Chloroquine is a potent inhibitor of SARS coronavirus infection and spread
et al., Virol. J. 2:69, 2005, doi:10.1186/1743-422X-2-69, Oct 2005
HCQ for COVID-19
1st treatment shown to reduce risk in
March 2020, now with p < 0.00000000001 from 424 studies, used in 59 countries.
No treatment is 100% effective. Protocols
combine treatments.
6,200+ studies for
200+ treatments. c19early.org
|
In vitro study for SARS-CoV-1. CQ has strong antiviral effects on SARS CoV infection when cells treated either before or after exposure, suggesting prophylactic and treatment use. Describes three mechanisms by which the drug might work and suggests it may have both a prophylactic and therapeutic role in coronavirus infections.
39 preclinical studies support the efficacy of HCQ for COVID-19:
1.
Shang et al., Identification of Cathepsin L as the molecular target of hydroxychloroquine with chemical proteomics, Molecular & Cellular Proteomics, doi:10.1016/j.mcpro.2025.101314.
2.
González-Paz et al., Biophysical Analysis of Potential Inhibitors of SARS-CoV-2 Cell Recognition and Their Effect on Viral Dynamics in Different Cell Types: A Computational Prediction from In Vitro Experimental Data, ACS Omega, doi:10.1021/acsomega.3c06968.
3.
Alkafaas et al., A study on the effect of natural products against the transmission of B.1.1.529 Omicron, Virology Journal, doi:10.1186/s12985-023-02160-6.
4.
Guimarães Silva et al., Are Non-Structural Proteins From SARS-CoV-2 the Target of Hydroxychloroquine? An in Silico Study, ACTA MEDICA IRANICA, doi:10.18502/acta.v61i2.12533.
5.
Nguyen et al., The Potential of Ameliorating COVID-19 and Sequelae From Andrographis paniculata via Bioinformatics, Bioinformatics and Biology Insights, doi:10.1177/11779322221149622.
7.
Yadav et al., Repurposing the Combination Drug of Favipiravir, Hydroxychloroquine and Oseltamivir as a Potential Inhibitor Against SARS-CoV-2: A Computational Study, Research Square, doi:10.21203/rs.3.rs-628277/v1.
8.
Hussein et al., Molecular Docking Identification for the efficacy of Some Zinc Complexes with Chloroquine and Hydroxychloroquine against Main Protease of COVID-19, Journal of Molecular Structure, doi:10.1016/j.molstruc.2021.129979.
9.
Baildya et al., Inhibitory capacity of Chloroquine against SARS-COV-2 by effective binding with Angiotensin converting enzyme-2 receptor: An insight from molecular docking and MD-simulation studies, Journal of Molecular Structure, doi:10.1016/j.molstruc.2021.129891.
10.
Noureddine et al., Quantum chemical studies on molecular structure, AIM, ELF, RDG and antiviral activities of hybrid hydroxychloroquine in the treatment of COVID-19: molecular docking and DFT calculations, Journal of King Saud University - Science, doi:10.1016/j.jksus.2020.101334.
11.
Tarek et al., Pharmacokinetic Basis of the Hydroxychloroquine Response in COVID-19: Implications for Therapy and Prevention, European Journal of Drug Metabolism and Pharmacokinetics, doi:10.1007/s13318-020-00640-6.
12.
Rowland Yeo et al., Impact of Disease on Plasma and Lung Exposure of Chloroquine, Hydroxychloroquine and Azithromycin: Application of PBPK Modeling, Clinical Pharmacology & Therapeutics, doi:10.1002/cpt.1955.
13.
Hitti et al., Hydroxychloroquine attenuates double-stranded RNA-stimulated hyper-phosphorylation of tristetraprolin/ZFP36 and AU-rich mRNA stabilization, Immunology, doi:10.1111/imm.13835.
14.
Yan et al., Super-resolution imaging reveals the mechanism of endosomal acidification inhibitors against SARS-CoV-2 infection, ChemBioChem, doi:10.1002/cbic.202400404.
15.
Mohd Abd Razak et al., In Vitro Anti-SARS-CoV-2 Activities of Curcumin and Selected Phenolic Compounds, Natural Product Communications, doi:10.1177/1934578X231188861.
16.
Alsmadi et al., The In Vitro, In Vivo, and PBPK Evaluation of a Novel Lung-Targeted Cardiac-Safe Hydroxychloroquine Inhalation Aerogel, AAPS PharmSciTech, doi:10.1208/s12249-023-02627-3.
17.
Wen et al., Cholinergic α7 nAChR signaling suppresses SARS-CoV-2 infection and inflammation in lung epithelial cells, Journal of Molecular Cell Biology, doi:10.1093/jmcb/mjad048.
18.
Kamga Kapchoup et al., In vitro effect of hydroxychloroquine on pluripotent stem cells and their cardiomyocytes derivatives, Frontiers in Pharmacology, doi:10.3389/fphar.2023.1128382.
19.
Milan Bonotto et al., Cathepsin inhibitors nitroxoline and its derivatives inhibit SARS-CoV-2 infection, Antiviral Research, doi:10.1016/j.antiviral.2023.105655.
20.
Miao et al., SIM imaging resolves endocytosis of SARS-CoV-2 spike RBD in living cells, Cell Chemical Biology, doi:10.1016/j.chembiol.2023.02.001.
21.
Yuan et al., Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway in mammalian cell culture, Communications Biology, doi:10.1038/s42003-022-03841-8.
22.
Faísca et al., Enhanced In Vitro Antiviral Activity of Hydroxychloroquine Ionic Liquids against SARS-CoV-2, Pharmaceutics, doi:10.3390/pharmaceutics14040877.
23.
Delandre et al., Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants, Pharmaceuticals, doi:10.3390/ph15040445.
24.
Purwati et al., An in vitro study of dual drug combinations of anti-viral agents, antibiotics, and/or hydroxychloroquine against the SARS-CoV-2 virus isolated from hospitalized patients in Surabaya, Indonesia, PLOS One, doi:10.1371/journal.pone.0252302.
25.
Zhang et al., SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination, Cell Death & Differentiation, doi:10.1038/s41418-021-00782-3.
26.
Dang et al., Structural basis of anti-SARS-CoV-2 activity of hydroxychloroquine: specific binding to NTD/CTD and disruption of LLPS of N protein, bioRxiv, doi:10.1101/2021.03.16.435741.
27.
Shang (B) et al., Inhibitors of endosomal acidification suppress SARS-CoV-2 replication and relieve viral pneumonia in hACE2 transgenic mice, Virology Journal, doi:10.1186/s12985-021-01515-1.
28.
Wang et al., Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus, Phytomedicine, doi:10.1016/j.phymed.2020.153333.
29.
Sheaff, R., A New Model of SARS-CoV-2 Infection Based on (Hydroxy)Chloroquine Activity, bioRxiv, doi:10.1101/2020.08.02.232892.
30.
Ou et al., Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2, PLOS Pathogens, doi:10.1371/journal.ppat.1009212.
31.
Andreani et al., In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect, Microbial Pathogenesis, doi:10.1016/j.micpath.2020.104228.
32.
Clementi et al., Combined Prophylactic and Therapeutic Use Maximizes Hydroxychloroquine Anti-SARS-CoV-2 Effects in vitro, Front. Microbiol., 10 July 2020, doi:10.3389/fmicb.2020.01704.
33.
Liu et al., Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell Discovery 6, 16 (2020), doi:10.1038/s41421-020-0156-0.
34.
Yao et al., In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Clin. Infect. Dis., 2020 Mar 9, doi:10.1093/cid/ciaa237.
Vincent et al., 22 Oct 2005, peer-reviewed, 8 authors.
In vitro studies are an important part of preclinical research, however results may be very different in vivo.
Chloroquine is a potent inhibitor of SARS coronavirus infection and spread
Virology Journal, doi:10.1186/1743-422x-2-69
Background: Severe acute respiratory syndrome (SARS) is caused by a newly discovered coronavirus (SARS-CoV). No effective prophylactic or post-exposure therapy is currently available.
Results: We report, however, that chloroquine has strong antiviral effects on SARS-CoV infection of primate cells. These inhibitory effects are observed when the cells are treated with the drug either before or after exposure to the virus, suggesting both prophylactic and therapeutic advantage. In addition to the well-known functions of chloroquine such as elevations of endosomal pH, the drug appears to interfere with terminal glycosylation of the cellular receptor, angiotensinconverting enzyme 2. This may negatively influence the virus-receptor binding and abrogate the infection, with further ramifications by the elevation of vesicular pH, resulting in the inhibition of infection and spread of SARS CoV at clinically admissible concentrations.
Conclusion: Chloroquine is effective in preventing the spread of SARS CoV in cell culture. Favorable inhibition of virus spread was observed when the cells were either treated with chloroquine prior to or after SARS CoV infection. In addition, the indirect immunofluorescence assay described herein represents a simple and rapid method for screening SARS-CoV antiviral compounds.
Background Severe acute respiratory syndrome (SARS) is an emerging disease that was first reported in Guangdong Province, China, in late 2002. The disease rapidly spread to at least 30 countries within months of its first appearance, and concerted worldwide efforts led to the identification of the etiological agent as SARS coronavirus (SARS-CoV), a novel member of the family Coronaviridae [1] . Complete genome sequencing of 3] confirmed that this pathogen is not closely related to any of the
Authors' contributions MV did all the experiments pertaining to SARS CoV infection and coordinated the drafting of the manuscript. EB and SB performed experiments on ACE2 biosynthesis and FACS analysis. BE performed data acquisition from the immunofluorescence experiments. PR and TK provided critical reagents and revised the manuscript critically. NS and SN along with MV and EB participated in the planning of the experiments, review and interpretation of data and critical review of the manuscript. All authors read and approved the content of the manuscript.
References
Bergeron, Vincent, Wickham, Hamelin, Basak et al., Implication of proprotein convertases in the processing and spread of severe acute respiratory syndrome coronavirus, Biochem Biophys Res Comm
Bisht, Roberts, Vogel, Bukreyev, Collins et al., Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice, Proc Natl Acad Sci
Bukreyev, Lamirande, Buchholz, Vogel, Elkins et al., Mucosal immunization of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS, Lancet
Dille, Johnson, Inhibition of vesicular stomatitis virus glycoprotein expression by chloroquine, J Gen Virol
Ducharme, Farinotti, Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements, Clin Pharmacokinet
Keyaerts, Vijgen, Maes, Neyts, Ranst, In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine, Biochem Biophys Res Commun
Ksiazek, Erdman, Goldsmith, Zaki, Peret et al., SARS Working Group: A novel coronavirus associated with severe acute respiratory syndrome, N Engl J Med
Li, Moore, Vasilieva, Sui, Wong et al., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature
Marra, Jones, Astell, Holt, Brooks-Wilson et al., The Genome sequence of the SARS-associated coronavirus, Science
Ng, Tan, See, Ooi, Ling, Early events of SARS coronavirus infection in vero cells, J Med Virol
Ng, Tan, See, Ooi, Ling, Proliferative growth of SARS coronavirus in Vero E6 cells, J Gen Virol
Rota, Oberste, Monroe, Nix, Campagnoli et al., Characterization of a novel coronavirus associated with severe acute respiratory syndrome, Science
Sainz B Jr, Mossel, Peters, Garry, Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV), Virology
Savarino, Boelaert, Cassone, Majori, Cauda, Effects of chloroquine on viral infections: an old drug against today's diseases?, Lancet Infect Dis
Savarino, Lucia, Rastrelli, Rutella, Golotta et al., Anti-HIV effects of chloroquine: inhibition of viral particle glycosylation and synergism with protease inhibitors, J Acquir Immune Defic Syndr
Simmons, Reeves, Rennekamp, Amberg, Piefer et al., Characterization of severe acute respiratory syndromeassociated coronavirus (SARS-CoV) spike glycoproteinmediated viral entry, Proc Natl Acad Sci
Song, Seo, Stadler, Yoo, Choo et al., Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein, J Virol
Stroher, Dicaro, Li, Strong, Aoki et al., Severe acute respiratory syndrome-related coronavirus is inhibited by interferon-alpha, J Infect Dis
Subbarao, Mcauliffe, Vogel, Fahle, Fischer et al., Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice, J Virol
Sui, Li, Murakami, Tamin, Matthews et al., Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association, Proc Natl Acad Sci
Thorens, Vassalli, Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion, Nature
Tipnis, Hooper, Hyde, Karran, Christie et al., A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase, J Biol Chem
Tsai, Nara, Kung, Oroszlan, Inhibition of human immunodeficiency virus infectivity by chloroquine, AIDS Res Hum Retroviruses
Yang, Huang, Ganesh, Leung, Kong et al., pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN, J Virol
Yang, Kong, Huang, Roberts, Murphy et al., A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice, Nature
Zhang, Li, Fu, Yu, Li et al., Silencing SARS-CoV spike protein expression in cultured cells by RNA interference, FEBS Lett
DOI record:
{
"DOI": "10.1186/1743-422x-2-69",
"ISSN": [
"1743-422X"
],
"URL": "http://dx.doi.org/10.1186/1743-422X-2-69",
"abstract": "<jats:title>Abstract</jats:title>\n <jats:sec>\n <jats:title>Background</jats:title>\n <jats:p>Severe acute respiratory syndrome (SARS) is caused by a newly discovered coronavirus (SARS-CoV). No effective prophylactic or post-exposure therapy is currently available.</jats:p>\n </jats:sec>\n <jats:sec>\n <jats:title>Results</jats:title>\n <jats:p>We report, however, that chloroquine has strong antiviral effects on SARS-CoV infection of primate cells. These inhibitory effects are observed when the cells are treated with the drug either before or after exposure to the virus, suggesting both prophylactic and therapeutic advantage. In addition to the well-known functions of chloroquine such as elevations of endosomal pH, the drug appears to interfere with terminal glycosylation of the cellular receptor, angiotensin-converting enzyme 2. This may negatively influence the virus-receptor binding and abrogate the infection, with further ramifications by the elevation of vesicular pH, resulting in the inhibition of infection and spread of SARS CoV at clinically admissible concentrations.</jats:p>\n </jats:sec>\n <jats:sec>\n <jats:title>Conclusion</jats:title>\n <jats:p>Chloroquine is effective in preventing the spread of SARS CoV in cell culture. Favorable inhibition of virus spread was observed when the cells were either treated with chloroquine prior to or after SARS CoV infection. In addition, the indirect immunofluorescence assay described herein represents a simple and rapid method for screening SARS-CoV antiviral compounds.</jats:p>\n </jats:sec>",
"alternative-id": [
"84"
],
"article-number": "69",
"assertion": [
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Received",
"name": "received",
"order": 1,
"value": "12 July 2005"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Accepted",
"name": "accepted",
"order": 2,
"value": "22 August 2005"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "First Online",
"name": "first_online",
"order": 3,
"value": "22 August 2005"
}
],
"author": [
{
"affiliation": [],
"family": "Vincent",
"given": "Martin J",
"sequence": "first"
},
{
"affiliation": [],
"family": "Bergeron",
"given": "Eric",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Benjannet",
"given": "Suzanne",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Erickson",
"given": "Bobbie R",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Rollin",
"given": "Pierre E",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Ksiazek",
"given": "Thomas G",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Seidah",
"given": "Nabil G",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Nichol",
"given": "Stuart T",
"sequence": "additional"
}
],
"container-title": "Virology Journal",
"container-title-short": "Virol J",
"content-domain": {
"crossmark-restriction": false,
"domain": [
"link.springer.com"
]
},
"created": {
"date-parts": [
[
2005,
8,
24
]
],
"date-time": "2005-08-24T06:16:41Z",
"timestamp": 1124864201000
},
"deposited": {
"date-parts": [
[
2021,
8,
31
]
],
"date-time": "2021-08-31T23:59:49Z",
"timestamp": 1630454389000
},
"indexed": {
"date-parts": [
[
2024,
5,
14
]
],
"date-time": "2024-05-14T12:34:46Z",
"timestamp": 1715690086626
},
"is-referenced-by-count": 1313,
"issue": "1",
"issued": {
"date-parts": [
[
2005,
8,
22
]
]
},
"journal-issue": {
"issue": "1",
"published-print": {
"date-parts": [
[
2005,
12
]
]
}
},
"language": "en",
"link": [
{
"URL": "https://link.springer.com/content/pdf/10.1186/1743-422X-2-69.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "297",
"original-title": [],
"prefix": "10.1186",
"published": {
"date-parts": [
[
2005,
8,
22
]
]
},
"published-online": {
"date-parts": [
[
2005,
8,
22
]
]
},
"published-print": {
"date-parts": [
[
2005,
12
]
]
},
"publisher": "Springer Science and Business Media LLC",
"reference": [
{
"DOI": "10.1056/NEJMoa030781",
"author": "TG Ksiazek",
"doi-asserted-by": "publisher",
"first-page": "1953",
"journal-title": "N Engl J Med",
"key": "84_CR1",
"unstructured": "Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota PB, Fields B, DeRisi J, Yang JY, Cox N, Hughes J, LeDuc JW, Bellini WJ, Anderson LJ, SARS Working Group: A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003, 348: 1953-1966. 10.1056/NEJMoa030781",
"volume": "348",
"year": "2003"
},
{
"DOI": "10.1126/science.1085953",
"author": "MA Marra",
"doi-asserted-by": "publisher",
"first-page": "1399",
"journal-title": "Science",
"key": "84_CR2",
"unstructured": "Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A, Coughlin SM, Freeman D, Girn N, Griffith OL, Leach SR, Mayo , McDonald H, Montgomery SB, Pandoh PK, Petrescu AS, Robertson AG, Schein JE, Siddiqui A, Smailus DE, Stott JM, Yang GS, Plummer F, Andonov A, Artsob H, Bastien N, Bernard K, Booth TF, Bowness D, Czub M, Drebot M, Fernando L, Flick R, Garbutt M, Gray M, Grolla A, Jones S, Feldmann H, Meyers A, Kabani A, Li Y, Normand S, Stroher U, Tipples GA, Tyler S, Vogrig R, Ward D, Watson B, Brunham RC, Krajden M, Petric M, Skowronski DM, Upton C, Roper RL: The Genome sequence of the SARS-associated coronavirus. Science 2003, 300: 1399-1404. 10.1126/science.1085953",
"volume": "300",
"year": "2003"
},
{
"DOI": "10.1126/science.1085952",
"author": "PA Rota",
"doi-asserted-by": "publisher",
"first-page": "1394",
"journal-title": "Science",
"key": "84_CR3",
"unstructured": "Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen Rasmussen M, Fouchier R, Gunther S, Osterhaus AS, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ: Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 2003, 300: 1394-1399. 10.1126/science.1085952",
"volume": "300",
"year": "2003"
},
{
"DOI": "10.1099/vir.0.19505-0",
"author": "ML Ng",
"doi-asserted-by": "publisher",
"first-page": "3291",
"journal-title": "J Gen Virol",
"key": "84_CR4",
"unstructured": "Ng ML, Tan SH, See EE, Ooi EE, Ling AE: Proliferative growth of SARS coronavirus in Vero E6 cells. J Gen Virol 2003, 84: 3291-3303. 10.1099/vir.0.19505-0",
"volume": "84",
"year": "2003"
},
{
"DOI": "10.1038/nature02145",
"author": "M Li",
"doi-asserted-by": "publisher",
"first-page": "450",
"journal-title": "Nature",
"key": "84_CR5",
"unstructured": "Li M, Moore WJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426: 450-454. 10.1038/nature02145",
"volume": "426",
"year": "2003"
},
{
"DOI": "10.1016/j.bbrc.2004.11.063",
"author": "E Bergeron",
"doi-asserted-by": "publisher",
"first-page": "554",
"journal-title": "Biochem Biophys Res Comm",
"key": "84_CR6",
"unstructured": "Bergeron E, Vincent MJ, Wickham L, Hamelin J, Basak A, Nichol ST, Chrétien M, NG Seidah: Implication of proprotein convertases in the processing and spread of severe acute respiratory syndrome coronavirus. Biochem Biophys Res Comm 2005, 326: 554-563. 10.1016/j.bbrc.2004.11.063",
"volume": "326",
"year": "2005"
},
{
"DOI": "10.1016/S0014-5793(04)00087-0",
"author": "Y Zhang",
"doi-asserted-by": "publisher",
"first-page": "141",
"journal-title": "FEBS Lett",
"key": "84_CR7",
"unstructured": "Zhang Y, Li T, Fu L, Yu C, Li Y, Xu X, Wang Y, Ning H, Zhang S, Chen W, Babiuk LA, Chang Z: Silencing SARS-CoV spike protein expression in cultured cells by RNA interference. FEBS Lett 2004, 560: 141-146. 10.1016/S0014-5793(04)00087-0",
"volume": "560",
"year": "2004"
},
{
"DOI": "10.1128/JVI.78.7.3572-3577.2004",
"author": "K Subbarao",
"doi-asserted-by": "publisher",
"first-page": "3572",
"journal-title": "J Virol",
"key": "84_CR8",
"unstructured": "Subbarao K, McAuliffe J, Vogel L, Fahle G, Fischer S, Tatti K, Packard M, Shieh WJ, Zaki S, Murphy B: Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol 2004, 78: 3572-3577. 10.1128/JVI.78.7.3572-3577.2004",
"volume": "78",
"year": "2004"
},
{
"DOI": "10.1038/nature02463",
"author": "ZY Yang",
"doi-asserted-by": "publisher",
"first-page": "561",
"journal-title": "Nature",
"key": "84_CR9",
"unstructured": "Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, Subbarao K, Nabel GJ: A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 2004, 428: 561-564. 10.1038/nature02463",
"volume": "428",
"year": "2004"
},
{
"DOI": "10.1073/pnas.0401939101",
"author": "H Bisht",
"doi-asserted-by": "publisher",
"first-page": "6641",
"journal-title": "Proc Natl Acad Sci USA",
"key": "84_CR10",
"unstructured": "Bisht H, Roberts A, Vogel L, Bukreyev A, Collins PL, Murphy BR, Subbarao K, Moss B: Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci USA 2004, 101: 6641-6646. 10.1073/pnas.0401939101",
"volume": "101",
"year": "2004"
},
{
"DOI": "10.1016/S0140-6736(04)16501-X",
"author": "A Bukreyev",
"doi-asserted-by": "publisher",
"first-page": "2122",
"journal-title": "Lancet",
"key": "84_CR11",
"unstructured": "Bukreyev A, Lamirande EW, Buchholz UJ, Vogel LN, Elkins WR, St. Claire M, Murphy BR, Subbarao K, Collins PL: Mucosal immunization of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 2004, 363: 2122-2127. 10.1016/S0140-6736(04)16501-X",
"volume": "363",
"year": "2004"
},
{
"DOI": "10.1016/j.virol.2004.08.011",
"author": "B Sainz Jr",
"doi-asserted-by": "publisher",
"first-page": "11",
"journal-title": "Virology",
"key": "84_CR12",
"unstructured": "Sainz B Jr, Mossel EC, Peters CJ, Garry RF: Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology 2004, 329: 11-17. 10.1016/j.virol.2004.08.011",
"volume": "329",
"year": "2004"
},
{
"DOI": "10.1086/382597",
"author": "U Stroher",
"doi-asserted-by": "publisher",
"first-page": "1164",
"journal-title": "J Infect Dis",
"key": "84_CR13",
"unstructured": "Stroher U, DiCaro A, Li Y, Strong JE, Aoki F, Plummer F, Jones SM, Feldmann H: Severe acute respiratory syndrome-related coronavirus is inhibited by interferon- alpha. J Infect Dis 2004, 189: 1164-1167. 10.1086/382597",
"volume": "189",
"year": "2004"
},
{
"DOI": "10.1073/pnas.0307140101",
"author": "J Sui",
"doi-asserted-by": "publisher",
"first-page": "2536",
"journal-title": "Proc Natl Acad Sci USA",
"key": "84_CR14",
"unstructured": "Sui J, Li W, Murakami A, Tamin A, Matthews LJ, Wong SK, Moore MJ, Tallarico AS, Olurinde M, Choe H, Anderson LJ, Bellini WJ, Farzan M, Marasco WA: Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci USA 2004, 101: 2536-2541. 10.1073/pnas.0307140101",
"volume": "101",
"year": "2004"
},
{
"DOI": "10.1016/S1473-3099(03)00806-5",
"author": "A Savarino",
"doi-asserted-by": "publisher",
"first-page": "722",
"journal-title": "Lancet Infect Dis",
"key": "84_CR15",
"unstructured": "Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R: Effects of chloroquine on viral infections: an old drug against today's diseases? Lancet Infect Dis 2003, 3: 722-727. 10.1016/S1473-3099(03)00806-5",
"volume": "3",
"year": "2003"
},
{
"DOI": "10.1002/jmv.10499",
"author": "ML Ng",
"doi-asserted-by": "publisher",
"first-page": "323",
"journal-title": "J Med Virol",
"key": "84_CR16",
"unstructured": "Ng ML, Tan SH, See EE, Ooi EE, Ling AE: Early events of SARS coronavirus infection in vero cells. J Med Virol 2003, 71: 323-331. 10.1002/jmv.10499",
"volume": "71",
"year": "2003"
},
{
"DOI": "10.1073/pnas.0306446101",
"author": "G Simmons",
"doi-asserted-by": "publisher",
"first-page": "4240",
"journal-title": "Proc Natl Acad Sci USA",
"key": "84_CR17",
"unstructured": "Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P: Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci USA 2004, 101: 4240-4245. 10.1073/pnas.0306446101",
"volume": "101",
"year": "2004"
},
{
"DOI": "10.1128/JVI.78.11.5642-5650.2004",
"author": "ZY Yang",
"doi-asserted-by": "publisher",
"first-page": "5642",
"journal-title": "J Virol",
"key": "84_CR18",
"unstructured": "Yang ZY, Huang Y, Ganesh L, Leung K, Kong WP, Schwartz O, Subbarao K, Nabel GJ: pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol 2004, 78: 5642-5650. 10.1128/JVI.78.11.5642-5650.2004",
"volume": "78",
"year": "2004"
},
{
"DOI": "10.1074/jbc.M002615200",
"author": "SR Tipnis",
"doi-asserted-by": "publisher",
"first-page": "33238",
"journal-title": "J Biol Chem",
"key": "84_CR19",
"unstructured": "Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ: A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 2000, 275: 33238-33243. 10.1074/jbc.M002615200",
"volume": "275",
"year": "2000"
},
{
"DOI": "10.1128/JVI.78.19.10328-10335.2004",
"author": "HC Song",
"doi-asserted-by": "publisher",
"first-page": "10328",
"journal-title": "J Virol",
"key": "84_CR20",
"unstructured": "Song HC, Seo MY, Stadler K, Yoo BJ, Choo QL, Coates SR, Uematsu Y, Harada T, Greer CE, Polo JM, Pileri P, Eickmann M, Rappuoli R, Abrignani S, Houghton M, Han JH: Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein. J Virol 2004, 78: 10328-10335. 10.1128/JVI.78.19.10328-10335.2004",
"volume": "78",
"year": "2004"
},
{
"DOI": "10.1016/j.bbrc.2004.08.085",
"author": "E Keyaerts",
"doi-asserted-by": "publisher",
"first-page": "264",
"journal-title": "Biochem Biophys Res Commun",
"key": "84_CR21",
"unstructured": "Keyaerts E, Vijgen L, Maes P, Neyts J, Ranst MV: In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun 2004, 323: 264-268. 10.1016/j.bbrc.2004.08.085",
"volume": "323",
"year": "2004"
},
{
"DOI": "10.1038/321618a0",
"author": "B Thorens",
"doi-asserted-by": "publisher",
"first-page": "618",
"journal-title": "Nature",
"key": "84_CR22",
"unstructured": "Thorens B, Vassalli P: Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion. Nature 1986, 321: 618-620. 10.1038/321618a0",
"volume": "321",
"year": "1986"
},
{
"DOI": "10.1099/0022-1317-62-1-91",
"author": "BJ Dille",
"doi-asserted-by": "publisher",
"first-page": "91",
"journal-title": "J Gen Virol",
"key": "84_CR23",
"unstructured": "Dille BJ, Johnson TC: Inhibition of vesicular stomatitis virus glycoprotein expression by chloroquine. J Gen Virol 1982, 62: 91-103.",
"volume": "62",
"year": "1982"
},
{
"DOI": "10.1089/aid.1990.6.481",
"author": "WP Tsai",
"doi-asserted-by": "publisher",
"first-page": "481",
"journal-title": "AIDS Res Hum Retroviruses",
"key": "84_CR24",
"unstructured": "Tsai WP, Nara PL, Kung HF, Oroszlan S: Inhibition of human immunodeficiency virus infectivity by chloroquine. AIDS Res Hum Retroviruses 1990, 6: 481-489.",
"volume": "6",
"year": "1990"
},
{
"DOI": "10.1097/00126334-200403010-00002",
"author": "A Savarino",
"doi-asserted-by": "publisher",
"first-page": "223",
"journal-title": "J Acquir Immune Defic Syndr",
"key": "84_CR25",
"unstructured": "Savarino A, Lucia MB, Rastrelli E, Rutella S, Golotta C, Morra E, Tamburrini E, Perno CF, Boelaert JR, Sperber K, Cauda RC: Anti-HIV effects of chloroquine: inhibition of viral particle glycosylation and synergism with protease inhibitors. J Acquir Immune Defic Syndr 2004, 35: 223-232.",
"volume": "35",
"year": "2004"
},
{
"DOI": "10.2165/00003088-199631040-00003",
"author": "J Ducharme",
"doi-asserted-by": "publisher",
"first-page": "257",
"journal-title": "Clin Pharmacokinet",
"key": "84_CR26",
"unstructured": "Ducharme J, Farinotti R: Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clin Pharmacokinet 1996, 31: 257-274.",
"volume": "31",
"year": "1996"
}
],
"reference-count": 26,
"references-count": 26,
"relation": {},
"resource": {
"primary": {
"URL": "https://virologyj.biomedcentral.com/articles/10.1186/1743-422X-2-69"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Chloroquine is a potent inhibitor of SARS coronavirus infection and spread",
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1007/springer_crossmark_policy",
"volume": "2"
}

