Analgesics..
Antiandrogens..
Bromhexine
Budesonide
Cannabidiol
Colchicine
Conv. Plasma
Curcumin
Ensovibep
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Iota-carragee..
Ivermectin
Lactoferrin
Lifestyle..
Melatonin
Metformin
Molnupiravir
Monoclonals..
Nigella Sativa
Nitazoxanide
Nitric Oxide
Paxlovid
Peg.. Lambda
Povidone-Iod..
Quercetin
Remdesivir
Vitamins..
Zinc

Other
Feedback
Home
Home   COVID-19 treatment studies for Vitamin D  COVID-19 treatment studies for Vitamin D  C19 studies: Vitamin D  Vitamin D   Select treatmentSelect treatmentTreatmentsTreatments
Melatonin Meta
Bromhexine Meta Metformin Meta
Budesonide Meta Molnupiravir Meta
Cannabidiol Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta Nitric Oxide Meta
Ensovibep Meta Paxlovid Meta
Famotidine Meta Peg.. Lambda Meta
Favipiravir Meta Povidone-Iod.. Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta Remdesivir Meta
Iota-carragee.. Meta
Ivermectin Meta Zinc Meta
Lactoferrin Meta

Other Treatments Global Adoption
All Studies   Meta Analysis   Recent:  
Discovery of re-purposed drugs that slow SARS-CoV-2 replication in human cells
Pickard et al., PLOS Pathogens, doi:10.1371/journal.ppat.1009840 (In Vitro)
Pickard et al., Discovery of re-purposed drugs that slow SARS-CoV-2 replication in human cells, PLOS Pathogens, doi:10.1371/journal.ppat.1009840 (In Vitro)
Sep 2021   Source   PDF  
  Twitter
  Facebook
Share
  All Studies   Meta
In Vitro studying identifying 35 compounds that inhibit SARS-CoV-2 in Vero cells and hepatocytes when treated prior to infection, and several compounds that slow replication when treated after infection: vitamin D, amodiaquine, atovaquone, bedaquiline, ebastine, LY2835219, manidipine, and panobinosta. Authors use a nano-luciferase tagged version of the virus to quantify viral load.
2 In Vitro studies support the efficacy of vitamin D [Mok, Pickard].
Pickard et al., 9 Sep 2021, peer-reviewed, 7 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
All Studies   Meta Analysis   Submit Updates or Corrections
This PaperVitamin DAll
Abstract: PLOS PATHOGENS RESEARCH ARTICLE Discovery of re-purposed drugs that slow SARS-CoV-2 replication in human cells Adam Pickard ID1,2*, Ben C. Calverley ID1,2, Joan Chang ID1,2, Richa Garva ID1,2, Sara Gago2, Yinhui Lu1,2, Karl E. Kadler ID1,2* 1 Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester, United Kingdom, 2 School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom * adam.pickard@manchester.ac.uk (AP); karl.kadler@manchester.ac.uk (KEK) a1111111111 a1111111111 a1111111111 a1111111111 a1111111111 OPEN ACCESS Citation: Pickard A, Calverley BC, Chang J, Garva R, Gago S, Lu Y, et al. (2021) Discovery of repurposed drugs that slow SARS-CoV-2 replication in human cells. PLoS Pathog 17(9): e1009840. https://doi.org/10.1371/journal.ppat.1009840 Editor: Andrew Pekosz, Johns Hopkins University Bloomberg School of Public Health, UNITED STATES Received: May 27, 2021 Accepted: July 26, 2021 Published: September 9, 2021 Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here: https://doi.org/10.1371/journal.ppat.1009840 Copyright: © 2021 Pickard et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data Availability Statement: All relevant data are within the manuscript and its Supporting Information files. Abstract COVID-19 vaccines based on the Spike protein of SARS-CoV-2 have been developed that appear to be largely successful in stopping infection. However, therapeutics that can help manage the disease are still required until immunity has been achieved globally. The identification of repurposed drugs that stop SARS-CoV-2 replication could have enormous utility in stemming the disease. Here, using a nano-luciferase tagged version of the virus (SARSCoV-2-ΔOrf7a-NLuc) to quantitate viral load, we evaluated a range of human cell types for their ability to be infected and support replication of the virus, and performed a screen of 1971 FDA-approved drugs. Hepatocytes, kidney glomerulus, and proximal tubule cells were particularly effective in supporting SARS-CoV-2 replication, which is in-line with reported proteinuria and liver damage in patients with COVID-19. Using the nano-luciferase as a measure of virus replication we identified 35 drugs that reduced replication in Vero cells and human hepatocytes when treated prior to SARS-CoV-2 infection and found amodiaquine, atovaquone, bedaquiline, ebastine, LY2835219, manidipine, panobinostat, and vitamin D3 to be effective in slowing SARS-CoV-2 replication in human cells when used to treat infected cells. In conclusion, our study has identified strong candidates for drug repurposing, which could prove powerful additions to the treatment of COVID. Author summary The identification of repurposed drugs that stop SARS-CoV-2 replication could have enormous utility in stemming COVID-19. Here, using a nano-luciferase tagged version of the virus (SARS-CoV-2-ΔOrf7a-NLuc) to quantitate viral load, we evaluated a range of human cell types for their..
Loading..
Please send us corrections, updates, or comments. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit