In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect
et al., Microbial Pathogenesis, doi:10.1016/j.micpath.2020.104228, Apr 2020
HCQ for COVID-19
1st treatment shown to reduce risk in
March 2020, now with p < 0.00000000001 from 424 studies, used in 59 countries.
No treatment is 100% effective. Protocols
combine treatments.
6,200+ studies for
200+ treatments. c19early.org
|
In vitro study showing that HCQ and AZ have a synergistic effect on SARS-CoV-2 at concentrations compatible with that obtained in human lung.
39 preclinical studies support the efficacy of HCQ for COVID-19:
1.
Shang et al., Identification of Cathepsin L as the molecular target of hydroxychloroquine with chemical proteomics, Molecular & Cellular Proteomics, doi:10.1016/j.mcpro.2025.101314.
2.
González-Paz et al., Biophysical Analysis of Potential Inhibitors of SARS-CoV-2 Cell Recognition and Their Effect on Viral Dynamics in Different Cell Types: A Computational Prediction from In Vitro Experimental Data, ACS Omega, doi:10.1021/acsomega.3c06968.
3.
Alkafaas et al., A study on the effect of natural products against the transmission of B.1.1.529 Omicron, Virology Journal, doi:10.1186/s12985-023-02160-6.
4.
Guimarães Silva et al., Are Non-Structural Proteins From SARS-CoV-2 the Target of Hydroxychloroquine? An in Silico Study, ACTA MEDICA IRANICA, doi:10.18502/acta.v61i2.12533.
5.
Nguyen et al., The Potential of Ameliorating COVID-19 and Sequelae From Andrographis paniculata via Bioinformatics, Bioinformatics and Biology Insights, doi:10.1177/11779322221149622.
7.
Yadav et al., Repurposing the Combination Drug of Favipiravir, Hydroxychloroquine and Oseltamivir as a Potential Inhibitor Against SARS-CoV-2: A Computational Study, Research Square, doi:10.21203/rs.3.rs-628277/v1.
8.
Hussein et al., Molecular Docking Identification for the efficacy of Some Zinc Complexes with Chloroquine and Hydroxychloroquine against Main Protease of COVID-19, Journal of Molecular Structure, doi:10.1016/j.molstruc.2021.129979.
9.
Baildya et al., Inhibitory capacity of Chloroquine against SARS-COV-2 by effective binding with Angiotensin converting enzyme-2 receptor: An insight from molecular docking and MD-simulation studies, Journal of Molecular Structure, doi:10.1016/j.molstruc.2021.129891.
10.
Noureddine et al., Quantum chemical studies on molecular structure, AIM, ELF, RDG and antiviral activities of hybrid hydroxychloroquine in the treatment of COVID-19: molecular docking and DFT calculations, Journal of King Saud University - Science, doi:10.1016/j.jksus.2020.101334.
11.
Tarek et al., Pharmacokinetic Basis of the Hydroxychloroquine Response in COVID-19: Implications for Therapy and Prevention, European Journal of Drug Metabolism and Pharmacokinetics, doi:10.1007/s13318-020-00640-6.
12.
Rowland Yeo et al., Impact of Disease on Plasma and Lung Exposure of Chloroquine, Hydroxychloroquine and Azithromycin: Application of PBPK Modeling, Clinical Pharmacology & Therapeutics, doi:10.1002/cpt.1955.
13.
Hitti et al., Hydroxychloroquine attenuates double-stranded RNA-stimulated hyper-phosphorylation of tristetraprolin/ZFP36 and AU-rich mRNA stabilization, Immunology, doi:10.1111/imm.13835.
14.
Yan et al., Super-resolution imaging reveals the mechanism of endosomal acidification inhibitors against SARS-CoV-2 infection, ChemBioChem, doi:10.1002/cbic.202400404.
15.
Mohd Abd Razak et al., In Vitro Anti-SARS-CoV-2 Activities of Curcumin and Selected Phenolic Compounds, Natural Product Communications, doi:10.1177/1934578X231188861.
16.
Alsmadi et al., The In Vitro, In Vivo, and PBPK Evaluation of a Novel Lung-Targeted Cardiac-Safe Hydroxychloroquine Inhalation Aerogel, AAPS PharmSciTech, doi:10.1208/s12249-023-02627-3.
17.
Wen et al., Cholinergic α7 nAChR signaling suppresses SARS-CoV-2 infection and inflammation in lung epithelial cells, Journal of Molecular Cell Biology, doi:10.1093/jmcb/mjad048.
18.
Kamga Kapchoup et al., In vitro effect of hydroxychloroquine on pluripotent stem cells and their cardiomyocytes derivatives, Frontiers in Pharmacology, doi:10.3389/fphar.2023.1128382.
19.
Milan Bonotto et al., Cathepsin inhibitors nitroxoline and its derivatives inhibit SARS-CoV-2 infection, Antiviral Research, doi:10.1016/j.antiviral.2023.105655.
20.
Miao et al., SIM imaging resolves endocytosis of SARS-CoV-2 spike RBD in living cells, Cell Chemical Biology, doi:10.1016/j.chembiol.2023.02.001.
21.
Yuan et al., Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway in mammalian cell culture, Communications Biology, doi:10.1038/s42003-022-03841-8.
22.
Faísca et al., Enhanced In Vitro Antiviral Activity of Hydroxychloroquine Ionic Liquids against SARS-CoV-2, Pharmaceutics, doi:10.3390/pharmaceutics14040877.
23.
Delandre et al., Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants, Pharmaceuticals, doi:10.3390/ph15040445.
24.
Purwati et al., An in vitro study of dual drug combinations of anti-viral agents, antibiotics, and/or hydroxychloroquine against the SARS-CoV-2 virus isolated from hospitalized patients in Surabaya, Indonesia, PLOS One, doi:10.1371/journal.pone.0252302.
25.
Zhang et al., SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination, Cell Death & Differentiation, doi:10.1038/s41418-021-00782-3.
26.
Dang et al., Structural basis of anti-SARS-CoV-2 activity of hydroxychloroquine: specific binding to NTD/CTD and disruption of LLPS of N protein, bioRxiv, doi:10.1101/2021.03.16.435741.
27.
Shang (B) et al., Inhibitors of endosomal acidification suppress SARS-CoV-2 replication and relieve viral pneumonia in hACE2 transgenic mice, Virology Journal, doi:10.1186/s12985-021-01515-1.
28.
Wang et al., Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus, Phytomedicine, doi:10.1016/j.phymed.2020.153333.
29.
Sheaff, R., A New Model of SARS-CoV-2 Infection Based on (Hydroxy)Chloroquine Activity, bioRxiv, doi:10.1101/2020.08.02.232892.
30.
Ou et al., Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2, PLOS Pathogens, doi:10.1371/journal.ppat.1009212.
31.
Andreani et al., In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect, Microbial Pathogenesis, doi:10.1016/j.micpath.2020.104228.
32.
Clementi et al., Combined Prophylactic and Therapeutic Use Maximizes Hydroxychloroquine Anti-SARS-CoV-2 Effects in vitro, Front. Microbiol., 10 July 2020, doi:10.3389/fmicb.2020.01704.
33.
Liu et al., Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell Discovery 6, 16 (2020), doi:10.1038/s41421-020-0156-0.
34.
Yao et al., In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Clin. Infect. Dis., 2020 Mar 9, doi:10.1093/cid/ciaa237.
Andreani et al., 25 Apr 2020, peer-reviewed, 11 authors.
In vitro studies are an important part of preclinical research, however results may be very different in vivo.
In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect
Human coronaviruses SARS-CoV-2 appeared at the end of 2019 and led to a pandemic with high morbidity and mortality. As there are currently no effective drugs targeting this virus, drug repurposing represents a short-term strategy to treat millions of infected patients at low costs. Hydroxychloroquine showed an antiviral effect in vitro. In vivo it showed efficacy, especially when combined with azithromycin in a preliminary clinical trial. Here we demonstrate that the combination of hydroxychloroquine and azithromycin has a synergistic effect in vitro on SARS-CoV-2 at concentrations compatible with that obtained in human lung.
Author statement Virus culture and drug testing: JA, ML, ID, NW; Molecular biology testing: PJ, CR, MB; Analyzed the results: JA, JMR, PC, BL, DR; Wrote the manuscript: JA, BL; Conceived the study: BL, DR. Pictures were captured on ZEISS AxioCam ERC 5s, 58 h post infection. Magnitude X200.3A-B-C. overview of the monolayer in each well for the condition of azithromycin 5 μM associated with hydroxychloroquine at 5 μM, 3D. Negative control well and 3E. Positive control well. 1F. Observation was done 48 h post infection by the SARS-CoV 2 strain IHUMI-3 for the viral stock production. Magnitude X400.
Declaration of competing interest Authors would like to declare that Didier Raoult is a consultant in microbiology for Hitachi High-Tech Corporation. Funding sources had no role in the design and conduct of the study, collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript. The others authors declare no conflict of interest.
References
Amrane, Tissot-Dupont, Doudier, Eldin, Hocquart et al., Rapid viral diagnosis and ambulatory management of suspected COVID-19 cases presenting at the infections diseases referral hospital in Marseille, France, -January 31st to March 1st, 2020: a respiratory virus snapshot, Trav. Med. Infect. Dis, doi:10.1016/j.tmaid.2020.101663
Armstrong, Richez, Raoult, Chabriere, Simultaneous UHPLC-UV analysis of hydroxychloroquine, minocycline and doxycycline from serum samples for the therapeutic drug monitoring of Q fever and Whipple's disease, J. Chromatogr. B Analyt Technol. Biomed. Life Sci
Bosseboeuf, Aubry, Nhan, De Pina, Rolain et al., Azithromycin inhibits the replication of Zika virus, J. Antivir. Antiretrovir
Boulos, Rolain, Raoult, Antibiotic susceptibility of Tropheryma whipplei in MRC5 cells, Antimicrob. Agents Chemother
Chen, Lau, Lamirande, Paddock, Bartlett et al., Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection, J Virol
Colson, Rolain, Lagier, Brouqui, Raoult, Chloroquine and hydroxychloroquine as available weapons to fight COVID-19, Int. J. Antimicrob. Agents
De Wilde, Jochmans, Posthuma, Zevenhoven-Dobbe, Van et al., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture, Antimicrob. Agents Chemother
Devaux, Rolain, Colson, Raoult, New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?, Int. J. Antimicrob. Agents
Fenollar, Puechal, Raoult, Whipple's disease, N. Engl. J. Med
Fleming-Dutra, Demirjian, Bartoces, Roberts, Taylor et al., Variations in antibiotic and azithromycin prescribing for children by geography and specialty-United States, 2013, Pediatr. Infect. Dis. J
Gao, Tian, Yang, Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies, Biosci. Trends
Gautret, Lagier, Parola, Hoang, Meddeb et al., Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, Int. J. Antimicrob. Agents
Guan, Ni, Hu, Liang, Ou et al., Clinical characteristics of coronavirus disease 2019 in China, N. Engl. J. Med, doi:10.1056/NEJMoa2002032
Keyaerts, Li, Vijgen, Rysman, Verbeeck et al., Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice, Antimicrob. Agents Chemother
Keyaerts, Vijgen, Maes, Neyts, Van, In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine, Biochem. Biophys. Res. Commun
Kn Lusamba, Nomura, Kawase, Ota, Kubo et al., The non-antibiotic macrolide EM900 inhibits rhinovirus infection and cytokine production in human airway epithelial cells, Physiol Rep
Kn Lusamba, Nomura, Kawase, Ota, Kubo et al., The non-antibiotic macrolide EM900 inhibits rhinovirus infection and cytokine production in human airway epithelial cells, Physiol Rep
Kono, Tatsumi, Imai, Saito, Kuriyama et al., Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: involvement of p38 MAPK and ERK, Antivir. Res
Kruse, Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan
Lai, Shih, Ko, Tang, Hsueh, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges, Int. J. Antimicrob. Agents
Li, Zu, Deng, Li, Parvatiyar et al., Azithromycin protects against Zika virus infection by upregulating virus-induced type I and III interferon responses, Antimicrob. Agents Chemother, doi:10.1128/AAC.00394-19
Liu, Cao, Xu, Wang, Zhang et al., Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell Discov
Livak, Schmittgen, Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods
Mf Morgene, Maurin, Pillet, Berthelot, Morfin et al., HaCaT epithelial cells as an innovative novel model of rhinovirus infection and impact of clarithromycin treatment on infection kinetics, Virology
Morens, Folkers, Fauci, What is a pandemic?, J. Infect. Dis
Nabirothckin, Peluffo, Bouaziz, Cohen, Focusing on the unfolded protein response and autophagy related pathways to reposition common approved drugs against COVID-19, doi:10.20944/preprints202003.0302.v1
Ohkuma, Poole, Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH various agents, Proc. Natl. Acad. Sci. U.S.A
Raoult, Drancourt, Vestris, Bactericidal effect of Doxycycline associated with lysosomotropic agents on Coxiella burnetii in P388D1 cells, Antimicrob. Agents Chemother
Raoult, Houpikian, Tissot-Dupont, Riss, Arditi-Djiane et al., Treatment of Q fever endocarditis : comparison of two regimens containing doxycycline and ofloxacin or hydroxychloroquine, Arch. Intern. Med
Retallack, Di, Arias, Knopp, Laurie et al., Zika virus cell tropism in the developing human brain and inhibition by azithromycin, Proc. Natl. Acad. Sci. U. S. A
Rothe, Schunk, Sothmann, Bretzel, Froeschl et al., Transmission of 2019-nCoV infection from an asymptomatic contact in Germany, N. Engl. J. Med
Savarino, Boelaert, Cassone, Majori, Cauda, Effects of chloroquine on viral infections: an old drug against today's diseases?, Lancet Infect. Dis
Vabret, Dina, Gouarin, Petitjean, Tripey et al., Human (non-severe acute respiratory syndrome) coronavirus infections in hospitalised children in France, J. Paediatr. Child Health
Vincent, Bergeron, Benjannet, Erickson, Rollin et al., Chloroquine is a potent inhibitor of SARS coronavirus infection and spread, Virol. J
Wang, Cao, Zhang, Yang, Liu et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res
Wang, Cui, Li, Gao, Yuan et al., Teicoplanin inhibits Ebola pseudovirus infection in cell culture, Antivir. Res
Zaki, Van, Bestebroer, Osterhaus, Fouchier, Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia, N. Engl. J. Med
Zhang, Ma, Yu, Liu, Zou et al., Teicoplanin potently blocks the cell entry of 2019-nCoV, doi:10.1101/2020.02.05.935387
Zhu, Zhang, Wang, Li, Yang et al., A novel coronavirus from patients with pneumonia in China, 2019, N. Engl. J. Med
DOI record:
{
"DOI": "10.1016/j.micpath.2020.104228",
"ISSN": [
"0882-4010"
],
"URL": "http://dx.doi.org/10.1016/j.micpath.2020.104228",
"alternative-id": [
"S0882401020305155"
],
"article-number": "104228",
"assertion": [
{
"label": "This article is maintained by",
"name": "publisher",
"value": "Elsevier"
},
{
"label": "Article Title",
"name": "articletitle",
"value": "In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect"
},
{
"label": "Journal Title",
"name": "journaltitle",
"value": "Microbial Pathogenesis"
},
{
"label": "CrossRef DOI link to publisher maintained version",
"name": "articlelink",
"value": "https://doi.org/10.1016/j.micpath.2020.104228"
},
{
"label": "Content Type",
"name": "content_type",
"value": "article"
},
{
"label": "Copyright",
"name": "copyright",
"value": "© 2021 Published by Elsevier Ltd."
}
],
"author": [
{
"affiliation": [],
"family": "Andreani",
"given": "Julien",
"sequence": "first"
},
{
"affiliation": [],
"family": "Le Bideau",
"given": "Marion",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Duflot",
"given": "Isabelle",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Jardot",
"given": "Priscilla",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0002-2058-1696",
"affiliation": [],
"authenticated-orcid": false,
"family": "Rolland",
"given": "Clara",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0002-7740-0518",
"affiliation": [],
"authenticated-orcid": false,
"family": "Boxberger",
"given": "Manon",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Wurtz",
"given": "Nathalie",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Rolain",
"given": "Jean-Marc",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Colson",
"given": "Philippe",
"sequence": "additional"
},
{
"affiliation": [],
"family": "La Scola",
"given": "Bernard",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Raoult",
"given": "Didier",
"sequence": "additional"
}
],
"container-title": "Microbial Pathogenesis",
"container-title-short": "Microbial Pathogenesis",
"content-domain": {
"crossmark-restriction": true,
"domain": [
"elsevier.com",
"sciencedirect.com"
]
},
"created": {
"date-parts": [
[
2020,
4,
25
]
],
"date-time": "2020-04-25T06:33:13Z",
"timestamp": 1587796393000
},
"deposited": {
"date-parts": [
[
2023,
3,
5
]
],
"date-time": "2023-03-05T00:08:30Z",
"timestamp": 1677974910000
},
"funder": [
{
"DOI": "10.13039/501100008530",
"doi-asserted-by": "publisher",
"name": "European Regional Development Fund"
},
{
"DOI": "10.13039/501100001665",
"doi-asserted-by": "publisher",
"name": "Agence Nationale de la Recherche"
}
],
"indexed": {
"date-parts": [
[
2024,
5,
10
]
],
"date-time": "2024-05-10T06:33:05Z",
"timestamp": 1715322785370
},
"is-referenced-by-count": 222,
"issued": {
"date-parts": [
[
2020,
8
]
]
},
"language": "en",
"license": [
{
"URL": "https://www.elsevier.com/tdm/userlicense/1.0/",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2020,
8,
1
]
],
"date-time": "2020-08-01T00:00:00Z",
"timestamp": 1596240000000
}
},
{
"URL": "http://www.elsevier.com/open-access/userlicense/1.0/",
"content-version": "am",
"delay-in-days": 269,
"start": {
"date-parts": [
[
2021,
4,
27
]
],
"date-time": "2021-04-27T00:00:00Z",
"timestamp": 1619481600000
}
},
{
"URL": "https://doi.org/10.15223/policy-017",
"content-version": "stm-asf",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2020,
8,
1
]
],
"date-time": "2020-08-01T00:00:00Z",
"timestamp": 1596240000000
}
},
{
"URL": "https://doi.org/10.15223/policy-037",
"content-version": "stm-asf",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2020,
8,
1
]
],
"date-time": "2020-08-01T00:00:00Z",
"timestamp": 1596240000000
}
},
{
"URL": "https://doi.org/10.15223/policy-012",
"content-version": "stm-asf",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2020,
8,
1
]
],
"date-time": "2020-08-01T00:00:00Z",
"timestamp": 1596240000000
}
},
{
"URL": "https://doi.org/10.15223/policy-029",
"content-version": "stm-asf",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2020,
8,
1
]
],
"date-time": "2020-08-01T00:00:00Z",
"timestamp": 1596240000000
}
},
{
"URL": "https://doi.org/10.15223/policy-004",
"content-version": "stm-asf",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2020,
8,
1
]
],
"date-time": "2020-08-01T00:00:00Z",
"timestamp": 1596240000000
}
}
],
"link": [
{
"URL": "https://api.elsevier.com/content/article/PII:S0882401020305155?httpAccept=text/xml",
"content-type": "text/xml",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://api.elsevier.com/content/article/PII:S0882401020305155?httpAccept=text/plain",
"content-type": "text/plain",
"content-version": "vor",
"intended-application": "text-mining"
}
],
"member": "78",
"original-title": [],
"page": "104228",
"prefix": "10.1016",
"published": {
"date-parts": [
[
2020,
8
]
]
},
"published-print": {
"date-parts": [
[
2020,
8
]
]
},
"publisher": "Elsevier BV",
"reference": [
{
"DOI": "10.1056/NEJMoa2001017",
"article-title": "A novel coronavirus from patients with pneumonia in China, 2019",
"author": "Zhu",
"doi-asserted-by": "crossref",
"first-page": "727",
"issue": "8",
"journal-title": "N. Engl. J. Med.",
"key": "10.1016/j.micpath.2020.104228_bib1",
"volume": "382",
"year": "2020"
},
{
"DOI": "10.1056/NEJMoa2002032",
"article-title": "Clinical characteristics of coronavirus disease 2019 in China",
"author": "Guan",
"doi-asserted-by": "crossref",
"journal-title": "N. Engl. J. Med.",
"key": "10.1016/j.micpath.2020.104228_bib2",
"year": "2020"
},
{
"DOI": "10.1056/NEJMc2001468",
"article-title": "Transmission of 2019-nCoV infection from an asymptomatic contact in Germany",
"author": "Rothe",
"doi-asserted-by": "crossref",
"first-page": "970",
"issue": "10",
"journal-title": "N. Engl. J. Med.",
"key": "10.1016/j.micpath.2020.104228_bib3",
"volume": "382",
"year": "2020"
},
{
"DOI": "10.1056/NEJMoa1211721",
"article-title": "Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia",
"author": "Zaki",
"doi-asserted-by": "crossref",
"first-page": "1814",
"issue": "19",
"journal-title": "N. Engl. J. Med.",
"key": "10.1016/j.micpath.2020.104228_bib4",
"volume": "367",
"year": "2012"
},
{
"DOI": "10.1111/j.1440-1754.2007.01246.x",
"article-title": "Human (non-severe acute respiratory syndrome) coronavirus infections in hospitalised children in France",
"author": "Vabret",
"doi-asserted-by": "crossref",
"first-page": "176",
"issue": "4",
"journal-title": "J. Paediatr. Child Health",
"key": "10.1016/j.micpath.2020.104228_bib5",
"volume": "44",
"year": "2008"
},
{
"DOI": "10.1086/644537",
"article-title": "What is a pandemic?",
"author": "Morens",
"doi-asserted-by": "crossref",
"first-page": "1018",
"issue": "7",
"journal-title": "J. Infect. Dis.",
"key": "10.1016/j.micpath.2020.104228_bib6",
"volume": "200",
"year": "2009"
},
{
"DOI": "10.12688/f1000research.22211.2",
"article-title": "Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China",
"author": "Kruse",
"doi-asserted-by": "crossref",
"first-page": "72",
"journal-title": "F1000Res",
"key": "10.1016/j.micpath.2020.104228_bib7",
"volume": "9",
"year": "2020"
},
{
"DOI": "10.1016/j.ijantimicag.2020.105924",
"article-title": "Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges",
"author": "Lai",
"doi-asserted-by": "crossref",
"first-page": "105924",
"issue": "3",
"journal-title": "Int. J. Antimicrob. Agents",
"key": "10.1016/j.micpath.2020.104228_bib8",
"volume": "55",
"year": "2020"
},
{
"DOI": "10.1016/j.ijantimicag.2020.105932",
"article-title": "Chloroquine and hydroxychloroquine as available weapons to fight COVID-19",
"author": "Colson",
"doi-asserted-by": "crossref",
"first-page": "105932",
"journal-title": "Int. J. Antimicrob. Agents",
"key": "10.1016/j.micpath.2020.104228_bib9",
"year": "2020"
},
{
"DOI": "10.1073/pnas.75.7.3327",
"article-title": "Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH various agents",
"author": "Ohkuma",
"doi-asserted-by": "crossref",
"first-page": "3327",
"journal-title": "Proc. Natl. Acad. Sci. U.S.A.",
"key": "10.1016/j.micpath.2020.104228_bib10",
"volume": "75",
"year": "1978"
},
{
"DOI": "10.1128/AAC.01509-08",
"article-title": "Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice",
"author": "Keyaerts",
"doi-asserted-by": "crossref",
"first-page": "3416",
"issue": "8",
"journal-title": "Antimicrob. Agents Chemother.",
"key": "10.1016/j.micpath.2020.104228_bib11",
"volume": "53",
"year": "2009"
},
{
"DOI": "10.1186/1743-422X-2-69",
"article-title": "Chloroquine is a potent inhibitor of SARS coronavirus infection and spread",
"author": "Vincent",
"doi-asserted-by": "crossref",
"first-page": "69",
"journal-title": "Virol. J.",
"key": "10.1016/j.micpath.2020.104228_bib12",
"volume": "2",
"year": "2005"
},
{
"DOI": "10.1016/S1473-3099(03)00806-5",
"article-title": "Effects of chloroquine on viral infections: an old drug against today's diseases?",
"author": "Savarino",
"doi-asserted-by": "crossref",
"first-page": "722",
"issue": "11",
"journal-title": "Lancet Infect. Dis.",
"key": "10.1016/j.micpath.2020.104228_bib13",
"volume": "3",
"year": "2003"
},
{
"DOI": "10.1128/AAC.03011-14",
"article-title": "Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture",
"author": "de Wilde",
"doi-asserted-by": "crossref",
"first-page": "4875",
"issue": "8",
"journal-title": "Antimicrob. Agents Chemother.",
"key": "10.1016/j.micpath.2020.104228_bib14",
"volume": "58",
"year": "2014"
},
{
"DOI": "10.1016/j.antiviral.2007.10.011",
"article-title": "Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: involvement of p38 MAPK and ERK",
"author": "Kono",
"doi-asserted-by": "crossref",
"first-page": "150",
"issue": "2",
"journal-title": "Antivir. Res.",
"key": "10.1016/j.micpath.2020.104228_bib15",
"volume": "77",
"year": "2008"
},
{
"DOI": "10.1016/j.ijantimicag.2020.105938",
"article-title": "New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?",
"author": "Devaux",
"doi-asserted-by": "crossref",
"first-page": "105938",
"journal-title": "Int. J. Antimicrob. Agents",
"key": "10.1016/j.micpath.2020.104228_bib16",
"year": "2020"
},
{
"DOI": "10.1016/j.bbrc.2004.08.085",
"article-title": "In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine",
"author": "Keyaerts",
"doi-asserted-by": "crossref",
"first-page": "264",
"issue": "1",
"journal-title": "Biochem. Biophys. Res. Commun.",
"key": "10.1016/j.micpath.2020.104228_bib17",
"volume": "323",
"year": "2004"
},
{
"DOI": "10.1038/s41422-020-0282-0",
"article-title": "Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro",
"author": "Wang",
"doi-asserted-by": "crossref",
"first-page": "269",
"issue": "3",
"journal-title": "Cell Res.",
"key": "10.1016/j.micpath.2020.104228_bib18",
"volume": "30",
"year": "2020"
},
{
"DOI": "10.1038/s41421-020-0156-0",
"article-title": "Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro",
"author": "Liu",
"doi-asserted-by": "crossref",
"first-page": "16",
"journal-title": "Cell Discov.",
"key": "10.1016/j.micpath.2020.104228_bib19",
"volume": "6",
"year": "2020"
},
{
"DOI": "10.1001/archinte.159.2.167",
"article-title": "Treatment of Q fever endocarditis : comparison of two regimens containing doxycycline and ofloxacin or hydroxychloroquine",
"author": "Raoult",
"doi-asserted-by": "crossref",
"first-page": "167",
"issue": "2",
"journal-title": "Arch. Intern. Med.",
"key": "10.1016/j.micpath.2020.104228_bib20",
"volume": "159",
"year": "1999"
},
{
"DOI": "10.1128/AAC.34.8.1512",
"article-title": "Bactericidal effect of Doxycycline associated with lysosomotropic agents on Coxiella burnetii in P388D1 cells",
"author": "Raoult",
"doi-asserted-by": "crossref",
"first-page": "1512",
"journal-title": "Antimicrob. Agents Chemother.",
"key": "10.1016/j.micpath.2020.104228_bib21",
"volume": "34",
"year": "1990"
},
{
"DOI": "10.1128/AAC.48.3.747-752.2004",
"article-title": "Antibiotic susceptibility of Tropheryma whipplei in MRC5 cells",
"author": "Boulos",
"doi-asserted-by": "crossref",
"first-page": "747",
"issue": "3",
"journal-title": "Antimicrob. Agents Chemother.",
"key": "10.1016/j.micpath.2020.104228_bib22",
"volume": "48",
"year": "2004"
},
{
"DOI": "10.1056/NEJMra062477",
"article-title": "Whipple's disease",
"author": "Fenollar",
"doi-asserted-by": "crossref",
"first-page": "55",
"issue": "1",
"journal-title": "N. Engl. J. Med.",
"key": "10.1016/j.micpath.2020.104228_bib23",
"volume": "356",
"year": "2007"
},
{
"DOI": "10.1016/j.jchromb.2017.06.011",
"article-title": "Simultaneous UHPLC-UV analysis of hydroxychloroquine, minocycline and doxycycline from serum samples for the therapeutic drug monitoring of Q fever and Whipple's disease",
"author": "Armstrong",
"doi-asserted-by": "crossref",
"first-page": "166",
"journal-title": "J. Chromatogr. B Analyt Technol. Biomed. Life Sci.",
"key": "10.1016/j.micpath.2020.104228_bib24",
"volume": "1060",
"year": "2017"
},
{
"DOI": "10.5582/bst.2020.01047",
"article-title": "Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies",
"author": "Gao",
"doi-asserted-by": "crossref",
"first-page": "72",
"issue": "1",
"journal-title": "Biosci. Trends",
"key": "10.1016/j.micpath.2020.104228_bib25",
"volume": "14",
"year": "2020"
},
{
"DOI": "10.1016/j.antiviral.2015.11.003",
"article-title": "Teicoplanin inhibits Ebola pseudovirus infection in cell culture",
"author": "Wang",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Antivir. Res.",
"key": "10.1016/j.micpath.2020.104228_bib26",
"volume": "125",
"year": "2016"
},
{
"article-title": "Teicoplanin potently blocks the cell entry of 2019-nCoV",
"author": "Zhang",
"journal-title": "bioRxiv",
"key": "10.1016/j.micpath.2020.104228_bib27",
"year": "2020"
},
{
"DOI": "10.1073/pnas.1618029113",
"article-title": "Zika virus cell tropism in the developing human brain and inhibition by azithromycin",
"author": "Retallack",
"doi-asserted-by": "crossref",
"first-page": "14408",
"issue": "50",
"journal-title": "Proc. Natl. Acad. Sci. U. S. A.",
"key": "10.1016/j.micpath.2020.104228_bib28",
"volume": "113",
"year": "2016"
},
{
"DOI": "10.4172/1948-5964.1000173",
"article-title": "Azithromycin inhibits the replication of Zika virus",
"author": "Bosseboeuf",
"doi-asserted-by": "crossref",
"first-page": "6",
"issue": "1",
"journal-title": "J. Antivir. Antiretrovir.",
"key": "10.1016/j.micpath.2020.104228_bib29",
"volume": "10",
"year": "2018"
},
{
"DOI": "10.1128/AAC.00394-19",
"article-title": "Azithromycin protects against Zika virus infection by upregulating virus-induced type I and III interferon responses",
"author": "Li",
"doi-asserted-by": "crossref",
"journal-title": "Antimicrob. Agents Chemother.",
"key": "10.1016/j.micpath.2020.104228_bib30",
"year": "2019"
},
{
"DOI": "10.1097/INF.0000000000001708",
"article-title": "Variations in antibiotic and azithromycin prescribing for children by geography and specialty-United States, 2013",
"author": "Fleming-Dutra",
"doi-asserted-by": "crossref",
"first-page": "52",
"issue": "1",
"journal-title": "Pediatr. Infect. Dis. J.",
"key": "10.1016/j.micpath.2020.104228_bib31",
"volume": "37",
"year": "2018"
},
{
"author": "Nabirothckin",
"key": "10.1016/j.micpath.2020.104228_bib32",
"series-title": "Focusing on the unfolded protein response and autophagy related pathways to reposition common approved drugs against COVID-19",
"year": "2020"
},
{
"DOI": "10.1016/j.ijantimicag.2020.105949",
"article-title": "Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial",
"author": "Gautret",
"doi-asserted-by": "crossref",
"first-page": "105949",
"journal-title": "Int. J. Antimicrob. Agents",
"key": "10.1016/j.micpath.2020.104228_bib33",
"year": "2020"
},
{
"DOI": "10.1016/j.tmaid.2020.101632",
"article-title": "Rapid viral diagnosis and ambulatory management of suspected COVID-19 cases presenting at the infections diseases referral hospital in Marseille, France, -January 31st to March 1st, 2020: a respiratory virus snapshot",
"author": "Amrane",
"doi-asserted-by": "crossref",
"journal-title": "Trav. Med. Infect. Dis.",
"key": "10.1016/j.micpath.2020.104228_bib34",
"year": "2020"
},
{
"DOI": "10.1006/meth.2001.1262",
"article-title": "Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method",
"author": "Livak",
"doi-asserted-by": "crossref",
"first-page": "402",
"issue": "4",
"journal-title": "Methods",
"key": "10.1016/j.micpath.2020.104228_bib35",
"volume": "25",
"year": "2001"
},
{
"DOI": "10.1016/j.virol.2018.07.025",
"article-title": "HaCaT epithelial cells as an innovative novel model of rhinovirus infection and impact of clarithromycin treatment on infection kinetics",
"author": "Morgene",
"doi-asserted-by": "crossref",
"first-page": "27",
"journal-title": "Virology",
"key": "10.1016/j.micpath.2020.104228_bib36",
"volume": "523",
"year": "2018"
},
{
"article-title": "The non-antibiotic macrolide EM900 inhibits rhinovirus infection and cytokine production in human airway epithelial cells",
"author": "Lusamba",
"issue": "10",
"journal-title": "Physiol Rep",
"key": "10.1016/j.micpath.2020.104228_bib37",
"volume": "3",
"year": "2015"
},
{
"article-title": "The non-antibiotic macrolide EM900 inhibits rhinovirus infection and cytokine production in human airway epithelial cells",
"author": "Lusamba",
"issue": "10",
"journal-title": "Physiol Rep",
"key": "10.1016/j.micpath.2020.104228_bib38",
"volume": "3",
"year": "2015"
},
{
"DOI": "10.1128/JVI.01281-09",
"article-title": "Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection",
"author": "Chen",
"doi-asserted-by": "crossref",
"first-page": "1289",
"issue": "3",
"journal-title": "J Virol",
"key": "10.1016/j.micpath.2020.104228_bib39",
"volume": "84",
"year": "2010"
}
],
"reference-count": 39,
"references-count": 39,
"relation": {},
"resource": {
"primary": {
"URL": "https://linkinghub.elsevier.com/retrieve/pii/S0882401020305155"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect",
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1016/elsevier_cm_policy",
"volume": "145"
}

