In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine
et al., Biochem. Biophys. Res. Comm., 323:1, 8 October 2004, doi:10.1016/j.bbrc.2004.08.085, Aug 2004
HCQ for COVID-19
1st treatment shown to reduce risk in
March 2020, now with p < 0.00000000001 from 424 studies, used in 59 countries.
No treatment is 100% effective. Protocols
combine treatments.
6,200+ studies for
200+ treatments. c19early.org
|
In vitro study for SARS-CoV-1. IC50 of CQ for antiviral activity (8.8) is significantly lower than cytostatic activity CC50 (261.3), selectivity index of 30. IC50 for inhibition of SARS-CoV in vitro approximates the plasma concentrations of CQ reached during treatment of acute malaria. CQ may be considered for immediate use in the prevention and treatment of SARS-CoV infections.
39 preclinical studies support the efficacy of HCQ for COVID-19:
1.
Shang et al., Identification of Cathepsin L as the molecular target of hydroxychloroquine with chemical proteomics, Molecular & Cellular Proteomics, doi:10.1016/j.mcpro.2025.101314.
2.
González-Paz et al., Biophysical Analysis of Potential Inhibitors of SARS-CoV-2 Cell Recognition and Their Effect on Viral Dynamics in Different Cell Types: A Computational Prediction from In Vitro Experimental Data, ACS Omega, doi:10.1021/acsomega.3c06968.
3.
Alkafaas et al., A study on the effect of natural products against the transmission of B.1.1.529 Omicron, Virology Journal, doi:10.1186/s12985-023-02160-6.
4.
Guimarães Silva et al., Are Non-Structural Proteins From SARS-CoV-2 the Target of Hydroxychloroquine? An in Silico Study, ACTA MEDICA IRANICA, doi:10.18502/acta.v61i2.12533.
5.
Nguyen et al., The Potential of Ameliorating COVID-19 and Sequelae From Andrographis paniculata via Bioinformatics, Bioinformatics and Biology Insights, doi:10.1177/11779322221149622.
7.
Yadav et al., Repurposing the Combination Drug of Favipiravir, Hydroxychloroquine and Oseltamivir as a Potential Inhibitor Against SARS-CoV-2: A Computational Study, Research Square, doi:10.21203/rs.3.rs-628277/v1.
8.
Hussein et al., Molecular Docking Identification for the efficacy of Some Zinc Complexes with Chloroquine and Hydroxychloroquine against Main Protease of COVID-19, Journal of Molecular Structure, doi:10.1016/j.molstruc.2021.129979.
9.
Baildya et al., Inhibitory capacity of Chloroquine against SARS-COV-2 by effective binding with Angiotensin converting enzyme-2 receptor: An insight from molecular docking and MD-simulation studies, Journal of Molecular Structure, doi:10.1016/j.molstruc.2021.129891.
10.
Noureddine et al., Quantum chemical studies on molecular structure, AIM, ELF, RDG and antiviral activities of hybrid hydroxychloroquine in the treatment of COVID-19: molecular docking and DFT calculations, Journal of King Saud University - Science, doi:10.1016/j.jksus.2020.101334.
11.
Tarek et al., Pharmacokinetic Basis of the Hydroxychloroquine Response in COVID-19: Implications for Therapy and Prevention, European Journal of Drug Metabolism and Pharmacokinetics, doi:10.1007/s13318-020-00640-6.
12.
Rowland Yeo et al., Impact of Disease on Plasma and Lung Exposure of Chloroquine, Hydroxychloroquine and Azithromycin: Application of PBPK Modeling, Clinical Pharmacology & Therapeutics, doi:10.1002/cpt.1955.
13.
Hitti et al., Hydroxychloroquine attenuates double-stranded RNA-stimulated hyper-phosphorylation of tristetraprolin/ZFP36 and AU-rich mRNA stabilization, Immunology, doi:10.1111/imm.13835.
14.
Yan et al., Super-resolution imaging reveals the mechanism of endosomal acidification inhibitors against SARS-CoV-2 infection, ChemBioChem, doi:10.1002/cbic.202400404.
15.
Mohd Abd Razak et al., In Vitro Anti-SARS-CoV-2 Activities of Curcumin and Selected Phenolic Compounds, Natural Product Communications, doi:10.1177/1934578X231188861.
16.
Alsmadi et al., The In Vitro, In Vivo, and PBPK Evaluation of a Novel Lung-Targeted Cardiac-Safe Hydroxychloroquine Inhalation Aerogel, AAPS PharmSciTech, doi:10.1208/s12249-023-02627-3.
17.
Wen et al., Cholinergic α7 nAChR signaling suppresses SARS-CoV-2 infection and inflammation in lung epithelial cells, Journal of Molecular Cell Biology, doi:10.1093/jmcb/mjad048.
18.
Kamga Kapchoup et al., In vitro effect of hydroxychloroquine on pluripotent stem cells and their cardiomyocytes derivatives, Frontiers in Pharmacology, doi:10.3389/fphar.2023.1128382.
19.
Milan Bonotto et al., Cathepsin inhibitors nitroxoline and its derivatives inhibit SARS-CoV-2 infection, Antiviral Research, doi:10.1016/j.antiviral.2023.105655.
20.
Miao et al., SIM imaging resolves endocytosis of SARS-CoV-2 spike RBD in living cells, Cell Chemical Biology, doi:10.1016/j.chembiol.2023.02.001.
21.
Yuan et al., Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway in mammalian cell culture, Communications Biology, doi:10.1038/s42003-022-03841-8.
22.
Faísca et al., Enhanced In Vitro Antiviral Activity of Hydroxychloroquine Ionic Liquids against SARS-CoV-2, Pharmaceutics, doi:10.3390/pharmaceutics14040877.
23.
Delandre et al., Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants, Pharmaceuticals, doi:10.3390/ph15040445.
24.
Purwati et al., An in vitro study of dual drug combinations of anti-viral agents, antibiotics, and/or hydroxychloroquine against the SARS-CoV-2 virus isolated from hospitalized patients in Surabaya, Indonesia, PLOS One, doi:10.1371/journal.pone.0252302.
25.
Zhang et al., SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination, Cell Death & Differentiation, doi:10.1038/s41418-021-00782-3.
26.
Dang et al., Structural basis of anti-SARS-CoV-2 activity of hydroxychloroquine: specific binding to NTD/CTD and disruption of LLPS of N protein, bioRxiv, doi:10.1101/2021.03.16.435741.
27.
Shang (B) et al., Inhibitors of endosomal acidification suppress SARS-CoV-2 replication and relieve viral pneumonia in hACE2 transgenic mice, Virology Journal, doi:10.1186/s12985-021-01515-1.
28.
Wang et al., Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus, Phytomedicine, doi:10.1016/j.phymed.2020.153333.
29.
Sheaff, R., A New Model of SARS-CoV-2 Infection Based on (Hydroxy)Chloroquine Activity, bioRxiv, doi:10.1101/2020.08.02.232892.
30.
Ou et al., Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2, PLOS Pathogens, doi:10.1371/journal.ppat.1009212.
31.
Andreani et al., In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect, Microbial Pathogenesis, doi:10.1016/j.micpath.2020.104228.
32.
Clementi et al., Combined Prophylactic and Therapeutic Use Maximizes Hydroxychloroquine Anti-SARS-CoV-2 Effects in vitro, Front. Microbiol., 10 July 2020, doi:10.3389/fmicb.2020.01704.
33.
Liu et al., Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell Discovery 6, 16 (2020), doi:10.1038/s41421-020-0156-0.
34.
Yao et al., In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Clin. Infect. Dis., 2020 Mar 9, doi:10.1093/cid/ciaa237.
Keyaerts et al., 28 Aug 2004, peer-reviewed, 5 authors.
In vitro studies are an important part of preclinical research, however results may be very different in vivo.
In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine
Biochemical and Biophysical Research Communications, doi:10.1016/j.bbrc.2004.08.085
We report on chloroquine, a 4-amino-quinoline, as an effective inhibitor of the replication of the severe acute respiratory syndrome coronavirus (SARS-CoV) in vitro. Chloroquine is a clinically approved drug effective against malaria. We tested chloroquine phosphate for its antiviral potential against SARS-CoV-induced cytopathicity in Vero E6 cell culture. Results indicate that the IC 50 of chloroquine for antiviral activity (8.8 ± 1.2 lM) was significantly lower than its cytostatic activity; CC 50 (261.3 ± 14.5 lM), yielding a selectivity index of 30. The IC 50 of chloroquine for inhibition of SARS-CoV in vitro approximates the plasma concentrations of chloroquine reached during treatment of acute malaria. Addition of chloroquine to infected cultures could be delayed for up to 5 h postinfection, without an important drop in antiviral activity. Chloroquine, an old antimalarial drug, may be considered for immediate use in the prevention and treatment of SARS-CoV infections.
References
Blau, Holmes, Human Coronavirus HCoV-229E enters susceptible cells via the endocytic pathway
Chan, Lai, Chu, Tsui, Tam et al., Treatment of severe acute respiratory syndrome with lopinavir/ ritonavir: a multicentre retrospective matched cohort study, Hong Kong Med. J
Charmot, Coulaud, Treatment of Plasmodium falciparum malaria in Africa (except cerebral malaria), Med. Trop
Chu, Cheng, Hung, Wong, Chan et al., HKU/UCH SARS study group, Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings, Thorax
Cinatl, Michaelis, Scholz, Doerr, Role of interferons in the treatment of severe acute respiratory syndrome, Expert, Opin. Biol. Ther
Cinatl, Morgenstern, Bauer, Chandra, Rabenau et al., Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus, Lancet
Drosten, Gunther, Preiser, Van Der Werf, Brodt et al., Identification of a novel coronavirus in patients with severe acute respiratory syndrome, N. Engl. J. Med
Fronhoffs, Totzke, Stier, Wernert, Rothe et al., A method for the rapid construction of cRNA standard curves in quantitative real-time reverse transcription polymerase chain reaction, Mol. Cell. Probes
Goodwin, Holt, Downes, Marshall, Microculture tetrazolium assays: a comparison between two new tetrazolium salts, XTT and MTS, J. Immunol. Methods
Keyaerts, Vijgen, Chen, Maes, Hedenstierna et al., Inhibition of SARS-coronavirus infection in vitro by S-nitroso-N-acetylpenicillamine, a nitric oxide donor compound, Int. J. Infect. Dis
Kouroumalis, Koskinas, Treatment of chronic active hepatitis B (CAH B) with chloroquine: a preliminary report, Ann. Acad. Med. Singapore
Ksiazek, Erdman, Goldsmith, Zaki, Peret et al., SARS Working Group, A novel coronavirus associated with severe acute respiratory syndrome, N. Engl. J. Med
Kuiken, Fouchier, Schutten, Rimmelzwaan, Van Amerongen et al., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome, Lancet
Marra, Jones, Astell, Holt, Brooks-Wilson et al., The genome sequence of the SARS-associated coronavirus, Science
Ng, Tan, See, Ooi, Ling, Proliferative growth of SARS coronavirus in Vero E6 cells, J. Gen. Virol
Pardridge, Yang, Diagne, Chloroquine inhibits HIV-1 replication in human peripheral blood lymphocytes, Immunol. Lett
Pauwels, Balzarini, Baba, Snoeck, Schols et al., Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds, J. Virol. Methods
Peiris, Lai, Poon, Guan, Yam et al., Coronavirus as a possible cause of severe acute respiratory syndrome, Lancet
Rota, Oberste, Monroe, Nix, Campagnoli et al., Characterization of a novel coronavirus associated with severe acute respiratory syndrome, Science
Savarino, Boelaert, Cassone, Majori, Cauda, Effects of chloroquine on viral infections: an old drug against todayÕs diseases?, Lancet Infect. Dis
Savarino, Gennero, Sperber, Boelaert, The anti-HIV-1 activity of chloroquine, J. Clin. Virol
Singh, Sidhu, Friedman, Maheshwari, Mechanism of enhancement of the antiviral action of interferon against herpes simplex virus-1 by chloroquine, J. Interferon Cytokine Res
Tsai, Nara, Kung, Oroszlan, Inhibition of human immunodeficiency virus infectivity by chloroquine, AIDS Res. Hum. Retroviruses
Wollheim, Hanson, Laurell, Chloroquine treatment in rheumatoid arthritis. Correlation of clinical response to plasma protein changes and chloroquine levels, Scand. J. Rheumatol
Wu, Jan, Chen, Hsieh, Hwang et al., Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide, Antimicrob. Agents Chemother
Yamamoto, Yang, Yoshinaka, Amari, Nakano et al., HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus, Biochem. Biophys. Res. Commun
Zhaori, Antiviral treatment of SARS: can we draw any conclusions?, CMAJ
DOI record:
{
"DOI": "10.1016/j.bbrc.2004.08.085",
"ISSN": [
"0006-291X"
],
"URL": "http://dx.doi.org/10.1016/j.bbrc.2004.08.085",
"alternative-id": [
"S0006291X0401839X"
],
"author": [
{
"affiliation": [],
"family": "Keyaerts",
"given": "Els",
"sequence": "first"
},
{
"affiliation": [],
"family": "Vijgen",
"given": "Leen",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Maes",
"given": "Piet",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Neyts",
"given": "Johan",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Ranst",
"given": "Marc Van",
"sequence": "additional"
}
],
"container-title": "Biochemical and Biophysical Research Communications",
"container-title-short": "Biochemical and Biophysical Research Communications",
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2004,
9,
14
]
],
"date-time": "2004-09-14T13:15:35Z",
"timestamp": 1095167735000
},
"deposited": {
"date-parts": [
[
2019,
2,
3
]
],
"date-time": "2019-02-03T19:51:04Z",
"timestamp": 1549223464000
},
"indexed": {
"date-parts": [
[
2024,
5,
4
]
],
"date-time": "2024-05-04T00:08:54Z",
"timestamp": 1714781334272
},
"is-referenced-by-count": 477,
"issue": "1",
"issued": {
"date-parts": [
[
2004,
10
]
]
},
"journal-issue": {
"issue": "1",
"published-print": {
"date-parts": [
[
2004,
10
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://www.elsevier.com/tdm/userlicense/1.0/",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2004,
10,
1
]
],
"date-time": "2004-10-01T00:00:00Z",
"timestamp": 1096588800000
}
}
],
"link": [
{
"URL": "https://api.elsevier.com/content/article/PII:S0006291X0401839X?httpAccept=text/xml",
"content-type": "text/xml",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://api.elsevier.com/content/article/PII:S0006291X0401839X?httpAccept=text/plain",
"content-type": "text/plain",
"content-version": "vor",
"intended-application": "text-mining"
}
],
"member": "78",
"original-title": [],
"page": "264-268",
"prefix": "10.1016",
"published": {
"date-parts": [
[
2004,
10
]
]
},
"published-print": {
"date-parts": [
[
2004,
10
]
]
},
"publisher": "Elsevier BV",
"reference": [
{
"key": "10.1016/j.bbrc.2004.08.085_bib1",
"unstructured": "World Health Organization, 2003. Communicable Disease Surveillance and Response. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. Available from: <http://www.who.int/csr/sars/country/table2003_09_23/en/>. (revised 26 September 2003)"
},
{
"DOI": "10.1056/NEJMoa030747",
"article-title": "Identification of a novel coronavirus in patients with severe acute respiratory syndrome",
"author": "Drosten",
"doi-asserted-by": "crossref",
"first-page": "1967",
"journal-title": "N. Engl. J. Med.",
"key": "10.1016/j.bbrc.2004.08.085_bib2",
"volume": "348",
"year": "2003"
},
{
"DOI": "10.1056/NEJMoa030781",
"article-title": "A novel coronavirus associated with severe acute respiratory syndrome",
"author": "Ksiazek",
"doi-asserted-by": "crossref",
"first-page": "1953",
"journal-title": "N. Engl. J. Med.",
"key": "10.1016/j.bbrc.2004.08.085_bib3",
"volume": "348",
"year": "2003"
},
{
"DOI": "10.1016/S0140-6736(03)13967-0",
"article-title": "Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome",
"author": "Kuiken",
"doi-asserted-by": "crossref",
"first-page": "263",
"journal-title": "Lancet",
"key": "10.1016/j.bbrc.2004.08.085_bib4",
"volume": "362",
"year": "2003"
},
{
"DOI": "10.1016/S0140-6736(03)13077-2",
"article-title": "Coronavirus as a possible cause of severe acute respiratory syndrome",
"author": "Peiris",
"doi-asserted-by": "crossref",
"first-page": "1319",
"journal-title": "Lancet",
"key": "10.1016/j.bbrc.2004.08.085_bib5",
"volume": "361",
"year": "2003"
},
{
"DOI": "10.1126/science.1085952",
"article-title": "Characterization of a novel coronavirus associated with severe acute respiratory syndrome",
"author": "Rota",
"doi-asserted-by": "crossref",
"first-page": "1394",
"journal-title": "Science",
"key": "10.1016/j.bbrc.2004.08.085_bib6",
"volume": "300",
"year": "2003"
},
{
"DOI": "10.1126/science.1085953",
"article-title": "The genome sequence of the SARS-associated coronavirus",
"author": "Marra",
"doi-asserted-by": "crossref",
"first-page": "1399",
"journal-title": "Science",
"key": "10.1016/j.bbrc.2004.08.085_bib7",
"volume": "300",
"year": "2003"
},
{
"article-title": "Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study",
"author": "Chan",
"first-page": "399",
"journal-title": "Hong Kong Med. J.",
"key": "10.1016/j.bbrc.2004.08.085_bib8",
"volume": "9",
"year": "2003"
},
{
"DOI": "10.1136/thorax.2003.012658",
"article-title": "Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings",
"author": "Chu",
"doi-asserted-by": "crossref",
"first-page": "252",
"journal-title": "Thorax",
"key": "10.1016/j.bbrc.2004.08.085_bib9",
"volume": "59",
"year": "2004"
},
{
"DOI": "10.1517/14712598.4.6.827",
"article-title": "Role of interferons in the treatment of severe acute respiratory syndrome",
"author": "Cinatl",
"doi-asserted-by": "crossref",
"first-page": "827",
"journal-title": "Expert. Opin. Biol. Ther.",
"key": "10.1016/j.bbrc.2004.08.085_bib10",
"volume": "4",
"year": "2004"
},
{
"article-title": "Antiviral treatment of SARS: can we draw any conclusions?",
"author": "Zhaori",
"first-page": "1165",
"journal-title": "CMAJ",
"key": "10.1016/j.bbrc.2004.08.085_bib11",
"volume": "169",
"year": "2003"
},
{
"DOI": "10.1016/S0140-6736(03)13615-X",
"article-title": "Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus",
"author": "Cinatl",
"doi-asserted-by": "crossref",
"first-page": "2045",
"journal-title": "Lancet",
"key": "10.1016/j.bbrc.2004.08.085_bib12",
"volume": "361",
"year": "2003"
},
{
"DOI": "10.1128/AAC.48.7.2693-2696.2004",
"article-title": "Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide",
"author": "Wu",
"doi-asserted-by": "crossref",
"first-page": "2693",
"journal-title": "Antimicrob. Agents Chemother.",
"key": "10.1016/j.bbrc.2004.08.085_bib13",
"volume": "48",
"year": "2004"
},
{
"DOI": "10.1016/j.bbrc.2004.04.083",
"article-title": "HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus",
"author": "Yamamoto",
"doi-asserted-by": "crossref",
"first-page": "719",
"journal-title": "Biochem. Biophys. Res. Commun.",
"key": "10.1016/j.bbrc.2004.08.085_bib14",
"volume": "318",
"year": "2004"
},
{
"DOI": "10.1016/j.ijid.2004.04.012",
"article-title": "Inhibition of SARS-coronavirus infection in vitro by S-nitroso-N-acetylpenicillamine, a nitric oxide donor compound",
"author": "Keyaerts",
"doi-asserted-by": "crossref",
"first-page": "223",
"journal-title": "Int. J. Infect. Dis.",
"key": "10.1016/j.bbrc.2004.08.085_bib15",
"volume": "8",
"year": "2004"
},
{
"DOI": "10.1016/S1473-3099(03)00806-5",
"article-title": "Effects of chloroquine on viral infections: an old drug against today’s diseases?",
"author": "Savarino",
"doi-asserted-by": "crossref",
"first-page": "722",
"journal-title": "Lancet Infect. Dis.",
"key": "10.1016/j.bbrc.2004.08.085_bib16",
"volume": "3",
"year": "2003"
},
{
"DOI": "10.1089/aid.1990.6.481",
"article-title": "Inhibition of human immunodeficiency virus infectivity by chloroquine",
"author": "Tsai",
"doi-asserted-by": "crossref",
"first-page": "481",
"journal-title": "AIDS Res. Hum. Retroviruses",
"key": "10.1016/j.bbrc.2004.08.085_bib17",
"volume": "6",
"year": "1990"
},
{
"DOI": "10.1016/S0165-2478(98)00096-0",
"article-title": "Chloroquine inhibits HIV-1 replication in human peripheral blood lymphocytes",
"author": "Pardridge",
"doi-asserted-by": "crossref",
"first-page": "45",
"journal-title": "Immunol. Lett.",
"key": "10.1016/j.bbrc.2004.08.085_bib18",
"volume": "64",
"year": "1998"
},
{
"DOI": "10.1016/S1386-6532(00)00139-6",
"article-title": "The anti-HIV-1 activity of chloroquine",
"author": "Savarino",
"doi-asserted-by": "crossref",
"first-page": "131",
"journal-title": "J. Clin. Virol.",
"key": "10.1016/j.bbrc.2004.08.085_bib19",
"volume": "20",
"year": "2001"
},
{
"article-title": "Treatment of chronic active hepatitis B (CAH B) with chloroquine: a preliminary report",
"author": "Kouroumalis",
"first-page": "149",
"journal-title": "Ann. Acad. Med. Singapore",
"key": "10.1016/j.bbrc.2004.08.085_bib20",
"volume": "15",
"year": "1986"
},
{
"DOI": "10.1089/jir.1996.16.725",
"article-title": "Mechanism of enhancement of the antiviral action of interferon against herpes simplex virus-1 by chloroquine",
"author": "Singh",
"doi-asserted-by": "crossref",
"first-page": "725",
"journal-title": "J. Interferon Cytokine Res.",
"key": "10.1016/j.bbrc.2004.08.085_bib21",
"volume": "16",
"year": "1996"
},
{
"article-title": "Human Coronavirus HCoV-229E enters susceptible cells via the endocytic pathway",
"author": "Blau",
"first-page": "193",
"key": "10.1016/j.bbrc.2004.08.085_bib22",
"series-title": "The Nidoviruses, Coronaviruses and Arteriviruses",
"year": "2001"
},
{
"DOI": "10.1006/mcpr.2002.0405",
"article-title": "A method for the rapid construction of cRNA standard curves in quantitative real-time reverse transcription polymerase chain reaction",
"author": "Fronhoffs",
"doi-asserted-by": "crossref",
"first-page": "99",
"journal-title": "Mol. Cell. Probes",
"key": "10.1016/j.bbrc.2004.08.085_bib23",
"volume": "16",
"year": "2002"
},
{
"DOI": "10.1016/0166-0934(88)90134-6",
"article-title": "Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds",
"author": "Pauwels",
"doi-asserted-by": "crossref",
"first-page": "309",
"journal-title": "J. Virol. Methods",
"key": "10.1016/j.bbrc.2004.08.085_bib24",
"volume": "20",
"year": "1988"
},
{
"DOI": "10.1016/0022-1759(94)00277-4",
"article-title": "Microculture tetrazolium assays: a comparison between two new tetrazolium salts, XTT and MTS",
"author": "Goodwin",
"doi-asserted-by": "crossref",
"first-page": "95",
"journal-title": "J. Immunol. Methods",
"key": "10.1016/j.bbrc.2004.08.085_bib25",
"volume": "179",
"year": "1995"
},
{
"DOI": "10.1099/vir.0.19505-0",
"article-title": "Proliferative growth of SARS coronavirus in Vero E6 cells",
"author": "Ng",
"doi-asserted-by": "crossref",
"first-page": "3291",
"journal-title": "J. Gen. Virol.",
"key": "10.1016/j.bbrc.2004.08.085_bib26",
"volume": "84",
"year": "2003"
},
{
"article-title": "Treatment of Plasmodium falciparum malaria in Africa (except cerebral malaria)",
"author": "Charmot",
"first-page": "103",
"journal-title": "Med. Trop.",
"key": "10.1016/j.bbrc.2004.08.085_bib27",
"volume": "50",
"year": "1990"
},
{
"DOI": "10.3109/03009747809095649",
"article-title": "Chloroquine treatment in rheumatoid arthritis. Correlation of clinical response to plasma protein changes and chloroquine levels",
"author": "Wollheim",
"doi-asserted-by": "crossref",
"first-page": "171",
"journal-title": "Scand. J. Rheumatol.",
"key": "10.1016/j.bbrc.2004.08.085_bib28",
"volume": "7",
"year": "1978"
}
],
"reference-count": 28,
"references-count": 28,
"relation": {},
"resource": {
"primary": {
"URL": "https://linkinghub.elsevier.com/retrieve/pii/S0006291X0401839X"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine",
"type": "journal-article",
"volume": "323"
}

