Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: Involvement of p38 MAPK and ERK
et al., Antiviral Research, 77:2, doi:10.1016/j.antiviral.2007.10.011, Dec 2007
HCQ for COVID-19
1st treatment shown to reduce risk in
March 2020, now with p < 0.00000000001 from 424 studies, used in 59 countries.
No treatment is 100% effective. Protocols
combine treatments.
6,200+ studies for
200+ treatments. c19early.org
|
CQ significantly decreased viral replication of HCoV-229E at concentrations lower than in clinical usage. CQ affects the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK). p38 MAPK inhibitor, SB203580, inhibits CPE induced by HCoV-229E infection and viral replication.
39 preclinical studies support the efficacy of HCQ for COVID-19:
1.
Shang et al., Identification of Cathepsin L as the molecular target of hydroxychloroquine with chemical proteomics, Molecular & Cellular Proteomics, doi:10.1016/j.mcpro.2025.101314.
2.
González-Paz et al., Biophysical Analysis of Potential Inhibitors of SARS-CoV-2 Cell Recognition and Their Effect on Viral Dynamics in Different Cell Types: A Computational Prediction from In Vitro Experimental Data, ACS Omega, doi:10.1021/acsomega.3c06968.
3.
Alkafaas et al., A study on the effect of natural products against the transmission of B.1.1.529 Omicron, Virology Journal, doi:10.1186/s12985-023-02160-6.
4.
Guimarães Silva et al., Are Non-Structural Proteins From SARS-CoV-2 the Target of Hydroxychloroquine? An in Silico Study, ACTA MEDICA IRANICA, doi:10.18502/acta.v61i2.12533.
5.
Nguyen et al., The Potential of Ameliorating COVID-19 and Sequelae From Andrographis paniculata via Bioinformatics, Bioinformatics and Biology Insights, doi:10.1177/11779322221149622.
7.
Yadav et al., Repurposing the Combination Drug of Favipiravir, Hydroxychloroquine and Oseltamivir as a Potential Inhibitor Against SARS-CoV-2: A Computational Study, Research Square, doi:10.21203/rs.3.rs-628277/v1.
8.
Hussein et al., Molecular Docking Identification for the efficacy of Some Zinc Complexes with Chloroquine and Hydroxychloroquine against Main Protease of COVID-19, Journal of Molecular Structure, doi:10.1016/j.molstruc.2021.129979.
9.
Baildya et al., Inhibitory capacity of Chloroquine against SARS-COV-2 by effective binding with Angiotensin converting enzyme-2 receptor: An insight from molecular docking and MD-simulation studies, Journal of Molecular Structure, doi:10.1016/j.molstruc.2021.129891.
10.
Noureddine et al., Quantum chemical studies on molecular structure, AIM, ELF, RDG and antiviral activities of hybrid hydroxychloroquine in the treatment of COVID-19: molecular docking and DFT calculations, Journal of King Saud University - Science, doi:10.1016/j.jksus.2020.101334.
11.
Tarek et al., Pharmacokinetic Basis of the Hydroxychloroquine Response in COVID-19: Implications for Therapy and Prevention, European Journal of Drug Metabolism and Pharmacokinetics, doi:10.1007/s13318-020-00640-6.
12.
Rowland Yeo et al., Impact of Disease on Plasma and Lung Exposure of Chloroquine, Hydroxychloroquine and Azithromycin: Application of PBPK Modeling, Clinical Pharmacology & Therapeutics, doi:10.1002/cpt.1955.
13.
Hitti et al., Hydroxychloroquine attenuates double-stranded RNA-stimulated hyper-phosphorylation of tristetraprolin/ZFP36 and AU-rich mRNA stabilization, Immunology, doi:10.1111/imm.13835.
14.
Yan et al., Super-resolution imaging reveals the mechanism of endosomal acidification inhibitors against SARS-CoV-2 infection, ChemBioChem, doi:10.1002/cbic.202400404.
15.
Mohd Abd Razak et al., In Vitro Anti-SARS-CoV-2 Activities of Curcumin and Selected Phenolic Compounds, Natural Product Communications, doi:10.1177/1934578X231188861.
16.
Alsmadi et al., The In Vitro, In Vivo, and PBPK Evaluation of a Novel Lung-Targeted Cardiac-Safe Hydroxychloroquine Inhalation Aerogel, AAPS PharmSciTech, doi:10.1208/s12249-023-02627-3.
17.
Wen et al., Cholinergic α7 nAChR signaling suppresses SARS-CoV-2 infection and inflammation in lung epithelial cells, Journal of Molecular Cell Biology, doi:10.1093/jmcb/mjad048.
18.
Kamga Kapchoup et al., In vitro effect of hydroxychloroquine on pluripotent stem cells and their cardiomyocytes derivatives, Frontiers in Pharmacology, doi:10.3389/fphar.2023.1128382.
19.
Milan Bonotto et al., Cathepsin inhibitors nitroxoline and its derivatives inhibit SARS-CoV-2 infection, Antiviral Research, doi:10.1016/j.antiviral.2023.105655.
20.
Miao et al., SIM imaging resolves endocytosis of SARS-CoV-2 spike RBD in living cells, Cell Chemical Biology, doi:10.1016/j.chembiol.2023.02.001.
21.
Yuan et al., Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway in mammalian cell culture, Communications Biology, doi:10.1038/s42003-022-03841-8.
22.
Faísca et al., Enhanced In Vitro Antiviral Activity of Hydroxychloroquine Ionic Liquids against SARS-CoV-2, Pharmaceutics, doi:10.3390/pharmaceutics14040877.
23.
Delandre et al., Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants, Pharmaceuticals, doi:10.3390/ph15040445.
24.
Purwati et al., An in vitro study of dual drug combinations of anti-viral agents, antibiotics, and/or hydroxychloroquine against the SARS-CoV-2 virus isolated from hospitalized patients in Surabaya, Indonesia, PLOS One, doi:10.1371/journal.pone.0252302.
25.
Zhang et al., SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination, Cell Death & Differentiation, doi:10.1038/s41418-021-00782-3.
26.
Dang et al., Structural basis of anti-SARS-CoV-2 activity of hydroxychloroquine: specific binding to NTD/CTD and disruption of LLPS of N protein, bioRxiv, doi:10.1101/2021.03.16.435741.
27.
Shang (B) et al., Inhibitors of endosomal acidification suppress SARS-CoV-2 replication and relieve viral pneumonia in hACE2 transgenic mice, Virology Journal, doi:10.1186/s12985-021-01515-1.
28.
Wang et al., Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus, Phytomedicine, doi:10.1016/j.phymed.2020.153333.
29.
Sheaff, R., A New Model of SARS-CoV-2 Infection Based on (Hydroxy)Chloroquine Activity, bioRxiv, doi:10.1101/2020.08.02.232892.
30.
Ou et al., Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2, PLOS Pathogens, doi:10.1371/journal.ppat.1009212.
31.
Andreani et al., In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect, Microbial Pathogenesis, doi:10.1016/j.micpath.2020.104228.
32.
Clementi et al., Combined Prophylactic and Therapeutic Use Maximizes Hydroxychloroquine Anti-SARS-CoV-2 Effects in vitro, Front. Microbiol., 10 July 2020, doi:10.3389/fmicb.2020.01704.
33.
Liu et al., Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell Discovery 6, 16 (2020), doi:10.1038/s41421-020-0156-0.
34.
Yao et al., In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Clin. Infect. Dis., 2020 Mar 9, doi:10.1093/cid/ciaa237.
Kono et al., 4 Dec 2007, peer-reviewed, 6 authors.
In vitro studies are an important part of preclinical research, however results may be very different in vivo.
Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: Involvement of p38 MAPK and ERK
Antiviral Research, doi:10.1016/j.antiviral.2007.10.011
The antiviral effects of chloroquine (CQ) on human coronavirus 229E (HCoV-229E) infection of human fetal lung cell line, L132 are reported. CQ significantly decreased the viral replication at concentrations lower than in clinical usage. We demonstrated that CQ affects the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK). Furthermore, p38 MAPK inhibitor, SB203580, inhibits CPE induced by HCoV-229E infection and viral replication. Our findings suggest that CQ affects the activation of MAPKs, involved in the replication of HCoV-229E.
References
Banerjee, Murine coronavirus replication-induced p38 mitogenactivated protein kinase activation promotes interleukin-6 production and virus replication in cultured cells, J. Virol
Barnard, Evaluation of immunomodulators, interferons and known in vitro SARS-CoV inhibitors for inhibition of SARS-CoV replication in BALB/c mice, Antivir. Chem. Chemother
Kopecky-Bromberg, 7a Protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogenactivated protein kinase, J. Virol
Nauwynck, Entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages via receptor-mediated endocytosis, J. Gen. Virol
Ng, Proliferative growth of SARS coronavirus in Vero E6 cells, J. Gen. Virol
Pleschka, Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade, Nat. Cell Biol
Savarino, Effects of chloroquine on viral infections: an old drug against today's diseases?, Lancet Infect. Dis
Sperber, Inhibition of human immunodeficiency virus type 1 replication by hydroxychloroquine in T cells and monocytes, AIDS Res. Hum. Retrov
Su, Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response, J. Virol
Van Elden, Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction, J. Infect. Dis
Vincent, Chloroquine is a potent inhibitor of SARS coronavirus infection and spread, Virol. J
Weber, Inhibition of mitogen-activated protein kinase signaling by chloroquine, J. Immunol
Xia, Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis, Science
Yi, Krieg, Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA, J. Immunol
DOI record:
{
"DOI": "10.1016/j.antiviral.2007.10.011",
"ISSN": [
"0166-3542"
],
"URL": "http://dx.doi.org/10.1016/j.antiviral.2007.10.011",
"alternative-id": [
"S0166354207004597"
],
"author": [
{
"affiliation": [],
"family": "Kono",
"given": "Masakazu",
"sequence": "first"
},
{
"affiliation": [],
"family": "Tatsumi",
"given": "Koichiro",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Imai",
"given": "Alberto M.",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Saito",
"given": "Kengo",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Kuriyama",
"given": "Takayuki",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Shirasawa",
"given": "Hiroshi",
"sequence": "additional"
}
],
"container-title": "Antiviral Research",
"container-title-short": "Antiviral Research",
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2007,
12,
5
]
],
"date-time": "2007-12-05T14:48:26Z",
"timestamp": 1196866106000
},
"deposited": {
"date-parts": [
[
2023,
5,
15
]
],
"date-time": "2023-05-15T04:12:33Z",
"timestamp": 1684123953000
},
"indexed": {
"date-parts": [
[
2024,
5,
9
]
],
"date-time": "2024-05-09T13:14:22Z",
"timestamp": 1715260462263
},
"is-referenced-by-count": 123,
"issue": "2",
"issued": {
"date-parts": [
[
2008,
2
]
]
},
"journal-issue": {
"issue": "2",
"published-print": {
"date-parts": [
[
2008,
2
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://www.elsevier.com/tdm/userlicense/1.0/",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2008,
2,
1
]
],
"date-time": "2008-02-01T00:00:00Z",
"timestamp": 1201824000000
}
}
],
"link": [
{
"URL": "https://api.elsevier.com/content/article/PII:S0166354207004597?httpAccept=text/xml",
"content-type": "text/xml",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://api.elsevier.com/content/article/PII:S0166354207004597?httpAccept=text/plain",
"content-type": "text/plain",
"content-version": "vor",
"intended-application": "text-mining"
}
],
"member": "78",
"original-title": [],
"page": "150-152",
"prefix": "10.1016",
"published": {
"date-parts": [
[
2008,
2
]
]
},
"published-print": {
"date-parts": [
[
2008,
2
]
]
},
"publisher": "Elsevier BV",
"reference": [
{
"DOI": "10.1128/JVI.76.12.5937-5948.2002",
"article-title": "Murine coronavirus replication-induced p38 mitogen-activated protein kinase activation promotes interleukin-6 production and virus replication in cultured cells",
"author": "Banerjee",
"doi-asserted-by": "crossref",
"first-page": "5937",
"journal-title": "J. Virol.",
"key": "10.1016/j.antiviral.2007.10.011_bib1",
"volume": "76",
"year": "2002"
},
{
"DOI": "10.1177/095632020601700505",
"article-title": "Evaluation of immunomodulators, interferons and known in vitro SARS-CoV inhibitors for inhibition of SARS-CoV replication in BALB/c mice",
"author": "Barnard",
"doi-asserted-by": "crossref",
"first-page": "275",
"journal-title": "Antivir. Chem. Chemother.",
"key": "10.1016/j.antiviral.2007.10.011_bib2",
"volume": "17",
"year": "2006"
},
{
"DOI": "10.1128/JVI.80.2.785-793.2006",
"article-title": "7a Protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogen-activated protein kinase",
"author": "Kopecky-Bromberg",
"doi-asserted-by": "crossref",
"first-page": "785",
"journal-title": "J. Virol.",
"key": "10.1016/j.antiviral.2007.10.011_bib3",
"volume": "80",
"year": "2006"
},
{
"DOI": "10.1099/0022-1317-80-2-297",
"article-title": "Entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages via receptor-mediated endocytosis",
"author": "Nauwynck",
"doi-asserted-by": "crossref",
"first-page": "297",
"journal-title": "J. Gen. Virol.",
"key": "10.1016/j.antiviral.2007.10.011_bib4",
"volume": "80",
"year": "1999"
},
{
"DOI": "10.1099/vir.0.19505-0",
"article-title": "Proliferative growth of SARS coronavirus in Vero E6 cells",
"author": "Ng",
"doi-asserted-by": "crossref",
"first-page": "3291",
"journal-title": "J. Gen. Virol.",
"key": "10.1016/j.antiviral.2007.10.011_bib5",
"volume": "84",
"year": "2003"
},
{
"DOI": "10.1038/35060098",
"article-title": "Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade",
"author": "Pleschka",
"doi-asserted-by": "crossref",
"first-page": "301",
"journal-title": "Nat. Cell Biol.",
"key": "10.1016/j.antiviral.2007.10.011_bib6",
"volume": "3",
"year": "2001"
},
{
"DOI": "10.1016/S1473-3099(03)00806-5",
"article-title": "Effects of chloroquine on viral infections: an old drug against today's diseases?",
"author": "Savarino",
"doi-asserted-by": "crossref",
"first-page": "722",
"journal-title": "Lancet Infect. Dis.",
"key": "10.1016/j.antiviral.2007.10.011_bib7",
"volume": "3",
"year": "2003"
},
{
"DOI": "10.1089/aid.1993.9.91",
"article-title": "Inhibition of human immunodeficiency virus type 1 replication by hydroxychloroquine in T cells and monocytes",
"author": "Sperber",
"doi-asserted-by": "crossref",
"first-page": "9",
"journal-title": "AIDS Res. Hum. Retrov.",
"key": "10.1016/j.antiviral.2007.10.011_bib8",
"volume": "9",
"year": "1993"
},
{
"DOI": "10.1128/JVI.76.9.4162-4171.2002",
"article-title": "Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response",
"author": "Su",
"doi-asserted-by": "crossref",
"first-page": "4162",
"journal-title": "J. Virol.",
"key": "10.1016/j.antiviral.2007.10.011_bib9",
"volume": "76",
"year": "2002"
},
{
"DOI": "10.1086/381207",
"article-title": "Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction",
"author": "van Elden",
"doi-asserted-by": "crossref",
"first-page": "652",
"journal-title": "J. Infect. Dis.",
"key": "10.1016/j.antiviral.2007.10.011_bib10",
"volume": "189",
"year": "2004"
},
{
"DOI": "10.1186/1743-422X-2-69",
"article-title": "Chloroquine is a potent inhibitor of SARS coronavirus infection and spread",
"author": "Vincent",
"doi-asserted-by": "crossref",
"first-page": "69",
"journal-title": "Virol. J.",
"key": "10.1016/j.antiviral.2007.10.011_bib11",
"volume": "2",
"year": "2005"
},
{
"DOI": "10.4049/jimmunol.168.10.5303",
"article-title": "Inhibition of mitogen-activated protein kinase signaling by chloroquine",
"author": "Weber",
"doi-asserted-by": "crossref",
"first-page": "5303",
"journal-title": "J. Immunol.",
"key": "10.1016/j.antiviral.2007.10.011_bib12",
"volume": "168",
"year": "2002"
},
{
"DOI": "10.1126/science.270.5240.1326",
"article-title": "Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis",
"author": "Xia",
"doi-asserted-by": "crossref",
"first-page": "1326",
"journal-title": "Science",
"key": "10.1016/j.antiviral.2007.10.011_bib13",
"volume": "24",
"year": "1995"
},
{
"DOI": "10.4049/jimmunol.161.9.4493",
"article-title": "Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA",
"author": "Yi",
"doi-asserted-by": "crossref",
"first-page": "4493",
"journal-title": "J. Immunol.",
"key": "10.1016/j.antiviral.2007.10.011_bib14",
"volume": "161",
"year": "1998"
}
],
"reference-count": 14,
"references-count": 14,
"relation": {},
"resource": {
"primary": {
"URL": "https://linkinghub.elsevier.com/retrieve/pii/S0166354207004597"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: Involvement of p38 MAPK and ERK",
"type": "journal-article",
"volume": "77"
}

