Immunoregulatory effect of metformin in monocytes exposed to SARS-CoV-2 spike protein subunit 1
Rafael Moura Maurmann, Kierstin Davis, Negin Mosalmanzadeh, Brenda Landvoigt Schmitt, Brandt D Pence
doi:10.1101/2025.09.12.675877
Background: Severe COVID-19 is characterized by a hyperinflammatory state associated with an exacerbated inflammatory activation of monocytes and macrophages in the respiratory tract. Metformin has been identified as a potent monocyte inflammatory suppressor, and it has been demonstrated to attenuate inflammation in COVID-19. The mechanisms underlying metformin anti-inflammatory effects are, however, unclear. We thus sought to investigate metformin's main interactions and their respective isolated effects in modulating monocyte inflammatory response to SARS-CoV-2 stimulation.
Methods : Classical human monocytes were isolated from healthy 18-40-year-old individuals and stimulated in vitro with recombinant spike protein subunit 1 (rS1) to assess glycolytic and oxidative metabolic responses by Seahorse extracellular flux analysis, and inflammatory gene expression by qPCR. Stimulated monocytes were either pre-treated with metformin, rotenone, S1QEL, or A769662. Results: Monocytes stimulated in vitro with rS1 showed an increased glycolytic response associated with production of pro-inflammatory cytokines. Metformin pre-treatment reduced glycolytic activation while partially suppressing inflammation. Rotenone-dependent mitochondrial complex I inhibition was not able to replicate the same effect, and neither complex I specific ROS scavenging. Conversely, A769662 induced AMPK activation led to suppressed glycolytic inflammatory response and cytokine expression pattern similar to metformin, thus suggesting AMPK modulation as a possible central component for metformin's mode of action upon S1 stimulation. Conclusions: In summary, further investigation into the interactions underlying AMPK activity on monocytes in the context of SARS-CoV-2 may provide a better elucidation of metformin's anti-inflammatory effect.
Author Contributions BP conceived the study. BP designed experiments. RMM, KD, NM, BLS, and BP collected data. RMM and BP analyzed data. RMM prepared the first manuscript draft. BP edited the manuscript draft. All authors read and approved the final manuscript.
References
Barek, Aziz, Islam, Impact of age, sex, comorbidities and clinical symptoms on the severity of COVID-19 cases: A meta-analysis with 55 studies and 10014 cases, Heliyon,
doi:10.1016/j.heliyon.2020.e05684
Beigmohammadi, Jahanbin, Safaei, Pathological findings of postmortem biopsies from lung, heart, and liver of 7 deceased COVID-19 patients, Int J Surg Pathol,
doi:10.1177/1066896920935195
Bułdak, Machnik, Bułdak, Łabuzek, Bołdys et al., Exenatide and metformin express their anti-inflammatory effects on human monocytes/macrophages by the attenuation of MAPKs and NFκB signaling, Naunyn Schmiedebergs Arch Pharmacol,
doi:10.1007/s00210-016-1277-8
Chen, The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes. medRxiv,
doi:10.1101/2020.03.27.20045427
Chen, Wu, Guo, Clinical and immunological features of severe and moderate coronavirus disease 2019, J Clin Invest,
doi:10.1172/JCI137244
Cheng, Liu, Li, Metformin is associated with higher incidence of acidosis, but not mortality, in individuals with COVID-19 and pre-existing type 2 diabetes, Cell Metab,
doi:10.1016/j.cmet.2020.08.013
Core, R: A language and environment for statistical computing
Cory, Emmons, Yarbro, Davis, Pence, Metformin suppresses monocyte immunometabolic activation by SARS-CoV-2 spike protein subunit 1, Front Immunol,
doi:10.3389/fimmu.2021.733921
Hariyanto, Kurniawan, Metformin use is associated with reduced mortality rate from coronavirus disease 2019 (COVID-19) infection, Obes Med,
doi:10.1016/j.obmed.2020.100290
Jin, Cheng, Liu, Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke, Brain Behav Immun,
doi:10.1016/j.bbi.2014.03.003
Jing, Wu, Li, Yang, Li et al., Metformin improves obesity-associated inflammation by altering macrophages polarization, Mol Cell Endocrinol,
doi:10.1016/j.mce.2017.09.025
Karwaciak, Sałkowska, Karaś, Dastych, Ratajewski, Nucleocapsid and spike proteins of the coronavirus SARS-CoV-2 induce IL6 in monocytes and macrophagespotential implications for cytokine storm syndrome, Vaccines,
doi:10.3390/vaccines9010054
Kelly, Tannahill, Murphy, Neill, Metformin inhibits the production of reactive oxygen species from NADH:ubiquinone oxidoreductase to limit induction of interleukin-1β (IL-1β) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)activated macrophages, J Biol Chem,
doi:10.1074/jbc.M115.662114
Kim, Kwak, Cha, Metformin suppresses lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages via activating transcription factor-3 (ATF-3) induction, J Biol Chem,
doi:10.1074/jbc.M114.577908
Laing, Lorenc, Molino, Barrio, A dynamic COVID-19 immune signature includes associations with poor prognosis, Nat Med,
doi:10.1038/s41591-020-1038-6
Li, Ragheb, Lawler, Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production, J Biol Chem,
doi:10.1074/jbc.M210432200
Li, Xu, Mihaylova, AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice, Cell Metab,
doi:10.1016/j.cmet.2011.03.009
Livak, Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods,
doi:10.1006/meth.2001.1262
Lukito, Pranata, Henrina, Lim, Lawrensia et al., The effect of metformin consumption on mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis, Diabetes Metab Syndr,
doi:10.1016/j.dsx.2020.11.006
Mann, Menon, Knight, Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19, Sci Immunol,
doi:10.1126/sciimmunol.abd6197
Qing, Fu, Wu, Zhou, Yu et al., Metformin induces the M2 macrophage polarization to accelerate the wound healing via regulating AMPK/mTOR/NLRP3 inflammasome singling pathway, Am J Transl Res
Ropa, Cooper, Capitano, Van't Hof, Broxmeyer, Human hematopoietic stem, progenitor, and immune cells respond ex vivo to SARS-CoV-2 spike protein, Stem Cell Rev Rep,
doi:10.1007/s12015-020-10056-z
Shaheen, Sambas, Alenezi, Alharbi, Aldibasi et al., COVID-19 reinfection: A multicenter retrospective study in Saudi Arabia, Ann Thorac Med,
doi:10.4103/atm.atm_74_22
Soberanes, Misharin, Jairaman, Metformin targets mitochondrial electron transport to reduce air-pollution-induced thrombosis, Cell Metab,
doi:10.1016/j.cmet.2018.09.019
Vasamsetti, Karnewar, Kanugula, Thatipalli, Kumar et al., Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: Potential role in atherosclerosis, Diabetes,
doi:10.2337/db14-1225
Wang, Li, Wang, Metformin inhibits metastatic breast cancer progression and improves chemosensitivity by inducing vessel normalization via PDGF-B downregulation, J Exp Clin Cancer Res,
doi:10.1186/s13046-019-1211-2
Wen, Su, Tang, Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing, Cell Discov,
doi:10.1038/s41421-020-00187-5
Xian, Liu, Nilsson, Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation, Immunity,
doi:10.1016/j.immuni.2021.05.004
Yu, Zhu, Huang, Metformin relieves acute respiratory distress syndrome by reducing miR-138 expression, Eur Rev Med Pharmacol Sci,
doi:10.26355/eurrev_201808_15737
Zhang, Guo, Lei, Frontline Science: COVID-19 infection induces readily detectable morphologic and inflammation-related phenotypic changes in peripheral blood monocytes, J Leukoc Biol,
doi:10.1002/JLB.4HI0720-470R
DOI record:
{
"DOI": "10.1101/2025.09.12.675877",
"URL": "http://dx.doi.org/10.1101/2025.09.12.675877",
"abstract": "<jats:title>Abstract</jats:title>\n <jats:sec>\n <jats:title>Background</jats:title>\n <jats:p>Severe COVID-19 is characterized by a hyperinflammatory state associated with an exacerbated inflammatory activation of monocytes and macrophages in the respiratory tract. Metformin has been identified as a potent monocyte inflammatory suppressor, and it has been demonstrated to attenuate inflammation in COVID-19. The mechanisms underlying metformin anti-inflammatory effects are, however, unclear. We thus sought to investigate metformin’s main interactions and their respective isolated effects in modulating monocyte inflammatory response to SARS-CoV-2 stimulation.</jats:p>\n </jats:sec>\n <jats:sec>\n <jats:title>Methods</jats:title>\n <jats:p>Classical human monocytes were isolated from healthy 18-40-year-old individuals and stimulated <jats:italic>in vitro</jats:italic> with recombinant spike protein subunit 1 (rS1) to assess glycolytic and oxidative metabolic responses by Seahorse extracellular flux analysis, and inflammatory gene expression by qPCR. Stimulated monocytes were either pre-treated with metformin, rotenone, S1QEL, or A769662.</jats:p>\n </jats:sec>\n <jats:sec>\n <jats:title>Results</jats:title>\n <jats:p>Monocytes stimulated <jats:italic>in vitro</jats:italic> with rS1 showed an increased glycolytic response associated with production of pro-inflammatory cytokines. Metformin pre-treatment reduced glycolytic activation while partially suppressing inflammation. Rotenone-dependent mitochondrial complex I inhibition was not able to replicate the same effect, and neither complex I specific ROS scavenging. Conversely, A769662 induced AMPK activation led to suppressed glycolytic inflammatory response and cytokine expression pattern similar to metformin, thus suggesting AMPK modulation as a possible central component for metformin’s mode of action upon S1 stimulation.</jats:p>\n </jats:sec>\n <jats:sec>\n <jats:title>Conclusions</jats:title>\n <jats:p>In summary, further investigation into the interactions underlying AMPK activity on monocytes in the context of SARS-CoV-2 may provide a better elucidation of metformin’s anti-inflammatory effect.</jats:p>\n </jats:sec>",
"accepted": {
"date-parts": [
[
2025,
9,
12
]
]
},
"author": [
{
"ORCID": "https://orcid.org/0000-0003-1759-1778",
"affiliation": [],
"authenticated-orcid": false,
"family": "Maurmann",
"given": "Rafael Moura",
"sequence": "first"
},
{
"affiliation": [],
"family": "Davis",
"given": "Kierstin",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0002-7518-8066",
"affiliation": [],
"authenticated-orcid": false,
"family": "Mosalmanzadeh",
"given": "Negin",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0001-5823-2611",
"affiliation": [],
"authenticated-orcid": false,
"family": "Schmitt",
"given": "Brenda Landvoigt",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0002-4059-9092",
"affiliation": [],
"authenticated-orcid": false,
"family": "Pence",
"given": "Brandt D.",
"sequence": "additional"
}
],
"container-title": [],
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2025,
9,
13
]
],
"date-time": "2025-09-13T03:55:13Z",
"timestamp": 1757735713000
},
"deposited": {
"date-parts": [
[
2025,
9,
16
]
],
"date-time": "2025-09-16T18:35:19Z",
"timestamp": 1758047719000
},
"funder": [
{
"name": "University of Memphis / University of Tennessee Health Science Center CORNET"
},
{
"DOI": "10.13039/100000968",
"award": [
"18AIREA33961089"
],
"doi-asserted-by": "crossref",
"id": [
{
"asserted-by": "crossref",
"id": "10.13039/100000968",
"id-type": "DOI"
}
],
"name": "American Heart Association"
},
{
"DOI": "10.13039/100000968",
"award": [
"19TPA34910232"
],
"doi-asserted-by": "crossref",
"id": [
{
"asserted-by": "crossref",
"id": "10.13039/100000968",
"id-type": "DOI"
}
],
"name": "American Heart Association"
},
{
"name": "University of Memphis College of Health Sciences"
}
],
"group-title": "Immunology",
"indexed": {
"date-parts": [
[
2025,
9,
18
]
],
"date-time": "2025-09-18T16:21:41Z",
"timestamp": 1758212501246,
"version": "3.44.0"
},
"institution": [
{
"name": "bioRxiv"
}
],
"is-referenced-by-count": 0,
"issued": {
"date-parts": [
[
2025,
9,
12
]
]
},
"license": [
{
"URL": "http://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2025,
9,
12
]
],
"date-time": "2025-09-12T00:00:00Z",
"timestamp": 1757635200000
}
}
],
"link": [
{
"URL": "https://syndication.highwire.org/content/doi/10.1101/2025.09.12.675877",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "246",
"original-title": [],
"posted": {
"date-parts": [
[
2025,
9,
12
]
]
},
"prefix": "10.1101",
"published": {
"date-parts": [
[
2025,
9,
12
]
]
},
"publisher": "Cold Spring Harbor Laboratory",
"reference": [
{
"key": "2025091611351074000_2025.09.12.675877v1.1",
"unstructured": "World Health Organization. WHO COVID-19 dashboard. World Health Organization. Updated February, 2025. Accessed February 11, 2025. https://covid19.who.int/"
},
{
"DOI": "10.1080/14760584.2021.1949293",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.2"
},
{
"DOI": "10.1038/s41579-023-00878-2",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.3"
},
{
"DOI": "10.1016/j.heliyon.2020.e05684",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.4"
},
{
"DOI": "10.4103/atm.atm_74_22",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.5"
},
{
"DOI": "10.1172/JCI137244",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.6"
},
{
"DOI": "10.1038/s41591-020-1038-6",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.7"
},
{
"DOI": "10.1038/s41591-020-1051-9",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.8"
},
{
"DOI": "10.1016/j.eclinm.2020.100404",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.9"
},
{
"DOI": "10.1016/S0140-6736(20)30628-0",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.10"
},
{
"DOI": "10.1146/annurev-med-061813-012806",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.11"
},
{
"DOI": "10.1038/s41591-020-0901-9",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.12"
},
{
"DOI": "10.1016/j.chom.2020.04.017",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.13"
},
{
"DOI": "10.1101/2020.03.27.20045427",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.14"
},
{
"DOI": "10.1177/1066896920935195",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.15"
},
{
"DOI": "10.1038/s41586-019-1631-3",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.16"
},
{
"DOI": "10.1002/JLB.4HI0720-470R",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.17"
},
{
"DOI": "10.1038/s41421-020-00187-5",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.18"
},
{
"DOI": "10.1126/sciimmunol.abd6197",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.19"
},
{
"DOI": "10.1038/s41564-023-01356-4",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.20"
},
{
"DOI": "10.1016/j.obmed.2020.100290",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.21"
},
{
"DOI": "10.1016/j.dsx.2020.11.006",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.22"
},
{
"DOI": "10.1016/j.cmet.2020.08.013",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.23"
},
{
"DOI": "10.1016/j.immuni.2021.05.004",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.24"
},
{
"DOI": "10.26355/eurrev_201808_15737",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.25"
},
{
"DOI": "10.1016/j.cmet.2018.09.019",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.26"
},
{
"DOI": "10.1074/jbc.M115.662114",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.27"
},
{
"DOI": "10.2337/db14-1225",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.28"
},
{
"DOI": "10.1074/jbc.M114.577908",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.29"
},
{
"DOI": "10.1016/j.mce.2017.09.025",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.30"
},
{
"DOI": "10.1007/s00210-016-1277-8",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.31"
},
{
"DOI": "10.3389/fimmu.2018.01236",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.32"
},
{
"DOI": "10.1016/j.cmet.2014.09.018",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.33"
},
{
"DOI": "10.3389/fimmu.2021.733921",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.34"
},
{
"DOI": "10.1016/j.exger.2018.04.008",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.35"
},
{
"DOI": "10.1006/meth.2001.1262",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.36"
},
{
"key": "2025091611351074000_2025.09.12.675877v1.37",
"unstructured": "R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. 2014. Available from: https://www.R-project.org/"
},
{
"article-title": "A simple sequentially rejective multiple test procedure",
"first-page": "65",
"issue": "2",
"journal-title": "Scand J Stat",
"key": "2025091611351074000_2025.09.12.675877v1.38",
"volume": "6",
"year": "1979"
},
{
"DOI": "10.6084/m9.figshare.30113695",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.39"
},
{
"DOI": "10.1007/s12015-020-10056-z",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.40"
},
{
"DOI": "10.3390/vaccines9010054",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.41"
},
{
"DOI": "10.1074/jbc.M210432200",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.42"
},
{
"DOI": "10.1016/j.cmet.2011.03.009",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.43"
},
{
"DOI": "10.1038/nature11862",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.44"
},
{
"DOI": "10.1016/j.bbi.2014.03.003",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.45"
},
{
"article-title": "Metformin induces the M2 macrophage polarization to accelerate the wound healing via regulating AMPK/mTOR/NLRP3 inflammasome singling pathway",
"first-page": "655",
"issue": "2",
"journal-title": "Am J Transl Res",
"key": "2025091611351074000_2025.09.12.675877v1.46",
"volume": "11",
"year": "2019"
},
{
"DOI": "10.1186/s13046-019-1211-2",
"doi-asserted-by": "publisher",
"key": "2025091611351074000_2025.09.12.675877v1.47"
}
],
"reference-count": 47,
"references-count": 47,
"relation": {},
"resource": {
"primary": {
"URL": "http://biorxiv.org/lookup/doi/10.1101/2025.09.12.675877"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"subtype": "preprint",
"title": "Immunoregulatory effect of metformin in monocytes exposed to SARS-CoV-2 spike protein subunit 1",
"type": "posted-content"
}