Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All iota‑carrageenan studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchIota-carrageenanIota-carragee.. (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Lipid Nanoparticle-Based Inhibitors for SARS-CoV-2 Host Cell Infection

Yathindranath et al., International Journal of Nanomedicine, doi:10.2147/IJN.S448005
Mar 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
In Vitro study showing that lactoferrin, camostat mesylate, and carrageenan inhibit SARS-CoV-2 pseudovirus infection in airway epithelial Calu-3 cells. All show dose-dependent inhibition. The study focuses on novel LNP formulations and the combination of carrageenan with the authors' LNP-PEP formulation containing ACE2 peptide showed significantly higher inhibition compared to carrageenan alone.
15 preclinical studies support the efficacy of iota-carrageenan for COVID-19:
Study covers iota-carrageenan and lactoferrin.
Yathindranath et al., 28 Mar 2024, peer-reviewed, 5 authors. Contact: donald.miller@umanitoba.ca.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperIota-carragee..All
Lipid Nanoparticle-Based Inhibitors for SARS-CoV-2 Host Cell Infection
Vinith Yathindranath, Nura Safa, Mateusz Marek Tomczyk, Vernon Dolinsky, Donald W Miller
International Journal of Nanomedicine, doi:10.2147/ijn.s448005
Purpose: The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the lingering threat to public health has fueled the search for effective therapeutics to treat SARS-CoV-2. This study aimed to develop lipid nanoparticle (LNP) inhibitors of SARS-CoV-2 entry to reduce viral infection in the nose and upper airway. Methods: Two types of LNP formulations were prepared following a microfluidic mixing method. The LNP-Trap consisted of DOPC, DSPC, cholesterol, and DSPE-PEG-COOH modified with various spike protein binding ligands, including ACE2 peptide, recombinant human ACE2 (rhACE2) or monoclonal antibody to spike protein (mAb). The LNP-Trim consisted of ionizing cationic DLin-MC3-DMA, DSPC, cholesterol, and DMG-PEG lipids encapsulating siACE2 or siTMPRSS2. Both formulations were assayed for biocompatibility and cell uptake in airway epithelial cells (Calu-3). Functional assessment of activity was performed using SARS-CoV-2 spike protein binding assays (LNP-Trap), host receptor knockdown (LNP-Trim), and SARS-CoV-2 pseudovirus neutralization assay (LNP-Trap and LNP-Trim). Localization and tissue distribution of fluorescently labeled LNP formulations were assessed in mice following intranasal administration. Results: Both LNP formulations were biocompatible based on cell impedance and MTT cytotoxicity studies in Calu-3 cells at concentrations as high as 1 mg/mL. LNP-Trap formulations were able to bind spike protein and inhibit pseudovirus infection by 90% in Calu-3 cells. LNP-Trim formulations reduced ACE2 and TMPRSS2 at the mRNA (70% reduction) and protein level (50% reduction). The suppression of host targets in Calu-3 cells treated with LNP-Trim resulted in over 90% inhibition of pseudovirus infection. In vivo studies demonstrated substantial retention of LNP-Trap and LNP-Trim in the nasal cavity following nasal administration with minimal systemic exposure. Conclusion: Both LNP-Trap and LNP-Trim formulations were able to safely and effectively inhibit SARS-CoV-2 pseudoviral infection in airway epithelial cells. These studies provide proof-of-principle for a localized treatment approach for SARS-CoV-2 in the upper airway.
Disclosure
References
Ahn, Kim, Hong, Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19, J Clin Investig, doi:10.1172/JCI148517
Arias, Oliveros, Lechtig, Bustos, Biologics in COVID-19 so far: systematic review, Pharmaceuticals, doi:10.3390/ph15070783
Baram-Pinto, Shukla, Gedanken, Sarid, Inhibition of HSV-1 attachment, entry, and cell-to-cell spread by functionalized multivalent gold nanoparticles, Small, doi:10.1002/smll.200902384
Bayón-Cordero, Alkorta, Arana, Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs, Nanomaterials, doi:10.3390/nano9030474
Belliveau, Huft, Lin, Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA, Mol Ther Nucleic Acids, doi:10.1038/mtna.2012.28
Bowman, Ballard, Ackerson, Feldheim, Margolis et al., Inhibition of HIV fusion with multivalent gold nanoparticles, J Am Chem Soc, doi:10.1021/ja710321g
Cahn, Amosu, Maisel, Duncan, Biomaterials for intranasal and inhaled vaccine delivery, Nat Rev Bioeng, doi:10.1038/s44222-022-00012-6
Chan, Tan, Narayanan, Procko, An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants, Sci Adv, doi:10.1126/sciadv.abf1738
Chen, Cheng, Roffler, Polyethylene glycol immunogenicity: theoretical, clinical, and practical aspects of anti-polyethylene glycol antibodies, ACS Nano, doi:10.1021/acsnano.1c05922
Chen, Fang, Chen, Targeting and enrichment of viral pathogen by cell membrane cloaked magnetic nanoparticles for enhanced detection, ACS Appl Mater Interfaces, doi:10.1021/acsami.7b09931
El-Shennawy, Hoffmann, Dashzeveg, Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2, Nat Commun, doi:10.1038/s41467-021-27893-2
Giovane, Rezai, Henderson, Current pharmacological modalities for management of novel coronavirus disease 2019 (COVID-19) and the rationale for their utilization: a review, Rev Med Virol, doi:10.1002/rmv.2136
Gizurarson, The relevance of nasal physiology to the design of drug absorption studies, Adv Drug Deliv Rev, doi:10.1016/0169-409X(93)90015-V
Gong, -J Y, PTD4-apoptin protein and dacarbazine show a synergistic antitumor effect on B16-F1 melanoma in vitro and in vivo, Eur J Pharmacol, doi:10.1016/j.ejphar.2010.12.004
Gottlieb, Nirula, Chen, Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial, JAMA, doi:10.1001/jama.2021.0202
Hak, Helgesen, Hektoen, The effect of nanoparticle polyethylene glycol surface density on ligand-directed tumor targeting studied in vivo by dual modality imaging, ACS Nano, doi:10.1021/nn301630n
Han, Penn-Nicholson, Cho, Identification of critical determinants on ACE2 for SARS-CoV entry and development of a potent entry inhibitor, International Journal of Nanomedicine, doi:10.1016/j.virol.2006.01.029
Haschke, Schuster, Poglitsch, Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects, Clin Pharmacokinet, doi:10.1007/s40262-013-0072-7
Higuchi, Suzuki, Arimori, Engineered ACE2 receptor therapy overcomes mutational escape of SARS-CoV-2, Nat Commun, doi:10.1038/s41467-021-24013-y
Hoffmann, Hofmann-Winkler, Smith, Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity, EBioMedicine, doi:10.1016/j.ebiom.2021.103255
Hoffmann, Kleine-Weber, Schroeder, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell, doi:10.1016/j.cell.2020.02.052
Hou, Zaks, Langer, Dong, Lipid nanoparticles for mRNA delivery, Nat Rev Mater, doi:10.1038/s41578-021-00358-0
Huang, Leobandung, Foss, Peppas, Molecular aspects of muco-and bioadhesion: tethered structures and site-specific surfaces, J Control Release, doi:10.1016/S0168-3659(99)00233-3
Jia, Yue, Lazartigues, ACE2 mouse models: a toolbox for cardiovascular and pulmonary research, Nat Commun, doi:10.1038/s41467-020-18880-0
Kreuzberger, Hirsch, Chai, SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19, Cochrane Database Syst Rev, doi:10.1002/14651858.CD013825.pub2
Kuba, Yamaguchi, Penninger, Angiotensin-Converting Enzyme 2 (ACE2) in the pathogenesis of ARDS in COVID-19, Front Immunol, doi:10.3389/fimmu.2021.732690
Martinez-Avila, Hijazi, Marradi, Gold manno-glyconanoparticies: multivalent systems to block HIV-1 gp120 binding to the lectin DC-SIGN, Chem Eur J, doi:10.1002/chem.200900923
Mesias, Zhu, Tang, Effective ACE2 peptide-nanoparticle conjugation and its binding with the SARS-Cov-2 RBD quantified by dynamic light scattering, Chem Comm, doi:10.1039/D1CC02267A
Nathan, Shawa, De, Torre, A narrative review of the clinical practicalities of bamlanivimab and etesevimab antibody therapies for SARS-CoV-2, Infect Dis Ther, doi:10.1007/s40121-021-00515-6
Nikiforuk, Kuchinski, Twa, The contrasting role of nasopharyngeal angiotensin converting enzyme 2 (ACE2) transcription in SARS-CoV-2 infection: a cross-sectional study of people tested for COVID-19 in British Columbia, Canada, International Journal of Nanomedicine, doi:10.1016/j.ebiom.2021.103316
Niknam, Jafari, Golchin, Potential therapeutic options for COVID-19: an update on current evidence, Eur J Med Res, doi:10.1186/s40001-021-00626-3
Panahi, Gorabi, Talaei, An overview on the treatments and prevention against COVID-19, Virol J, doi:10.1186/s12985-023-01973-9
Papp, Sieben, Ludwig, Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles, Small, doi:10.1002/smll.201001349
Planas, Veyer, Baidaliuk, Reduced sensitivity of SARS-CoV-2 variant delta to antibody neutralization, Nature, doi:10.1038/s41586-021-03777-9
Polack, Thomas, Kitchin, Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine, N Engl J Med, doi:10.1056/NEJMoa2034577
Politch, Cu-Uvin, Moench, Safety, acceptability, and pharmacokinetics of a monoclonal antibody-based vaginal multipurpose prevention film (MB66): a Phase I randomized trial, PLoS Med, doi:10.1371/journal.pmed.1003495
Pustake, Tambolkar, Giri, Gandhi, SARS, MERS and CoVID-19: an overview and comparison of clinical, laboratory and radiological features, J Family Med Prim Care, doi:10.4103/jfmpc.jfmpc_839_21
Rao, Xia, Xu, Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines, Proc Natl Acad Sci, doi:10.1073/pnas.2014352117
Ren, Wang, Gao, Zhou, Omicron variant (B.1.1.529) of SARS-CoV-2: mutation, infectivity, transmission, and vaccine resistance, World J Clin Cases, doi:10.12998/wjcc.v10.i1.1
Schütz, Ruiz-Blanco, Münch, Kirchhoff, Sanchez-Garcia et al., Peptide and peptide-based inhibitors of SARS-CoV-2 entry, Adv Drug Deliv Rev, doi:10.1016/j.addr.2020.11.007
Scopes, Measurement of protein by spectrophotometry at 205 nm, Analy Biochem, doi:10.1016/0003-2697(74)90034-7
Semple, Klimuk, Harasym, Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures, Biochim Biophys Acta, doi:10.1016/S0005-2736(00)00343-6
Serra, Doménech, Peppas, Design of poly(ethylene glycol)-tethered copolymers as novel mucoadhesive drug delivery systems, CAS, SciSearch ® , Current Contents ® /Clinical Medicine, Journal Citation Reports/Science Edition, doi:10.1016/j.ejpb.2005.10.011
Sneller, Blazkova, Justement, Combination anti-HIV antibodies provide sustained virological suppression, Nature, doi:10.1038/s41586-022-04797-9
Sullivan, Gebo, Shoham, Early outpatient treatment for Covid-19 with convalescent plasma, N Engl J Med, doi:10.1056/NEJMoa2119657
Sungnak, Huang, Bécavin, SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes, Nat Med, doi:10.1038/s41591-020-0868-6
Tam, Chen, Cullis, Advances in lipid nanoparticles for siRNA delivery, Pharmaceutics, doi:10.3390/pharmaceutics5030498
Tam, Kulkarni, An, Lipid nanoparticle formulations for optimal RNA-based topical delivery to murine airways, Eur J Pharm Sci, doi:10.1016/j.ejps.2022.106234
V'kovski, Kratzel, Steiner, Stalder, Thiel, Coronavirus biology and replication: implications for SARS-CoV-2, Nat Rev Microbiol, doi:10.1038/s41579-020-00468-6
Valenti, Antonini, Lactoferrin: an important host defence against microbial and viral attack. Cellular and molecular life sciences, Cell Mol Life Sci, doi:10.1007/s00018-005-5372-0
Van Der Meel, Chen, Zaifman, Modular lipid nanoparticle platform technology for siRNA and lipophilic prodrug delivery, Small, doi:10.1002/smll.202103025
Walsh, Seaman, Broadly neutralizing antibodies for HIV-1 prevention, Front Immunol, doi:10.3389/fimmu.2021.712122
Wei, Zhang, Ran, T-cell-mimicking nanoparticles can neutralize HIV infectivity, Adv Mater, doi:10.1002/adma.201802233
Wotring, Fursmidt, Ward, Sexton, Evaluating the in vitro efficacy of bovine lactoferrin products against SARS-CoV-2 variants of concern, J Dairy Sci, doi:10.3168/jds.2021-21247
Xu, Ensign, Boylan, Impact of Surface Polyethylene Glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo, ACS Nano, doi:10.1021/acsnano.5b03876
Yang, Rao, Structural biology of SARS-CoV-2 and implications for therapeutic development, Nat Rev Microbiol, doi:10.1038/s41579-021-00630-8
Yathindranath, Safa, Sajesh, Spermidine/Spermine N1-Acetyltransferase 1 (SAT1)-A potential gene target for selective sensitization of glioblastoma cells using an ionizable lipid nanoparticle to deliver siRNA, Cancers, doi:10.3390/cancers14215179
Zhao, Wu, Heberle, Phase studies of model biomembranes: complex behavior of DSPC/DOPC/cholesterol, Biochim Biophys Acta, doi:10.1016/j.bbamem.2007.07.008
Álvarez-Viñas, Souto, Flórez-Fernández, Torres, Bandín et al., Antiviral activity of carrageenans and processing implications, Mar Drugs, doi:10.3390/md19080437
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit