primates provides insights into early infection and antiviral strategies. Proc Natl Acad Sci. 2017;114(33):8847–52.",
"volume": "114",
"year": "2017"
},
{
"DOI": "10.1101/2020.02.29.965418",
"author": "C Li",
"doi-asserted-by": "publisher",
"first-page": "2853",
"journal-title": "Math Biosci Eng.",
"key": "640_CR20",
"unstructured": "Li C, Xu J, Liu J, et al. The within-host viral kinetics of SARS-CoV-2. Math Biosci Eng. 2020;17:2853–61. https://doi.org/10.1101/2020.02.29.965418.",
"volume": "17",
"year": "2020"
},
{
"DOI": "10.1101/2020.03.23.20040493",
"author": "KS Kim",
"doi-asserted-by": "publisher",
"journal-title": "medRxiv.",
"key": "640_CR21",
"unstructured": "Kim KS, Ejima K, Ito Y, et al. Modelling SARS-CoV-2 dynamics: implications for therapy. medRxiv. 2020;. https://doi.org/10.1101/2020.03.23.20040493.",
"year": "2020"
},
{
"DOI": "10.1371/journal.pcbi.1000533",
"author": "L Rong",
"doi-asserted-by": "publisher",
"first-page": "e1000533",
"issue": "10",
"journal-title": "PLoS Comput Biol.",
"key": "640_CR22",
"unstructured": "Rong L, Perelson AS. Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy. PLoS Comput Biol. 2009;5(10):e1000533. https://doi.org/10.1371/journal.pcbi.1000533.",
"volume": "5",
"year": "2009"
},
{
"DOI": "10.1371/journal.ppat.1002774",
"author": "IL Shytaj",
"doi-asserted-by": "publisher",
"first-page": "e1002774",
"issue": "6",
"journal-title": "PLoS Pathog.",
"key": "640_CR23",
"unstructured": "Shytaj IL, Norelli S, Chirullo B, et al. A highly intensified ART regimen induces long-term viral suppression and restriction of the viral reservoir in a simian AIDS model. PLoS Pathog. 2012;8(6):e1002774. https://doi.org/10.1371/journal.ppat.1002774.",
"volume": "8",
"year": "2012"
},
{
"DOI": "10.1128/JVI.01623-05",
"author": "P Baccam",
"doi-asserted-by": "publisher",
"first-page": "7590",
"issue": "15",
"journal-title": "J Virol",
"key": "640_CR24",
"unstructured": "Baccam P, Beauchemin C, Macken CA, Hayden FG, Perelson AS. Kinetics of influenza A virus infection in humans. J Virol. 2006;80(15):7590–9.",
"volume": "80",
"year": "2006"
},
{
"DOI": "10.1093/infdis/jis265",
"author": "AS Perelson",
"doi-asserted-by": "publisher",
"first-page": "1642",
"issue": "11",
"journal-title": "J Infect Dis",
"key": "640_CR25",
"unstructured": "Perelson AS, Rong L, Hayden FG. Combination antiviral therapy for influenza: predictions from modeling of human infections. J Infect Dis. 2012;205(11):1642–5.",
"volume": "205",
"year": "2012"
},
{
"DOI": "10.1186/s13075-020-02211-1",
"author": "H Carlsson",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Arthritis Res Ther",
"key": "640_CR26",
"unstructured": "Carlsson H, Hjorton K, Abujrais S, Rönnblom L, Åkerfeldt T, Kultima K. Measurement of hydroxychloroquine in blood from SLE patients using LC-HRMS—evaluation of whole blood, plasma, and serum as sample matrices. Arthritis Res Ther. 2020;22:1–9.",
"volume": "22",
"year": "2020"
},
{
"DOI": "10.1517/13543776.16.9.1269",
"author": "A Savarino",
"doi-asserted-by": "publisher",
"first-page": "1269",
"issue": "9",
"journal-title": "Expert Opin Ther Pat",
"key": "640_CR27",
"unstructured": "Savarino A, Buonavoglia C, Norelli S, Trani LD, Cassone A. Potential therapies for coronaviruses. Expert Opin Ther Pat. 2006;16(9):1269–88. https://doi.org/10.1517/13543776.16.9.1269.",
"volume": "16",
"year": "2006"
},
{
"DOI": "10.1038/s41592-019-0686-2",
"author": "P Virtanen",
"doi-asserted-by": "publisher",
"first-page": "261",
"issue": "3",
"journal-title": "Nat Methods.",
"key": "640_CR28",
"unstructured": "Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J. van der Walt SJ. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17(3):261–72.",
"volume": "17",
"year": "2020"
},
{
"DOI": "10.1109/MCSE.2011.37",
"author": "SV Walt",
"doi-asserted-by": "publisher",
"first-page": "22",
"issue": "2",
"journal-title": "Comput Sci Eng",
"key": "640_CR29",
"unstructured": "Walt SV, Colbert SC, Varoquaux G. The NumPy array: a structure for efficient numerical computation. Comput Sci Eng. 2011;13(2):22–30.",
"volume": "13",
"year": "2011"
},
{
"DOI": "10.1109/MCSE.2007.55",
"author": "JD Hunter",
"doi-asserted-by": "publisher",
"first-page": "90",
"issue": "3",
"journal-title": "Comput Sci Eng",
"key": "640_CR30",
"unstructured": "Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9(3):90–5.",
"volume": "9",
"year": "2007"
},
{
"DOI": "10.1007/978-3-319-32726-6",
"author": "HP Langtangen",
"doi-asserted-by": "publisher",
"key": "640_CR31",
"unstructured": "Langtangen HP, Pedersen GK. Scaling of differential equations. Berlin: Springer Nature; 2016. https://doi.org/10.1007/978-3-319-32726-6.",
"volume-title": "Scaling of differential equations",
"year": "2016"
},
{
"DOI": "10.1093/cid/ciaa623",
"author": "J Fan",
"doi-asserted-by": "publisher",
"journal-title": "Clin Infect Dis.",
"key": "640_CR32",
"unstructured": "Fan J, Zhang X, Liu J, et al. Connecting hydroxychloroquine in vitro antiviral activity to in vivo concentration for prediction of antiviral effect: a critical step in treating COVID-19 patients. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa623.",
"year": "2020"
},
{
"DOI": "10.20944/preprints202005.0486.v1",
"doi-asserted-by": "publisher",
"key": "640_CR33",
"unstructured": "Guérin V, Lévy P, Thomas JL, Lardenois T, Lacrosse P, Sarrazin E, de Andreis NR, Wonner M. Azithromycin and hydroxychloroquine accelerate recovery of outpatients with mild/moderate COVID-19. Preprints. 2020. https://doi.org/10.20944/preprints202005.0486.v1."
},
{
"DOI": "10.1002/cpt.1856",
"author": "M Garcia-Cremades",
"doi-asserted-by": "publisher",
"journal-title": "Clin Pharmacol Ther",
"key": "640_CR34",
"unstructured": "Garcia-Cremades M, Solans BP, Hughes E, Ernest JP, Wallender E, Aweeka F, Luetkemeyer AF, Savic RM. Optimizing hydroxychloroquine dosing for patients with COVID-19: an integrative modeling approach for effective drug repurposing. Clin Pharmacol Ther. 2020. https://doi.org/10.1002/cpt.1856.",
"year": "2020"
},
{
"DOI": "10.1007/s40262-020-00891-1",
"author": "C Smit",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Clin Pharmacokinet",
"key": "640_CR35",
"unstructured": "Smit C, Peeters MY, van den Anker JN, Knibbe CA. Chloroquine for SARS-CoV-2: implications of its unique pharmacokinetic and safety properties. Clin Pharmacokinet. 2020;18:1. https://doi.org/10.1007/s40262-020-00891-1.",
"volume": "18",
"year": "2020"
},
{
"DOI": "10.3785/j.issn.1008-9292.2020.03.03",
"doi-asserted-by": "publisher",
"key": "640_CR36",
"unstructured": "Chen J, Liu D, Liu L, et al. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). J Zhejiang Univ (Med Sci). Published online March 6, 2020. https://doi.org/10.3785/j.issn.1008-9292.2020.03.03."
},
{
"DOI": "10.1093/jmcb/mjaa014",
"author": "M Huang",
"doi-asserted-by": "publisher",
"first-page": "322",
"issue": "4",
"journal-title": "J Mol Cell Biol",
"key": "640_CR37",
"unstructured": "Huang M, Tang T, Pang P, Li M, Ma R, Lu J, Shu J, You Y, Chen B, Liang J, Hong Z. Treating COVID-19 with chloroquine. J Mol Cell Biol. 2020;12(4):322–5. https://doi.org/10.1093/jmcb/mjaa014.",
"volume": "12",
"year": "2020"
},
{
"DOI": "10.5582/bst.2020.01047",
"author": "J Gao",
"doi-asserted-by": "publisher",
"journal-title": "Biosci Trends",
"key": "640_CR38",
"unstructured": "Gao J, Tian Z, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020. https://doi.org/10.5582/bst.2020.01047.",
"year": "2020"
},
{
"DOI": "10.1101/2020.04.07.20056424",
"doi-asserted-by": "publisher",
"key": "640_CR39",
"unstructured": "Borba MGS, Almeida Val F, Sampaio VS, et al. Chloroquine diphosphate in two different dosages as adjunctive therapy of hospitalized patients with severe respiratory syndrome in the context of coronavirus (SARS-CoV-2) infection: preliminary safety results of a randomized, double-blinded, phase IIb clinical trial (CloroCovid-19 Study). medRxiv. April 2020. https://doi.org/10.1101/2020.04.07.20056424."
},
{
"DOI": "10.1056/NEJMc2001737",
"author": "L Zou",
"doi-asserted-by": "publisher",
"first-page": "1177",
"issue": "12",
"journal-title": "N Engl J Med",
"key": "640_CR40",
"unstructured": "Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, Yu J, Kang M, Song Y, Xia J, Guo Q. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020;382(12):1177–9.",
"volume": "382",
"year": "2020"
},
{
"DOI": "10.1016/j.sapharm.2020.04.016",
"author": "A Sarayani",
"doi-asserted-by": "publisher",
"journal-title": "Res Soc Adm Pharm",
"key": "640_CR41",
"unstructured": "Sarayani A, Cicali B, Henriksen CH, Brown JD. Safety signals for QT prolongation or Torsades de Pointes associated with azithromycin with or without chloroquine or hydroxychloroquine. Res Soc Adm Pharm. 2020. https://doi.org/10.1016/j.sapharm.2020.04.016.",
"year": "2020"
},
{
"key": "640_CR42",
"unstructured": "Boulware D. Post-exposure prophylaxis/preemptive therapy for SARS-coronavirus-2 (COVID-19 PEP). Minneapolis: University of Minnesota. https://clinicaltrials.gov/ct2/show/NCT04308668. Accessed 27 Apr 2020."
},
{
"DOI": "10.1016/j.ijantimicag.2020.105988",
"author": "SH Lee",
"doi-asserted-by": "publisher",
"first-page": "105988",
"journal-title": "Int J Antimicrob Agents",
"key": "640_CR43",
"unstructured": "Lee SH, Son H, Peck KR. Can post-exposure prophylaxis for COVID-19 be considered as one of outbreak response strategies in long-term care hospitals? Int J Antimicrob Agents. 2020;17:105988. https://doi.org/10.1016/j.ijantimicag.2020.105988.",
"volume": "17",
"year": "2020"
},
{
"DOI": "10.1093/cid/ciaa320",
"author": "P Pagliano",
"doi-asserted-by": "publisher",
"journal-title": "Clin Infect Dis",
"key": "640_CR44",
"unstructured": "Pagliano P, Piazza O, De Caro F, Ascione T, Filippelli A. Is hydroxychloroquine a possible postexposure prophylaxis drug to limit the transmission to healthcare workers exposed to coronavirus disease 2019? Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa320.",
"year": "2020"
},
{
"DOI": "10.1016/S1473-3099(20)30296-6",
"author": "N Principi",
"doi-asserted-by": "publisher",
"journal-title": "Lancet Infect Dis",
"key": "640_CR45",
"unstructured": "Principi N, Esposito S. Chloroquine or hydroxychloroquine for prophylaxis of COVID-19. Lancet Infect Dis. 2020. https://doi.org/10.1016/S1473-3099(20)30296-6.",
"year": "2020"
},
{
"DOI": "10.1128/JVI.80.6.2684-2693.2006",
"author": "YT Yen",
"doi-asserted-by": "publisher",
"first-page": "2684",
"issue": "6",
"journal-title": "J Virol",
"key": "640_CR46",
"unstructured": "Yen YT, Liao F, Hsiao CH, Kao CL, Chen YC, Wu-Hsieh BA. Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. J Virol. 2006;80(6):2684–93.",
"volume": "80",
"year": "2006"
},
{
"DOI": "10.26434/chemrxiv.12488390.v1",
"doi-asserted-by": "publisher",
"key": "640_CR47",
"unstructured": "Gil-Moles M, Basu U, Büssing R, Hoffmeister H, Türck S, Varchmin A, et al. Gold metallodrugs to fight the corona virus: inhibitory effects on the SpikeACE2 interaction and on PLpro protease activity by auranofin and gold organometallics. ChemRxiv. 2020. Preprint. https://doi.org/10.26434/chemrxiv.12488390.v1."
},
{
"DOI": "10.1186/1742-4690-10-71",
"author": "IL Shytaj",
"doi-asserted-by": "publisher",
"first-page": "71",
"issue": "1",
"journal-title": "Retrovirology",
"key": "640_CR48",
"unstructured": "Shytaj IL, Chirullo B, Wagner W, Ferrari MG, Sgarbanti R, Della Corte A, LaBranche C, Lopalco L, Palamara AT, Montefiori D, Lewis MG. Investigational treatment suspension and enhanced cell-mediated immunity at rebound followed by drug-free remission of simian AIDS. Retrovirology. 2013;10(1):71.",
"volume": "10",
"year": "2013"
},
{
"DOI": "10.1016/j.virol.2020.05.002",
"author": "HA Rothan",
"doi-asserted-by": "publisher",
"journal-title": "Virology",
"key": "640_CR49",
"unstructured": "Rothan HA, Stone S, Natekar J, Kumari P, Arora K, Kumar M. The FDA-approved gold drug Auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells. Virology. 2020. https://doi.org/10.1016/j.virol.2020.05.002.",
"year": "2020"
}
],
"reference-count": 49,
"references-count": 49,
"relation": {
"has-preprint": [
{
"asserted-by": "object",
"id": "10.1101/2020.04.23.20076471",
"id-type": "doi"
}
]
},
"resource": {
"primary": {
"URL": "https://link.springer.com/10.1007/s13318-020-00640-6"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Pharmacokinetic Basis of the Hydroxychloroquine Response in COVID-19: Implications for Therapy and Prevention",
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1007/springer_crossmark_policy",
"volume": "45"
}

