Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus
et al., Phytomedicine, doi:10.1016/j.phymed.2020.153333, Sep 2020
HCQ for COVID-19
1st treatment shown to reduce risk in
March 2020, now with p < 0.00000000001 from 424 studies, used in 59 countries.
No treatment is 100% effective. Protocols
combine treatments.
6,300+ studies for
210+ treatments. c19early.org
|
In vitro study providing novel insights into the molecular mechanism of CQ/HCQ treatment, showing that CQ and HCQ both inhibit the entrance of 2019-nCoV into cells by blocking the binding of the virus with ACE2.
39 preclinical studies support the efficacy of HCQ for COVID-19:
1.
Shang et al., Identification of Cathepsin L as the molecular target of hydroxychloroquine with chemical proteomics, Molecular & Cellular Proteomics, doi:10.1016/j.mcpro.2025.101314.
2.
González-Paz et al., Biophysical Analysis of Potential Inhibitors of SARS-CoV-2 Cell Recognition and Their Effect on Viral Dynamics in Different Cell Types: A Computational Prediction from In Vitro Experimental Data, ACS Omega, doi:10.1021/acsomega.3c06968.
3.
Alkafaas et al., A study on the effect of natural products against the transmission of B.1.1.529 Omicron, Virology Journal, doi:10.1186/s12985-023-02160-6.
4.
Guimarães Silva et al., Are Non-Structural Proteins From SARS-CoV-2 the Target of Hydroxychloroquine? An in Silico Study, ACTA MEDICA IRANICA, doi:10.18502/acta.v61i2.12533.
5.
Nguyen et al., The Potential of Ameliorating COVID-19 and Sequelae From Andrographis paniculata via Bioinformatics, Bioinformatics and Biology Insights, doi:10.1177/11779322221149622.
7.
Yadav et al., Repurposing the Combination Drug of Favipiravir, Hydroxychloroquine and Oseltamivir as a Potential Inhibitor Against SARS-CoV-2: A Computational Study, Research Square, doi:10.21203/rs.3.rs-628277/v1.
8.
Hussein et al., Molecular Docking Identification for the efficacy of Some Zinc Complexes with Chloroquine and Hydroxychloroquine against Main Protease of COVID-19, Journal of Molecular Structure, doi:10.1016/j.molstruc.2021.129979.
9.
Baildya et al., Inhibitory capacity of Chloroquine against SARS-COV-2 by effective binding with Angiotensin converting enzyme-2 receptor: An insight from molecular docking and MD-simulation studies, Journal of Molecular Structure, doi:10.1016/j.molstruc.2021.129891.
10.
Noureddine et al., Quantum chemical studies on molecular structure, AIM, ELF, RDG and antiviral activities of hybrid hydroxychloroquine in the treatment of COVID-19: molecular docking and DFT calculations, Journal of King Saud University - Science, doi:10.1016/j.jksus.2020.101334.
11.
Tarek et al., Pharmacokinetic Basis of the Hydroxychloroquine Response in COVID-19: Implications for Therapy and Prevention, European Journal of Drug Metabolism and Pharmacokinetics, doi:10.1007/s13318-020-00640-6.
12.
Rowland Yeo et al., Impact of Disease on Plasma and Lung Exposure of Chloroquine, Hydroxychloroquine and Azithromycin: Application of PBPK Modeling, Clinical Pharmacology & Therapeutics, doi:10.1002/cpt.1955.
13.
Hitti et al., Hydroxychloroquine attenuates double-stranded RNA-stimulated hyper-phosphorylation of tristetraprolin/ZFP36 and AU-rich mRNA stabilization, Immunology, doi:10.1111/imm.13835.
14.
Yan et al., Super-resolution imaging reveals the mechanism of endosomal acidification inhibitors against SARS-CoV-2 infection, ChemBioChem, doi:10.1002/cbic.202400404.
15.
Mohd Abd Razak et al., In Vitro Anti-SARS-CoV-2 Activities of Curcumin and Selected Phenolic Compounds, Natural Product Communications, doi:10.1177/1934578X231188861.
16.
Alsmadi et al., The In Vitro, In Vivo, and PBPK Evaluation of a Novel Lung-Targeted Cardiac-Safe Hydroxychloroquine Inhalation Aerogel, AAPS PharmSciTech, doi:10.1208/s12249-023-02627-3.
17.
Wen et al., Cholinergic α7 nAChR signaling suppresses SARS-CoV-2 infection and inflammation in lung epithelial cells, Journal of Molecular Cell Biology, doi:10.1093/jmcb/mjad048.
18.
Kamga Kapchoup et al., In vitro effect of hydroxychloroquine on pluripotent stem cells and their cardiomyocytes derivatives, Frontiers in Pharmacology, doi:10.3389/fphar.2023.1128382.
19.
Milan Bonotto et al., Cathepsin inhibitors nitroxoline and its derivatives inhibit SARS-CoV-2 infection, Antiviral Research, doi:10.1016/j.antiviral.2023.105655.
20.
Miao et al., SIM imaging resolves endocytosis of SARS-CoV-2 spike RBD in living cells, Cell Chemical Biology, doi:10.1016/j.chembiol.2023.02.001.
21.
Yuan et al., Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway in mammalian cell culture, Communications Biology, doi:10.1038/s42003-022-03841-8.
22.
Faísca et al., Enhanced In Vitro Antiviral Activity of Hydroxychloroquine Ionic Liquids against SARS-CoV-2, Pharmaceutics, doi:10.3390/pharmaceutics14040877.
23.
Delandre et al., Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants, Pharmaceuticals, doi:10.3390/ph15040445.
24.
Purwati et al., An in vitro study of dual drug combinations of anti-viral agents, antibiotics, and/or hydroxychloroquine against the SARS-CoV-2 virus isolated from hospitalized patients in Surabaya, Indonesia, PLOS One, doi:10.1371/journal.pone.0252302.
25.
Zhang et al., SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination, Cell Death & Differentiation, doi:10.1038/s41418-021-00782-3.
26.
Dang et al., Structural basis of anti-SARS-CoV-2 activity of hydroxychloroquine: specific binding to NTD/CTD and disruption of LLPS of N protein, bioRxiv, doi:10.1101/2021.03.16.435741.
27.
Shang (B) et al., Inhibitors of endosomal acidification suppress SARS-CoV-2 replication and relieve viral pneumonia in hACE2 transgenic mice, Virology Journal, doi:10.1186/s12985-021-01515-1.
28.
Wang et al., Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus, Phytomedicine, doi:10.1016/j.phymed.2020.153333.
29.
Sheaff, R., A New Model of SARS-CoV-2 Infection Based on (Hydroxy)Chloroquine Activity, bioRxiv, doi:10.1101/2020.08.02.232892.
30.
Ou et al., Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2, PLOS Pathogens, doi:10.1371/journal.ppat.1009212.
31.
Andreani et al., In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect, Microbial Pathogenesis, doi:10.1016/j.micpath.2020.104228.
32.
Clementi et al., Combined Prophylactic and Therapeutic Use Maximizes Hydroxychloroquine Anti-SARS-CoV-2 Effects in vitro, Front. Microbiol., 10 July 2020, doi:10.3389/fmicb.2020.01704.
33.
Liu et al., Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell Discovery 6, 16 (2020), doi:10.1038/s41421-020-0156-0.
34.
Yao et al., In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Clin. Infect. Dis., 2020 Mar 9, doi:10.1093/cid/ciaa237.
Wang et al., 2 Sep 2020, peer-reviewed, 34 authors.
In vitro studies are an important part of preclinical research, however results may be very different in vivo.
Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus
Phytomedicine, doi:10.1016/j.phymed.2020.153333
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre -including this research content -immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Declaration of Competing Interest The authors declare no competing financial interest.
References
Al-Bari, Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases, Pharmacol. Res. Perspe
Brufsky, Hyperglycemia, hydroxychloroquine, and the COVID-19 pandemic, J. Med. Virol
Dai, None, Methodology
Delvecchio, Higa, Pezzuto, Valadao, Garcez et al., Chloroquine, an endocytosis blocking agent, inhibits zika virus infection in different cell models, Viruses
Fantini, Di Scala, Chahinian, Yahi, Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection, Int. J. Antimicrob. Agents
Ferner, Aronson, Chloroquine and hydroxychloroquine in covid-19, BMJ
Fu, None, Investigation
Gao, None, Investigation
Gao, Tian, Yang, Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies, Biosci. Trends
Gasquet, Delmont, Le Bras, Delmas, Capdegelle et al., Chloroquine-resistant falciparum malaria in Mauritania, Lancet
Gautret, Lagier, Parola, Hoang, Meddeb et al., Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, Int. J. Antimicrob. Agents
Ge, None, Investigation
Geleris, Sun, Platt, Zucker, Baldwin et al., Observational study of hydroxychloroquine in hospitalized patients with Covid-19, N. Engl. J. Med
Gutman, Kovacs, Dorsey, Stergachis, Ter Kuile, Safety, tolerability, and efficacy of repeated doses of dihydroartemisinin-piperaquine for prevention and treatment of malaria: a systematic review and meta-analysis, Lancet Infect. Dis
Hoffmann, Kleine-Weber, Schroeder, Kruger, Herrler et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell
Hou, None, Investigation
Hu, None, Investigation
Hu, None, Investigation
Jia, None, Investigation
Keyaerts, Vijgen, Maes, Neyts, Van Ranst, In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine, Biochem. Biophys. Res. Commun
Klimke, Hefner, Will, Voss, Hydroxychloroquine as an aerosol might markedly reduce and even prevent severe clinical symptoms after SARS-CoV-2 infection, Med. Hypotheses
Lei, Qian, Li, Zhang, Fu et al., Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig, Nat. Commun
Li, Investigation, Validation; Yuanyuan Ding: Investigation
Liang, None, Investigation
Lu ; Hassani, Brikci, Ghalem, Resources, Supervision, Data Curation, Formal analysis, Writing -Review & Editing; Langchong He: Resources, Supervision, Conceptualization, Funding acquisition References Abdelli, J. Biomol. Struct. Dyn
Lu, None, Investigation
Lu, None, Investigation
Lv, Investigation, Validation; Jue Wang: Investigation, Visualization
Ma, Methodology
Mauthe, Orhon, Rocchi, Zhou, Luhr et al., Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion, Autophagy
Meo, Klonoff, Akram, Efficacy of chloroquine and hydroxychloroquine in the treatment of COVID-19, Eur. Rev. Med. Pharmacol. Sci
Mercuro, Yen, Shim, Maher, Mccoy et al., Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease, JAMA Cardiol
Mingxing, Man, Fei, Pengfei, Jiabi et al., Preliminary evidence from a multicenter prospective observational study of the safety and efficacy of chloroquine for the treatment of COVID-19, Natl. Sci. Rev
Molina, Delaugerre, Le Goff, Mela-Lima, Ponscarme et al., No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection, Med. Mal. Infect
Nie, Li, Wu, Zhao, Hao et al., Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2, Emerg. Microbes Infec
Ou, Liu, Lei, Li, Mi et al., Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nat. Commun
Pan, Methodology
Plantone, Koudriavtseva, Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: a mini-review, Clin. Drug. Investig
Rainsford, Parke, Clifford-Rashotte, Kean, Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases, Inflammopharmacology
Savarino, Di Trani, Donatelli, Cauda, Cassone, New insights into the antiviral effects of chloroquine, Lancet Infect. Dis
Savarino, Use of chloroquine in viral diseases, Lancet Infect. Dis
Schrezenmeier, Dorner, Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology, Nat. Rev. Rheumatol
Shang, Wan, Luo, Ye, Geng et al., Cell entry mechanisms of SARS-CoV-2, P. Natl. Acad. Sci
Ta, None, Investigation
Vincent, Bergeron, Benjannet, Erickson, Rollin et al., Chloroquine is a potent inhibitor of SARS coronavirus infection and spread, Virol. J
Wang, Cao, Zhang, Yang, Liu et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res
Wang, Horby, Hayden, Gao, A novel coronavirus outbreak of global health concern, Lancet
Wang, None, Investigation
Wang, None, Investigation
Wang, None, Investigation
Wang, Visualization, Software
White, Cardiotoxicity of antimalarial drugs, Lancet Infect. Dis
White, Pukrittayakamee, Hien, Faiz, Mokuolu et al., None, Malaria. Lancet
White, The treatment of malaria, N. Engl. J. Med
Wrapp, Wang, Corbett, Goldsmith, Hsieh et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science
Wu, Wang, Shen, Peng, Li et al., A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2, Science
Xiao, Sakagami, Miwa, ACE2: the key molecule for understanding the pathophysiology of severe and critical conditions of COVID-19: demon or angel?, Viruses
Yan, Zhang, Li, Xia, Guo et al., Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2, Science
Zhan, Data Curation
Zhang, None, Investigation
Zhang, None, Methodology
Zheng, Ma, Zhang, Xie, COVID-19 and the cardiovascular system, Nat. Rev. Cardiol
Zhou, None, Investigation
Zou, Chen, Zou, Han, Hao et al., Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection, Front. Med
DOI record:
{
"DOI": "10.1016/j.phymed.2020.153333",
"ISSN": [
"0944-7113"
],
"URL": "http://dx.doi.org/10.1016/j.phymed.2020.153333",
"alternative-id": [
"S0944711320301653"
],
"article-number": "153333",
"assertion": [
{
"label": "This article is maintained by",
"name": "publisher",
"value": "Elsevier"
},
{
"label": "Article Title",
"name": "articletitle",
"value": "Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus"
},
{
"label": "Journal Title",
"name": "journaltitle",
"value": "Phytomedicine"
},
{
"label": "CrossRef DOI link to publisher maintained version",
"name": "articlelink",
"value": "https://doi.org/10.1016/j.phymed.2020.153333"
},
{
"label": "Content Type",
"name": "content_type",
"value": "article"
},
{
"label": "Copyright",
"name": "copyright",
"value": "© 2020 Elsevier GmbH. All rights reserved."
}
],
"author": [
{
"ORCID": "http://orcid.org/0000-0002-4197-4245",
"affiliation": [],
"authenticated-orcid": false,
"family": "Wang",
"given": "Nan",
"sequence": "first"
},
{
"affiliation": [],
"family": "Han",
"given": "Shengli",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Liu",
"given": "Rui",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Meng",
"given": "Liesu",
"sequence": "additional"
},
{
"affiliation": [],
"family": "He",
"given": "Huaizhen",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Zhang",
"given": "Yongjing",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Wang",
"given": "Cheng",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Lv",
"given": "Yanni",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Wang",
"given": "Jue",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Li",
"given": "Xiaowei",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Ding",
"given": "Yuanyuan",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Fu",
"given": "Jia",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Hou",
"given": "Yajing",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Lu",
"given": "Wen",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Ma",
"given": "Weina",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Zhan",
"given": "Yingzhuan",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Dai",
"given": "Bingling",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Zhang",
"given": "Jie",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Pan",
"given": "Xiaoyan",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Hu",
"given": "Shiling",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Gao",
"given": "Jiapan",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Jia",
"given": "Qianqian",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Zhang",
"given": "Liyang",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Ge",
"given": "Shuai",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Wang",
"given": "Saisai",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Liang",
"given": "Peida",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Hu",
"given": "Tian",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Lu",
"given": "Jiayu",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Wang",
"given": "Xiangjun",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Zhou",
"given": "Huaxin",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Ta",
"given": "Wenjing",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Wang",
"given": "Yuejin",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Lu",
"given": "Shemin",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0002-0880-7904",
"affiliation": [],
"authenticated-orcid": false,
"family": "He",
"given": "Langchong",
"sequence": "additional"
}
],
"container-title": "Phytomedicine",
"container-title-short": "Phytomedicine",
"content-domain": {
"crossmark-restriction": true,
"domain": [
"elsevier.com",
"sciencedirect.com"
]
},
"created": {
"date-parts": [
[
2020,
9,
2
]
],
"date-time": "2020-09-02T16:28:21Z",
"timestamp": 1599064101000
},
"deposited": {
"date-parts": [
[
2020,
10,
19
]
],
"date-time": "2020-10-19T06:10:08Z",
"timestamp": 1603087808000
},
"funder": [
{
"DOI": "10.13039/501100001809",
"award": [
"81930096"
],
"doi-asserted-by": "publisher",
"name": "National Natural Science Foundation of China"
},
{
"DOI": "10.13039/501100012429",
"award": [
"xzy032020042"
],
"doi-asserted-by": "publisher",
"name": "Central Universities"
}
],
"indexed": {
"date-parts": [
[
2024,
4,
26
]
],
"date-time": "2024-04-26T21:08:25Z",
"timestamp": 1714165705608
},
"is-referenced-by-count": 43,
"issued": {
"date-parts": [
[
2020,
12
]
]
},
"language": "en",
"license": [
{
"URL": "https://www.elsevier.com/tdm/userlicense/1.0/",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2020,
12,
1
]
],
"date-time": "2020-12-01T00:00:00Z",
"timestamp": 1606780800000
}
}
],
"link": [
{
"URL": "https://api.elsevier.com/content/article/PII:S0944711320301653?httpAccept=text/xml",
"content-type": "text/xml",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://api.elsevier.com/content/article/PII:S0944711320301653?httpAccept=text/plain",
"content-type": "text/plain",
"content-version": "vor",
"intended-application": "text-mining"
}
],
"member": "78",
"original-title": [],
"page": "153333",
"prefix": "10.1016",
"published": {
"date-parts": [
[
2020,
12
]
]
},
"published-print": {
"date-parts": [
[
2020,
12
]
]
},
"publisher": "Elsevier BV",
"reference": [
{
"DOI": "10.1080/07391102.2020.1763199",
"article-title": "In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by ammoides verticillata components harvested from Western Algeria",
"author": "Abdelli",
"doi-asserted-by": "crossref",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "10.1016/j.phymed.2020.153333_bib0001",
"year": "2020"
},
{
"DOI": "10.1002/prp2.293",
"article-title": "Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases",
"author": "Al-Bari",
"doi-asserted-by": "crossref",
"journal-title": "Pharmacol. Res. Perspe.",
"key": "10.1016/j.phymed.2020.153333_bib0002",
"volume": "5",
"year": "2017"
},
{
"DOI": "10.1002/jmv.25887",
"article-title": "Hyperglycemia, hydroxychloroquine, and the COVID-19 pandemic",
"author": "Brufsky",
"doi-asserted-by": "crossref",
"first-page": "770",
"journal-title": "J. Med. Virol.",
"key": "10.1016/j.phymed.2020.153333_bib0003",
"volume": "92",
"year": "2020"
},
{
"DOI": "10.3390/v8120322",
"article-title": "Chloroquine, an endocytosis blocking agent, inhibits zika virus infection in different cell models",
"author": "Delvecchio",
"doi-asserted-by": "crossref",
"journal-title": "Viruses",
"key": "10.1016/j.phymed.2020.153333_bib0004",
"volume": "8",
"year": "2016"
},
{
"DOI": "10.1016/j.ijantimicag.2020.105960",
"article-title": "Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection",
"author": "Fantini",
"doi-asserted-by": "crossref",
"journal-title": "Int. J. Antimicrob. Agents",
"key": "10.1016/j.phymed.2020.153333_bib0005",
"volume": "55",
"year": "2020"
},
{
"DOI": "10.1136/bmj.m1432",
"article-title": "Chloroquine and hydroxychloroquine in covid-19",
"author": "Ferner",
"doi-asserted-by": "crossref",
"first-page": "m1432",
"journal-title": "BMJ",
"key": "10.1016/j.phymed.2020.153333_bib0006",
"volume": "369",
"year": "2020"
},
{
"DOI": "10.5582/bst.2020.01047",
"article-title": "Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies",
"author": "Gao",
"doi-asserted-by": "crossref",
"first-page": "72",
"journal-title": "Biosci. Trends",
"key": "10.1016/j.phymed.2020.153333_bib0007",
"volume": "14",
"year": "2020"
},
{
"DOI": "10.1016/S0140-6736(95)92083-8",
"article-title": "Chloroquine-resistant falciparum malaria in Mauritania",
"author": "Gasquet",
"doi-asserted-by": "crossref",
"first-page": "1556",
"journal-title": "Lancet",
"key": "10.1016/j.phymed.2020.153333_bib0008",
"volume": "346",
"year": "1995"
},
{
"DOI": "10.1016/j.ijantimicag.2020.105949",
"article-title": "Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial",
"author": "Gautret",
"doi-asserted-by": "crossref",
"journal-title": "Int. J. Antimicrob. Agents",
"key": "10.1016/j.phymed.2020.153333_bib0009",
"year": "2020"
},
{
"DOI": "10.1056/NEJMoa2012410",
"article-title": "Observational study of hydroxychloroquine in hospitalized patients with Covid-19",
"author": "Geleris",
"doi-asserted-by": "crossref",
"first-page": "2411",
"journal-title": "N. Engl. J. Med.",
"key": "10.1016/j.phymed.2020.153333_bib0010",
"volume": "382",
"year": "2020"
},
{
"DOI": "10.1016/S1473-3099(16)30378-4",
"article-title": "Safety, tolerability, and efficacy of repeated doses of dihydroartemisinin-piperaquine for prevention and treatment of malaria: a systematic review and meta-analysis",
"author": "Gutman",
"doi-asserted-by": "crossref",
"first-page": "184",
"journal-title": "Lancet Infect. Dis.",
"key": "10.1016/j.phymed.2020.153333_bib0011",
"volume": "17",
"year": "2017"
},
{
"DOI": "10.1016/j.cell.2020.02.052",
"article-title": "SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor",
"author": "Hoffmann",
"doi-asserted-by": "crossref",
"first-page": "271",
"journal-title": "Cell",
"key": "10.1016/j.phymed.2020.153333_bib0012",
"volume": "181",
"year": "2020"
},
{
"DOI": "10.1016/j.bbrc.2004.08.085",
"article-title": "In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine",
"author": "Keyaerts",
"doi-asserted-by": "crossref",
"first-page": "264",
"journal-title": "Biochem. Biophys. Res. Commun.",
"key": "10.1016/j.phymed.2020.153333_bib0013",
"volume": "323",
"year": "2004"
},
{
"DOI": "10.1016/j.mehy.2020.109783",
"article-title": "Hydroxychloroquine as an aerosol might markedly reduce and even prevent severe clinical symptoms after SARS-CoV-2 infection",
"author": "Klimke",
"doi-asserted-by": "crossref",
"journal-title": "Med. Hypotheses",
"key": "10.1016/j.phymed.2020.153333_bib0014",
"volume": "142",
"year": "2020"
},
{
"DOI": "10.1038/s41467-020-16048-4",
"article-title": "Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig",
"author": "Lei",
"doi-asserted-by": "crossref",
"first-page": "2070",
"journal-title": "Nat. Commun.",
"key": "10.1016/j.phymed.2020.153333_bib0015",
"volume": "11",
"year": "2020"
},
{
"DOI": "10.1080/15548627.2018.1474314",
"article-title": "Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion",
"author": "Mauthe",
"doi-asserted-by": "crossref",
"first-page": "1435",
"journal-title": "Autophagy",
"key": "10.1016/j.phymed.2020.153333_bib0016",
"volume": "14",
"year": "2018"
},
{
"article-title": "Efficacy of chloroquine and hydroxychloroquine in the treatment of COVID-19",
"author": "Meo",
"first-page": "4539",
"journal-title": "Eur. Rev. Med. Pharmacol. Sci.",
"key": "10.1016/j.phymed.2020.153333_bib0017",
"volume": "24",
"year": "2020"
},
{
"DOI": "10.1001/jamacardio.2020.1834",
"article-title": "Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19)",
"author": "Mercuro",
"doi-asserted-by": "crossref",
"journal-title": "JAMA Cardiol.",
"key": "10.1016/j.phymed.2020.153333_bib0018",
"year": "2020"
},
{
"article-title": "Preliminary evidence from a multicenter prospective observational study of the safety and efficacy of chloroquine for the treatment of COVID-19",
"author": "Mingxing",
"journal-title": "Natl. Sci. Rev.",
"key": "10.1016/j.phymed.2020.153333_bib0019",
"year": "2020"
},
{
"DOI": "10.1016/j.medmal.2020.03.006",
"article-title": "No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection",
"author": "Molina",
"doi-asserted-by": "crossref",
"first-page": "384",
"journal-title": "Med. Mal. Infect.",
"key": "10.1016/j.phymed.2020.153333_bib0020",
"volume": "50",
"year": "2020"
},
{
"DOI": "10.1080/22221751.2020.1743767",
"article-title": "Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2",
"author": "Nie",
"doi-asserted-by": "crossref",
"first-page": "680",
"journal-title": "Emerg. Microbes Infec.",
"key": "10.1016/j.phymed.2020.153333_bib0021",
"volume": "9",
"year": "2020"
},
{
"DOI": "10.1038/s41467-020-15562-9",
"article-title": "Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV",
"author": "Ou",
"doi-asserted-by": "crossref",
"journal-title": "Nat. Commun.",
"key": "10.1016/j.phymed.2020.153333_bib0022",
"volume": "11",
"year": "2020"
},
{
"DOI": "10.1007/s40261-018-0656-y",
"article-title": "Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: a mini-review",
"author": "Plantone",
"doi-asserted-by": "crossref",
"first-page": "653",
"journal-title": "Clin. Drug. Investig.",
"key": "10.1016/j.phymed.2020.153333_bib0023",
"volume": "38",
"year": "2018"
},
{
"DOI": "10.1007/s10787-015-0239-y",
"article-title": "Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases",
"author": "Rainsford",
"doi-asserted-by": "crossref",
"first-page": "231",
"journal-title": "Inflammopharmacology",
"key": "10.1016/j.phymed.2020.153333_bib0024",
"volume": "23",
"year": "2015"
},
{
"DOI": "10.1016/S1473-3099(11)70092-5",
"article-title": "Use of chloroquine in viral diseases",
"author": "Savarino",
"doi-asserted-by": "crossref",
"first-page": "653",
"journal-title": "Lancet Infect. Dis.",
"key": "10.1016/j.phymed.2020.153333_bib0025",
"volume": "11",
"year": "2011"
},
{
"DOI": "10.1016/S1473-3099(06)70361-9",
"article-title": "New insights into the antiviral effects of chloroquine",
"author": "Savarino",
"doi-asserted-by": "crossref",
"first-page": "67",
"journal-title": "Lancet Infect. Dis.",
"key": "10.1016/j.phymed.2020.153333_bib0026",
"volume": "6",
"year": "2006"
},
{
"DOI": "10.1038/s41584-020-0372-x",
"article-title": "Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology",
"author": "Schrezenmeier",
"doi-asserted-by": "crossref",
"first-page": "155",
"journal-title": "Nat. Rev. Rheumatol.",
"key": "10.1016/j.phymed.2020.153333_bib0027",
"volume": "16",
"year": "2020"
},
{
"DOI": "10.1073/pnas.2003138117",
"article-title": "Cell entry mechanisms of SARS-CoV-2",
"author": "Shang",
"doi-asserted-by": "crossref",
"first-page": "11727",
"journal-title": "P. Natl. Acad. Sci. USA",
"key": "10.1016/j.phymed.2020.153333_bib0028",
"volume": "117",
"year": "2020"
},
{
"DOI": "10.1186/1743-422X-2-69",
"article-title": "Chloroquine is a potent inhibitor of SARS coronavirus infection and spread",
"author": "Vincent",
"doi-asserted-by": "crossref",
"first-page": "69",
"journal-title": "Virol. J.",
"key": "10.1016/j.phymed.2020.153333_bib0029",
"volume": "2",
"year": "2005"
},
{
"DOI": "10.1016/S0140-6736(20)30185-9",
"article-title": "A novel coronavirus outbreak of global health concern",
"author": "Wang",
"doi-asserted-by": "crossref",
"first-page": "470",
"journal-title": "Lancet",
"key": "10.1016/j.phymed.2020.153333_bib0030",
"volume": "395",
"year": "2020"
},
{
"DOI": "10.1038/s41422-020-0282-0",
"article-title": "Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro",
"author": "Wang",
"doi-asserted-by": "crossref",
"first-page": "269",
"journal-title": "Cell Res.",
"key": "10.1016/j.phymed.2020.153333_bib0031",
"volume": "30",
"year": "2020"
},
{
"DOI": "10.1056/NEJM199609123351107",
"article-title": "The treatment of malaria",
"author": "White",
"doi-asserted-by": "crossref",
"first-page": "800",
"journal-title": "N. Engl. J. Med.",
"key": "10.1016/j.phymed.2020.153333_bib0032",
"volume": "335",
"year": "1996"
},
{
"DOI": "10.1016/S1473-3099(07)70187-1",
"article-title": "Cardiotoxicity of antimalarial drugs",
"author": "White",
"doi-asserted-by": "crossref",
"first-page": "549",
"journal-title": "Lancet Infect. Dis.",
"key": "10.1016/j.phymed.2020.153333_bib0033",
"volume": "7",
"year": "2007"
},
{
"DOI": "10.1016/S0140-6736(13)60024-0",
"article-title": "Malaria",
"author": "White",
"doi-asserted-by": "crossref",
"first-page": "723",
"journal-title": "Lancet",
"key": "10.1016/j.phymed.2020.153333_bib0034",
"volume": "383",
"year": "2014"
},
{
"DOI": "10.1126/science.abb2507",
"article-title": "Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation",
"author": "Wrapp",
"doi-asserted-by": "crossref",
"first-page": "1260",
"journal-title": "Science",
"key": "10.1016/j.phymed.2020.153333_bib0035",
"volume": "367",
"year": "2020"
},
{
"DOI": "10.1126/science.abc2241",
"article-title": "A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2",
"author": "Wu",
"doi-asserted-by": "crossref",
"first-page": "1274",
"journal-title": "Science",
"key": "10.1016/j.phymed.2020.153333_bib0036",
"volume": "368",
"year": "2020"
},
{
"DOI": "10.3390/v12050491",
"article-title": "ACE2: the key molecule for understanding the pathophysiology of severe and critical conditions of COVID-19: demon or angel?",
"author": "Xiao",
"doi-asserted-by": "crossref",
"journal-title": "Viruses",
"key": "10.1016/j.phymed.2020.153333_bib0037",
"volume": "12",
"year": "2020"
},
{
"DOI": "10.1126/science.abb2762",
"article-title": "Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2",
"author": "Yan",
"doi-asserted-by": "crossref",
"first-page": "1444",
"journal-title": "Science",
"key": "10.1016/j.phymed.2020.153333_bib0038",
"volume": "367",
"year": "2020"
},
{
"DOI": "10.1038/s41569-020-0360-5",
"article-title": "COVID-19 and the cardiovascular system",
"author": "Zheng",
"doi-asserted-by": "crossref",
"first-page": "259",
"journal-title": "Nat. Rev. Cardiol.",
"key": "10.1016/j.phymed.2020.153333_bib0039",
"volume": "17",
"year": "2020"
},
{
"DOI": "10.1007/s11684-020-0754-0",
"article-title": "Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection",
"author": "Zou",
"doi-asserted-by": "crossref",
"first-page": "185",
"journal-title": "Front. Med.",
"key": "10.1016/j.phymed.2020.153333_bib0040",
"volume": "14",
"year": "2020"
}
],
"reference-count": 40,
"references-count": 40,
"relation": {
"has-preprint": [
{
"asserted-by": "object",
"id": "10.1101/2020.06.22.164665",
"id-type": "doi"
}
]
},
"resource": {
"primary": {
"URL": "https://linkinghub.elsevier.com/retrieve/pii/S0944711320301653"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus",
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1016/elsevier_cm_policy",
"volume": "79"
}
