Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All HCQ studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19hcq.org COVID-19 treatment researchHCQHCQ (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Antiviral Activity of Chloroquine against Human Coronavirus OC43 Infection in Newborn Mice

Keyaerts et al., Antimicrob. Agents Chemother, August 2009, 53(8), doi:10.1128/AAC.01509-08
Aug 2009  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
HCQ for COVID-19
1st treatment shown to reduce risk in March 2020
 
*, now with p < 0.00000000001 from 418 studies, recognized in 46 countries.
No treatment is 100% effective. Protocols combine treatments. * >10% efficacy, ≥3 studies.
5,000+ studies for 104 treatments. c19hcq.org
CQ inhibits HCoV-OC43 replication in HRT-18 cells. A lethal HCoV-OC43 infection in newborn C57BL/6 mice can be treated with CQ acquired transplacentally or via maternal milk. The highest survival rate (98.6%) was found when mother mice were treated daily with a concentration of 15 mg of CQ per kg of body weight. Survival rates declined in a dose-dependent manner, with 88% survival when treated with 5 mg/kg CQ and 13% survival when treated with 1 mg/kg CQ. CQ can be highly effective against HCoV-OC43 infection in newborn mice and may be considered as a future drug against HCoVs.
38 preclinical studies support the efficacy of HCQ for COVID-19:
Keyaerts et al., 1 Aug 2009, peer-reviewed, 7 authors.
This PaperHCQAll
Antiviral Activity of Chloroquine against Human Coronavirus OC43 Infection in Newborn Mice
Els Keyaerts, Sandra Li, Leen Vijgen, Evelien Rysman, Jannick Verbeeck, Marc Van Ranst, Piet Maes
Antimicrobial Agents and Chemotherapy, doi:10.1128/aac.01509-08
Until recently, human coronaviruses (HCoVs), such as HCoV strain OC43 (HCoV-OC43), were mainly known to cause 15 to 30% of mild upper respiratory tract infections. In recent years, the identification of new HCoVs, including severe acute respiratory syndrome coronavirus, revealed that HCoVs can be highly pathogenic and can cause more severe upper and lower respiratory tract infections, including bronchiolitis and pneumonia. To date, no specific antiviral drugs to prevent or treat HCoV infections are available. We demonstrate that chloroquine, a widely used drug with well-known antimalarial effects, inhibits HCoV-OC43 replication in HRT-18 cells, with a 50% effective concentration (؎ standard deviation) of 0.306 ؎ 0.0091 M and a 50% cytotoxic concentration (؎ standard deviation) of 419 ؎ 192.5 M, resulting in a selectivity index of 1,369. Further, we investigated whether chloroquine could prevent HCoV-OC43-induced death in newborn mice. Our results show that a lethal HCoV-OC43 infection in newborn C57BL/6 mice can be treated with chloroquine acquired transplacentally or via maternal milk. The highest survival rate (98.6%) of the pups was found when mother mice were treated daily with a concentration of 15 mg of chloroquine per kg of body weight. Survival rates declined in a dose-dependent manner, with 88% survival when treated with 5 mg/kg chloroquine and 13% survival when treated with 1 mg/kg chloroquine. Our results show that chloroquine can be highly effective against HCoV-OC43 infection in newborn mice and may be considered as a future drug against HCoVs.
References
Akintonwa, Gbajumo, Mabadeje, Placental and milk transfer of chloroquine in humans, Ther. Drug Monit
Akintonwa, Meyer, Yau, Placental transfer of chloroquine in pregnant rabbits, Res. Commun. Chem. Pathol. Pharmacol
Arbour, Day, Newcombe, Talbot, Neuroinvasion by human respiratory coronaviruses, J. Virol
Arden, Nissen, Sloots, Mackay, New human coronavirus, HCoV-NL63, associated with severe lower respiratory tract disease in Australia, J. Med. Virol
Augustijns, Jongsma, Verbeke, Transplacental distribution of chloroquine in sheep, Dev. Pharmacol. Ther
Barnard, Day, Bailey, Heiner, Montgomery et al., Evaluation of immunomodulators, interferons and known in vitro SARS-coV inhibitors for inhibition of SARS-coV replication in BALB/c mice, Antivir. Chem. Chemother
Blau, Holmes, Human coronavirus HCoV-229E enters susceptible cells via the endocytic pathway
Boelaert, Yaro, Augustijns, Meda, Schneider et al., Chloroquine accumulates in breast-milk cells: potential impact in the prophylaxis of postnatal mother-to-child transmission of HIV-1, AIDS
Chiu, Chan, Chu, Kwan, Guan et al., Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China, Clin. Infect. Dis
Choi, Lee, Kim, Eun, Kim et al., The association of newly identified respiratory viruses with lower respiratory tract infections in Korean children, 2000-2005, Clin. Infect. Dis
Essien, Afamefuna, Chloroquine and its metabolites in human cord blood, neonatal blood, and urine after maternal medication, Clin. Chem
Fouchier, Hartwig, Bestebroer, Niemeyer, Jong et al., A previously undescribed coronavirus associated with respiratory disease in humans, Proc. Natl. Acad. Sci
Gorbalenya, Snijder, Spaan, Severe acute respiratory syndrome coronavirus phylogeny: toward consensus, J. Virol
Jacomy, Talbot, Susceptibility of murine CNS to OC43 infection, Adv. Exp. Med. Biol
Jacomy, Talbot, Vacuolating encephalitis in mice infected by human coronavirus OC43, Virology
Keyaerts, Vijgen, Maes, Neyts, Van Ranst, In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine, Biochem. Biophys. Res. Commun
Kono, Tatsumi, Imai, Saito, Kuriyama et al., Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: involvement of p38 MAPK and ERK, Antivir. Res
Kouroumalis, Koskinas, Treatment of chronic active hepatitis B (CAH B) with chloroquine: a preliminary report, Ann. Acad. Med. Singapore
Ksiazek, Erdman, Goldsmith, Zaki, Peret et al., A novel coronavirus associated with severe acute respiratory syndrome, N. Engl. J. Med
Lai, Holmes, Coronaviridae: the viruses and their replication
Larson, Reed, Tyrrell, Isolation of rhinoviruses and coronaviruses from 38 colds in adults, J. Med. Virol
Lau, Woo, Yip, Tse, Tsoi et al., Coronavirus HKU1 and other coronavirus infections in Hong Kong, J. Clin. Microbiol
Pardridge, Yang, Diagne, Chloroquine inhibits HIV-1 replication in human peripheral blood lymphocytes, Immunol. Lett
Rubin, Bernstein, Zvaifler, Studies on the pharmacology of chloroquine. Recommendations for the treatment of chloroquine retinopathy, Arch. Ophthalmol
Savarino, Boelaert, Cassone, Majori, Cauda, Effects of chloroquine on viral infections: an old drug against today's diseases?, Lancet Infect. Dis
Savarino, Gennero, Sperber, Boelaert, The anti-HIV-1 activity of chloroquine, J. Clin. Virol
Singh, Sidhu, Friedman, Maheshwari, Mechanism of enhancement of the antiviral action of interferon against herpes simplex virus-1 by chloroquine, J. Interferon Cytokine Res
Tsai, Nara, Kung, Oroszlan, Inhibition of human immunodeficiency virus infectivity by chloroquine, AIDS Res. Hum. Retrovir
Van Der Hoek, Pyrc, Jebbink, Vermeulen-Oost, Berkhout et al., Identification of a new human coronavirus, Nat. Med
Vijgen, Keyaerts, Lemey, Maes, Van Reeth et al., Evolutionary history of the closely related group 2 coronaviruses: porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43, J. Virol
Vijgen, Keyaerts, Lemey, Moes, Li et al., Circulation of genetically distinct contemporary human coronavirus OC43 strains, Virology
Vijgen, Keyaerts, Moes, Maes, Duson et al., Development of one-step, real-time, quantitative reverse transcriptase PCR assays for absolute quantitation of human coronaviruses OC43 and 229E, J. Clin. Microbiol
Vijgen, Keyaerts, Moes, Thoelen, Wollants et al., Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event, J. Virol
Vincent, Bergeron, Benjannet, Erickson, Rollin et al., Chloroquine is a potent inhibitor of SARS coronavirus infection and spread, Virol. J
Woo, Lau, Chu, Chan, Tsoi et al., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia, J. Virol
Woo, Lau, Tsoi, Huang, Poon et al., Clinical and molecular epidemiological features of coronavirus HKU1-associated community-acquired pneumonia, J. Infect. Dis
{ 'indexed': {'date-parts': [[2024, 5, 14]], 'date-time': '2024-05-14T12:35:38Z', 'timestamp': 1715690138699}, 'reference-count': 36, 'publisher': 'American Society for Microbiology', 'issue': '8', 'license': [ { 'start': { 'date-parts': [[2009, 8, 1]], 'date-time': '2009-08-01T00:00:00Z', 'timestamp': 1249084800000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://journals.asm.org/non-commercial-tdm-license'}], 'content-domain': {'domain': ['journals.asm.org'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2009, 8]]}, 'abstract': '<jats:title>ABSTRACT</jats:title>\n' ' <jats:p>Until recently, human coronaviruses (HCoVs), such as HCoV strain OC43 ' '(HCoV-OC43), were mainly known to cause 15 to 30% of mild upper respiratory tract infections. ' 'In recent years, the identification of new HCoVs, including severe acute respiratory syndrome ' 'coronavirus, revealed that HCoVs can be highly pathogenic and can cause more severe upper and ' 'lower respiratory tract infections, including bronchiolitis and pneumonia. To date, no ' 'specific antiviral drugs to prevent or treat HCoV infections are available. We demonstrate ' 'that chloroquine, a widely used drug with well-known antimalarial effects, inhibits HCoV-OC43 ' 'replication in HRT-18 cells, with a 50% effective concentration (± standard deviation) of ' '0.306 ± 0.0091 μM and a 50% cytotoxic concentration (± standard deviation) of 419 ± 192.5 μM, ' 'resulting in a selectivity index of 1,369. Further, we investigated whether chloroquine could ' 'prevent HCoV-OC43-induced death in newborn mice. Our results show that a lethal HCoV-OC43 ' 'infection in newborn C57BL/6 mice can be treated with chloroquine acquired transplacentally ' 'or via maternal milk. The highest survival rate (98.6%) of the pups was found when mother ' 'mice were treated daily with a concentration of 15 mg of chloroquine per kg of body weight. ' 'Survival rates declined in a dose-dependent manner, with 88% survival when treated with 5 ' 'mg/kg chloroquine and 13% survival when treated with 1 mg/kg chloroquine. Our results show ' 'that chloroquine can be highly effective against HCoV-OC43 infection in newborn mice and may ' 'be considered as a future drug against HCoVs.</jats:p>', 'DOI': '10.1128/aac.01509-08', 'type': 'journal-article', 'created': {'date-parts': [[2009, 6, 9]], 'date-time': '2009-06-09T01:49:59Z', 'timestamp': 1244512199000}, 'page': '3416-3421', 'update-policy': 'http://dx.doi.org/10.1128/asmj-crossmark-policy-page', 'source': 'Crossref', 'is-referenced-by-count': 226, 'title': 'Antiviral Activity of Chloroquine against Human Coronavirus OC43 Infection in Newborn Mice', 'prefix': '10.1128', 'volume': '53', 'author': [ { 'given': 'Els', 'family': 'Keyaerts', 'sequence': 'first', 'affiliation': [ { 'name': 'Laboratory of Clinical Virology, Department of Microbiology and ' 'Immunology, Rega Institute for Medical Research, University of ' 'Leuven, Leuven, Belgium'}]}, { 'given': 'Sandra', 'family': 'Li', 'sequence': 'additional', 'affiliation': [ { 'name': 'Laboratory of Clinical Virology, Department of Microbiology and ' 'Immunology, Rega Institute for Medical Research, University of ' 'Leuven, Leuven, Belgium'}]}, { 'given': 'Leen', 'family': 'Vijgen', 'sequence': 'additional', 'affiliation': [ { 'name': 'Laboratory of Clinical Virology, Department of Microbiology and ' 'Immunology, Rega Institute for Medical Research, University of ' 'Leuven, Leuven, Belgium'}]}, { 'given': 'Evelien', 'family': 'Rysman', 'sequence': 'additional', 'affiliation': [ { 'name': 'Laboratory of Clinical Virology, Department of Microbiology and ' 'Immunology, Rega Institute for Medical Research, University of ' 'Leuven, Leuven, Belgium'}]}, { 'given': 'Jannick', 'family': 'Verbeeck', 'sequence': 'additional', 'affiliation': [ { 'name': 'Laboratory of Clinical Virology, Department of Microbiology and ' 'Immunology, Rega Institute for Medical Research, University of ' 'Leuven, Leuven, Belgium'}]}, { 'given': 'Marc', 'family': 'Van Ranst', 'sequence': 'additional', 'affiliation': [ { 'name': 'Laboratory of Clinical Virology, Department of Microbiology and ' 'Immunology, Rega Institute for Medical Research, University of ' 'Leuven, Leuven, Belgium'}]}, { 'given': 'Piet', 'family': 'Maes', 'sequence': 'additional', 'affiliation': [ { 'name': 'Laboratory of Clinical Virology, Department of Microbiology and ' 'Immunology, Rega Institute for Medical Research, University of ' 'Leuven, Leuven, Belgium'}]}], 'member': '235', 'reference': [ { 'key': 'e_1_3_2_2_2', 'doi-asserted-by': 'crossref', 'first-page': '147', 'DOI': '10.1097/00007691-198802000-00004', 'volume': '10', 'year': '1988', 'unstructured': 'Akintonwa, A., S. A. Gbajumo, and A. F. Mabadeje. 1988. Placental and ' 'milk transfer of chloroquine in humans. Ther. Drug Monit.10:147-149.', 'journal-title': 'Ther. Drug Monit.'}, { 'key': 'e_1_3_2_3_2', 'first-page': '443', 'volume': '40', 'year': '1983', 'unstructured': 'Akintonwa, A., M. C. Meyer, and M. K. Yau. 1983. Placental transfer of ' 'chloroquine in pregnant rabbits. Res. Commun. Chem. Pathol. ' 'Pharmacol.40:443-455.', 'journal-title': 'Res. Commun. Chem. Pathol. Pharmacol.'}, { 'key': 'e_1_3_2_4_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.74.19.8913-8921.2000'}, {'key': 'e_1_3_2_5_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/jmv.20288'}, { 'key': 'e_1_3_2_6_2', 'doi-asserted-by': 'crossref', 'first-page': '191', 'DOI': '10.1159/000457522', 'volume': '17', 'year': '1991', 'unstructured': 'Augustijns, P., H. W. Jongsma, and N. Verbeke. 1991. Transplacental ' 'distribution of chloroquine in sheep. Dev. Pharmacol. Ther.17:191-199.', 'journal-title': 'Dev. Pharmacol. Ther.'}, {'key': 'e_1_3_2_7_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1177/095632020601700505'}, { 'key': 'e_1_3_2_8_2', 'first-page': '193', 'year': '2001', 'unstructured': 'Blau, D., and K. V. Holmes. 2001. Human coronavirus HCoV-229E enters ' 'susceptible cells via the endocytic pathway, p. 193-197. In E. Lavi ' '(ed.), The nidoviruses, coronaviruses and arteriviruses. Kluwer, New ' 'York, NY.', 'journal-title': 'The nidoviruses, coronaviruses and arteriviruses'}, { 'key': 'e_1_3_2_9_2', 'doi-asserted-by': 'crossref', 'first-page': '2205', 'DOI': '10.1097/00002030-200111090-00024', 'volume': '15', 'year': '2001', 'unstructured': 'Boelaert, J. R., S. Yaro, P. Augustijns, N. Meda, Y. J. Schneider, D. ' 'Schols, R. Mols, E. A. De Laere, and P. Van de Perre. 2001. Chloroquine ' 'accumulates in breast-milk cells: potential impact in the prophylaxis of ' 'postnatal mother-to-child transmission of HIV-1. AIDS15:2205-2207.', 'journal-title': 'AIDS'}, {'key': 'e_1_3_2_10_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1086/430301'}, {'key': 'e_1_3_2_11_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1086/506350'}, { 'key': 'e_1_3_2_12_2', 'doi-asserted-by': 'crossref', 'first-page': '1148', 'DOI': '10.1093/clinchem/28.5.1148', 'volume': '28', 'year': '1982', 'unstructured': 'Essien, E. E., and G. C. Afamefuna. 1982. Chloroquine and its ' 'metabolites in human cord blood, neonatal blood, and urine after ' 'maternal medication. Clin. Chem.28:1148-1152.', 'journal-title': 'Clin. Chem.'}, {'key': 'e_1_3_2_13_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.0400762101'}, { 'key': 'e_1_3_2_14_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.78.15.7863-7866.2004'}, { 'key': 'e_1_3_2_15_2', 'doi-asserted-by': 'crossref', 'first-page': '101', 'DOI': '10.1007/978-1-4615-1325-4_16', 'volume': '494', 'year': '2001', 'unstructured': 'Jacomy, H., and P. J. Talbot. 2001. Susceptibility of murine CNS to OC43 ' 'infection. Adv. Exp. Med. Biol.494:101-107.', 'journal-title': 'Adv. Exp. Med. Biol.'}, { 'key': 'e_1_3_2_16_2', 'doi-asserted-by': 'crossref', 'first-page': '20', 'DOI': '10.1016/S0042-6822(03)00323-4', 'volume': '315', 'year': '2003', 'unstructured': 'Jacomy, H., and P. J. Talbot. 2003. Vacuolating encephalitis in mice ' 'infected by human coronavirus OC43. Virology315:20-33.', 'journal-title': 'Virology'}, {'key': 'e_1_3_2_17_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.bbrc.2004.08.085'}, { 'key': 'e_1_3_2_18_2', 'doi-asserted-by': 'crossref', 'first-page': '150', 'DOI': '10.1016/j.antiviral.2007.10.011', 'volume': '77', 'year': '2008', 'unstructured': 'Kono, M., K. Tatsumi, A. M. Imai, K. Saito, T. Kuriyama, and H. ' 'Shirasawa. 2008. Inhibition of human coronavirus 229E infection in human ' 'epithelial lung cells (L132) by chloroquine: involvement of p38 MAPK and ' 'ERK. Antivir. Res.77:150-152.', 'journal-title': 'Antivir. Res.'}, { 'key': 'e_1_3_2_19_2', 'first-page': '149', 'volume': '15', 'year': '1986', 'unstructured': 'Kouroumalis, E. A., and J. Koskinas. 1986. Treatment of chronic active ' 'hepatitis B (CAH B) with chloroquine: a preliminary report. Ann. Acad. ' 'Med. Singapore15:149-152.', 'journal-title': 'Ann. Acad. Med. Singapore'}, {'key': 'e_1_3_2_20_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa030781'}, { 'key': 'e_1_3_2_21_2', 'first-page': '1163', 'year': '2001', 'unstructured': 'Lai, M. M. C., and K. V. Holmes. 2001. Coronaviridae: the viruses and ' 'their replication, p. 1163-1185. In D. M. Knipe, P. M. Howley, D. E. ' 'Griffin, R. A. Lamb, M. A. Martin, B. Roizman, and S. E. Straus (ed.), ' 'Fields virology, 4th ed. Lippincott Williams and Wilkins, Philadelphia, ' 'PA.', 'journal-title': 'Fields virology'}, {'key': 'e_1_3_2_22_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/jmv.1890050306'}, {'key': 'e_1_3_2_23_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JCM.02614-05'}, { 'key': 'e_1_3_2_24_2', 'doi-asserted-by': 'crossref', 'first-page': '45', 'DOI': '10.1016/S0165-2478(98)00096-0', 'volume': '64', 'year': '1998', 'unstructured': 'Pardridge, W. M., J. Yang, and A. Diagne. 1998. Chloroquine inhibits ' 'HIV-1 replication in human peripheral blood lymphocytes. Immunol. ' 'Lett.64:45-47.', 'journal-title': 'Immunol. Lett.'}, { 'key': 'e_1_3_2_25_2', 'first-page': '474', 'volume': '70', 'year': '1963', 'unstructured': 'Rubin, M., H. N. Bernstein, and N. J. Zvaifler. 1963. Studies on the ' 'pharmacology of chloroquine. Recommendations for the treatment of ' 'chloroquine retinopathy. Arch. Ophthalmol.70:474-481.', 'journal-title': 'Recommendations for the treatment of chloroquine retinopathy. Arch. ' 'Ophthalmol.'}, { 'key': 'e_1_3_2_26_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S1473-3099(03)00806-5'}, { 'key': 'e_1_3_2_27_2', 'doi-asserted-by': 'crossref', 'first-page': '131', 'DOI': '10.1016/S1386-6532(00)00139-6', 'volume': '20', 'year': '2001', 'unstructured': 'Savarino, A., L. Gennero, K. Sperber, and J. R. Boelaert. 2001. The ' 'anti-HIV-1 activity of chloroquine. J. Clin. Virol.20:131-135.', 'journal-title': 'J. Clin. Virol.'}, { 'key': 'e_1_3_2_28_2', 'doi-asserted-by': 'crossref', 'first-page': '725', 'DOI': '10.1089/jir.1996.16.725', 'volume': '16', 'year': '1996', 'unstructured': 'Singh, A. K., G. S. Sidhu, R. M. Friedman, and R. K. Maheshwari. 1996. ' 'Mechanism of enhancement of the antiviral action of interferon against ' 'herpes simplex virus-1 by chloroquine. J. Interferon Cytokine ' 'Res.16:725-731.', 'journal-title': 'J. Interferon Cytokine Res.'}, { 'key': 'e_1_3_2_29_2', 'doi-asserted-by': 'crossref', 'first-page': '481', 'DOI': '10.1089/aid.1990.6.481', 'volume': '6', 'year': '1990', 'unstructured': 'Tsai, W. P., P. L. Nara, H. F. Kung, and S. Oroszlan. 1990. Inhibition ' 'of human immunodeficiency virus infectivity by chloroquine. AIDS Res. ' 'Hum. Retrovir.6:481-489.', 'journal-title': 'AIDS Res. Hum. Retrovir.'}, {'key': 'e_1_3_2_30_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nm1024'}, {'key': 'e_1_3_2_31_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.02675-05'}, { 'key': 'e_1_3_2_32_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.virol.2005.04.010'}, { 'key': 'e_1_3_2_33_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JCM.43.11.5452-5456.2005'}, { 'key': 'e_1_3_2_34_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.79.3.1595-1604.2005'}, {'key': 'e_1_3_2_35_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/1743-422X-2-69'}, { 'key': 'e_1_3_2_36_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.79.2.884-895.2005'}, {'key': 'e_1_3_2_37_2', 'doi-asserted-by': 'publisher', 'DOI': '10.1086/497151'}], 'container-title': 'Antimicrobial Agents and Chemotherapy', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://journals.asm.org/doi/pdf/10.1128/AAC.01509-08', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://journals.asm.org/doi/pdf/10.1128/AAC.01509-08', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2022, 2, 21]], 'date-time': '2022-02-21T20:17:53Z', 'timestamp': 1645474673000}, 'score': 1, 'resource': {'primary': {'URL': 'https://journals.asm.org/doi/10.1128/AAC.01509-08'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2009, 8]]}, 'references-count': 36, 'journal-issue': {'issue': '8', 'published-print': {'date-parts': [[2009, 8]]}}, 'alternative-id': ['10.1128/AAC.01509-08'], 'URL': 'http://dx.doi.org/10.1128/AAC.01509-08', 'relation': {}, 'ISSN': ['0066-4804', '1098-6596'], 'subject': [], 'container-title-short': 'Antimicrob Agents Chemother', 'published': {'date-parts': [[2009, 8]]}, 'assertion': [ { 'value': '2008-11-12', 'order': 0, 'name': 'received', 'label': 'Received', 'group': {'name': 'publication_history', 'label': 'Publication History'}}, { 'value': '2009-04-09', 'order': 1, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'publication_history', 'label': 'Publication History'}}, { 'value': '2009-08-01', 'order': 2, 'name': 'published', 'label': 'Published', 'group': {'name': 'publication_history', 'label': 'Publication History'}}]}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit