Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All metformin studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchMetforminMetformin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

SARS-CoV-2 infection causes dopaminergic neuron senescence

Yang et al., Cell Stem Cell, doi:10.1016/j.stem.2023.12.012
Jan 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Metformin for COVID-19
3rd treatment shown to reduce risk in July 2020, now with p < 0.00000000001 from 97 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 109 treatments. c19early.org
In vitro study suggesting that metformin may protect against SARS-CoV-2-induced neurological disorders. Authors show that SARS-CoV-2 infection induces senescence and inflammation in human pluripotent stem cell-derived midbrain dopamine neurons, a cell type affected in Parkinson's disease. Authors find that metformin, riluzole, and imatinib rescue cellular senescence phenotypes by inhibiting SARS-CoV-2 infection. Analyses of substantia nigra tissues (postmortem brain samples) from COVID-19 patients also detect inflammation and senescence signatures, reduced numbers of dopamine neurons and fibers, and potential Parkinson's disease pathologies.
12 preclinical studies support the efficacy of metformin for COVID-19:
A systematic review and meta-analysis of 15 non-COVID-19 preclinical studies showed that metformin inhibits pulmonary inflammation and oxidative stress, minimizes lung injury, and improves survival in animal models of acute respiratory distress syndrome (ARDS) or acute lung injury (ALI)10. Metformin inhibits SARS-CoV-2 in vitro7,8, minimizes LPS-induced cytokine storm in a mouse model9, minimizes lung damage and fibrosis in a mouse model of LPS-induced ARDS6, may protect against SARS-CoV-2-induced neurological disorders5, may be beneficial via inhibitory effects on ORF3a-mediated inflammasome activation11, reduces UUO and FAN-induced kidney fibrosis6, increases mitochondrial function and decreases TGF-β-induced fibrosis, apoptosis, and inflammation markers in lung epithelial cells6, may reduce inflammation, oxidative stress, and thrombosis via regulating glucose metabolism1, attenuates spike protein S1-induced inflammatory response and α-synuclein aggregation4, and may improve outcomes via modulation of immune responses with increased anti-inflammatory T lymphocyte gene expression and via enhanced gut microbiota diversity12.
Yang et al., 17 Jan 2024, USA, peer-reviewed, 28 authors. Contact: res2025@med.cornell.edu (corresponding author), res2025@med.cornell.edu (corresponding author), dh2994@cumc.columbia.edu, studerl@mskcc.org, shc2034@med.cornell.edu.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperMetforminAll
SARS-CoV-2 infection causes dopaminergic neuron senescence
Liuliu Yang, Tae Wan Kim, Yuling Han, Manoj S Nair, Oliver Harschnitz, Jiajun Zhu, Pengfei Wang, So Yeon Koo, Lauretta A Lacko, Vasuretha Chandar, Yaron Bram, Tuo Zhang, Wei Zhang, Feng He, Chendong Pan, Junjie Wu, Yaoxing Huang, Todd Evans, Paul Van Der Valk, Maarten J Titulaer, Jochem K H Spoor, Robert L Furler O’brien, Marianna Bugiani, Wilma D.J. Van De Berg, Robert E Schwartz, David D Ho, Lorenz Studer, Shuibing Chen
Cell Stem Cell, doi:10.1016/j.stem.2023.12.012
COVID-19 patients commonly present with signs of central nervous system and/or peripheral nervous system dysfunction. Here, we show that midbrain dopamine (DA) neurons derived from human pluripotent stem cells (hPSCs) are selectively susceptible and permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. SARS-CoV-2 infection of DA neurons triggers an inflammatory and cellular senescence response. High-throughput screening in hPSC-derived DA neurons identified several FDAapproved drugs that can rescue the cellular senescence phenotype by preventing SARS-CoV-2 infection. We also identified the inflammatory and cellular senescence signature and low levels of SARS-CoV-2 transcripts in human substantia nigra tissue of COVID-19 patients. Furthermore, we observed reduced numbers of neuromelanin+ and tyrosine-hydroxylase (TH)+ DA neurons and fibers in a cohort of severe COVID-19 patients. Our findings demonstrate that hPSC-derived DA neurons are susceptible to SARS-CoV-2, identify candidate neuroprotective drugs for COVID-19 patients, and suggest the need for careful, long-term monitoring of neurological problems in COVID-19 patients.
Detailed methods are provided in the online version of this paper and include the following: DECLARATION OF INTERESTS R.E.S. is on the scientific advisory board of Miromatrix Inc. and Lime Therapeutics Inc. and is a paid consultant and speaker for Alnylam Inc. L.S. is a scientific cofounder and paid consultant of BlueRock Therapeutics Inc. and a cofounder of DaCapo Brainscience Inc. S.C. is the co-founder of OncoBeat, LLC and a paid consultant of Vesalius Therapeutics. RESOURCE AVAILABILITY Lead contact Further information and requests for resources, reagents or codes should be directed to and will be fulfilled by the lead contact, Shuibing Chen (shc2034@med.cornell.edu). Materials availability This study did not generate new unique reagents. Data and code availability Single-cell RNA seq data and RNA-seq data have been deposited at GEO and are publicly available as of the date of publication. Accession numbers are listed in the key resources table. All original code has been deposited at Github and is publicly available as of the date of publication. DOI is listed in the key resources table. Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request. EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS Human subjects A total of 31 clinically defined and pathologically confirmed brain donors were included in Cohort 2: 8 PD, 13 COVID-19, and 8 agematched control donors. During life, all donors..
References
Aliyari, Ghaffari, Pernet, Parvatiyar, Wang et al., Suppressing fatty acid synthase by type I interferon and chemical inhibitors as a broad spectrum anti-viral strategy against SARS-CoV-2, Acta Pharm. Sin. B
Anderegg, Poulin, Awatramani, Molecular heterogeneity of midbrain dopaminergic neurons-moving toward single cell resolution, FEBS Lett
Bauer, Laksono, De Vrij, Kushner, Harschnitz et al., The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2, Trends Neurosci
Bramante, Ingraham, Murray, Marmor, Hovertsen et al., Metformin and risk of mortality in patients hospitalised with COVID-19: a retrospective cohort analysis, Lancet Healthy Longev
Chartier-Harlin, Kachergus, Roumier, Mouroux, Douay et al., Alpha-synuclein locus duplication as a cause of familial Parkinson's disease, Lancet
Chen, Dolt, Kriek, Baker, Downey et al., Engineering synucleinopathy-resistant human dopaminergic neurons by CRISPR-mediated deletion of the SNCA gene, Eur. J. Neurosci
Conte, Possible link between SARS-CoV-2 infection and Parkinson's disease: the role of Toll-Like Receptor 4, Int. J. Mol. Sci
Davis, Van Dongen, Abreu-Goodger, Bartonicek, Enright, Kraken: a set of tools for quality control and analysis of high-throughput sequence data, Methods
Dijkstra, Voorn, Berendse, Groenewegen, Netherlands et al., Stage-dependent nigral neuronal loss in incidental Lewy body and Parkinson's disease, Movement disorders : official journal of the Movement Disorder Society
Dobin, Davis, Schlesinger, Drenkow, Zaleski et al., STAR: ultrafast universal RNA-seq aligner, Bioinformatics
Duan, Tang, Nair, Zhang, Qiu et al., An airway organoid-based screen identifies a role for the HIF1alpha-glycolysis axis in SARS-CoV-2 infection, Cell Rep
Georgakopoulou, Tsimaratou, Evangelou, Fernandez Marcos, Zoumpourlis et al., Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues, Aging
German, Manaye, Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat, J. Comp. Neurol
Han, Duan, Yang, Nilsson-Payant, Wang et al., Identification of SARS-CoV-2 inhibitors using lung and colonic organoids, Nature
Harschnitz, Studer, Human stem cell models to study host-virus interactions in the central nervous system, Nat. Rev. Immunol
Hughes, Choi, Ryten, Hopkins, Drews et al., Picomolar concentrations of oligomeric alpha-synuclein sensitizes TLR4 to play an initiating role in Parkinson's disease pathogenesis, Acta Neuropathol
Islam, Zeisel, Joost, La Manno, Zajac et al., Quantitative single-cell RNAseq with unique molecular identifiers, Nat. Methods
Jacob, Pather, Huang, Zhang, Wong et al., Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium, Cell Stem Cell
Jiang, Lei, Ding, Zhu, Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads, BMC Bioinformatics
Kim, Piao, Koo, Kriks, Chung et al., Biphasic activation of WNT signaling facilitates the derivation of midbrain dopamine neurons from hESCs for translational use, Cell Stem Cell
Lalau, Al-Salameh, Hadjadj, Goronflot, Wiernsperger et al., Metformin use is associated with a reduced risk of mortality in patients with diabetes hospitalised for COVID-19, Diabetes Metab
Liu, Wang, Nair, Yu, Rapp et al., Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike, Nature
Manno, Gyllborg, Codeluppi, Nishimura, Salto et al., Molecular diversity of midbrain development in mouse, human, and stem cells, Cell
Mizuta, Satake, Nakabayashi, Ito, Suzuki et al., Multiple candidate gene analysis identifies alpha-synuclein as a susceptibility gene for sporadic Parkinson's disease, Hum. Mol. Genet
Nestler, Carlezon, Jr, The mesolimbic dopamine reward circuit in depression, Biol. Psychiatry
Nie, Li, Wu, Zhao, Hao et al., Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2, Emerg. Microbes Infect
Parkkinen, Neumann, O'sullivan, Holton, Revesz et al., Glucocerebrosidase mutations do not cause increased Lewy body pathology in Parkinson's disease, Molecular genetics and metabolism
Parthasarathy, Tandel, Siddiqui, Harshan, Metformin suppresses SARS-CoV-2 in cell culture, Virus Res
Paxinos, Huang, Atlas of the Human Brain Stem
Pellegrini, Albecka, Mallery, Kellner, Paul et al., SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids, Cell Stem Cell
Pezzini, Padovani, Lifting the mask on neurological manifestations of COVID-19, Nat. Rev. Neurol
Polymeropoulos, Lavedan, Leroy, Ide, Dehejia et al., Mutation in the alpha-synuclein gene identified in families with Parkinson's disease, Science
Ramı ´rez, Ryan, Gr€ Uning, Bhardwaj, Kilpert et al., deepTools2: a next generation web server for deep-sequencing data analysis, Nucleic Acids Res
Riessland, Kolisnyk, Kim, Cheng, Ni et al., Loss of SATB1 induces p21-dependent cellular senescence in post-mitotic dopaminergic neurons, Cell Stem Cell
Root-Bernstein, Innate receptor activation patterns involving TLR and NLR synergisms in COVID-19, ALI/ARDS and sepsis cytokine storms: a review and model making novel predictions and therapeutic suggestions, Int. J. Mol. Sci
Russo, Riessland, Age-related midbrain inflammation and senescence in Parkinson's disease, Front. Aging Neurosci
Semerdzhiev, Fakhree, Segers-Nolten, Blum, Claessens, Interactions between SARS-CoV-2 N-protein and alpha-synuclein accelerate amyloid formation, ACS Chem. Neurosci
Severino, Alessio, Farina, Sandomenico, Cipollaro et al., Insulin-like growth factor binding proteins 4 and 7 released by senescent cells promote premature senescence in mesenchymal stem cells, Cell Death Dis
Singleton, Farrer, Johnson, Singleton, Hague et al., alpha-Synuclein locus triplication causes Parkinson's disease, Science
Song, Zhang, Israelow, Lu-Culligan, Prado et al., Neuroinvasion of SARS-CoV-2 in human and mouse brain, J. Exp. Med
Svensson, Natarajan, Ly, Miragaia, Labalette et al., Power analysis of single-cell RNA-sequencing experiments, Nat. Methods
Taquet, Geddes, Husain, Luciano, Harrison, 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records, Lancet Psychiatry
Thakur, Miller, Glendinning, Al-Dalahmah, Banu et al., COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital, Brain
Whitt, Generation of VSV pseudotypes using recombinant DG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines, J. Virol. Methods
Wu, Zhang, Huang, Ma, SARS-CoV-2 proteins interact with alpha synuclein and induce Lewy body-like pathology in vitro, Int. J. Mol. Sci
Yang, Han, Nilsson-Payant, Gupta, Wang et al., A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids, Cell Stem Cell
Zhou, Kim, Chong, Tan, Amin et al., A hPSCbased platform to discover gene-environment interactions that impact human beta-cell and dopamine neuron survival, Nat. Commun
Ziegler, Allon, Nyquist, Mbano, Miao et al., SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues, Cell
Ziemann, Kaspi, El-Osta, Digital expression explorer 2: a repository of uniformly processed RNA sequencing data, GigaScience
{ 'indexed': {'date-parts': [[2024, 1, 18]], 'date-time': '2024-01-18T00:29:07Z', 'timestamp': 1705537747431}, 'reference-count': 49, 'publisher': 'Elsevier BV', 'license': [ { 'start': { 'date-parts': [[2024, 1, 1]], 'date-time': '2024-01-01T00:00:00Z', 'timestamp': 1704067200000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.elsevier.com/tdm/userlicense/1.0/'}, { 'start': { 'date-parts': [[2023, 12, 15]], 'date-time': '2023-12-15T00:00:00Z', 'timestamp': 1702598400000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'http://creativecommons.org/licenses/by/4.0/'}], 'content-domain': { 'domain': ['cell.com', 'elsevier.com', 'sciencedirect.com'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2024, 1]]}, 'DOI': '10.1016/j.stem.2023.12.012', 'type': 'journal-article', 'created': {'date-parts': [[2024, 1, 17]], 'date-time': '2024-01-17T15:42:12Z', 'timestamp': 1705506132000}, 'update-policy': 'http://dx.doi.org/10.1016/elsevier_cm_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'SARS-CoV-2 infection causes dopaminergic neuron senescence', 'prefix': '10.1016', 'author': [ {'given': 'Liuliu', 'family': 'Yang', 'sequence': 'first', 'affiliation': []}, {'given': 'Tae Wan', 'family': 'Kim', 'sequence': 'additional', 'affiliation': []}, {'given': 'Yuling', 'family': 'Han', 'sequence': 'additional', 'affiliation': []}, {'given': 'Manoj S.', 'family': 'Nair', 'sequence': 'additional', 'affiliation': []}, {'given': 'Oliver', 'family': 'Harschnitz', 'sequence': 'additional', 'affiliation': []}, {'given': 'Jiajun', 'family': 'Zhu', 'sequence': 'additional', 'affiliation': []}, {'given': 'Pengfei', 'family': 'Wang', 'sequence': 'additional', 'affiliation': []}, {'given': 'So Yeon', 'family': 'Koo', 'sequence': 'additional', 'affiliation': []}, {'given': 'Lauretta A.', 'family': 'Lacko', 'sequence': 'additional', 'affiliation': []}, {'given': 'Vasuretha', 'family': 'Chandar', 'sequence': 'additional', 'affiliation': []}, {'given': 'Yaron', 'family': 'Bram', 'sequence': 'additional', 'affiliation': []}, {'given': 'Tuo', 'family': 'Zhang', 'sequence': 'additional', 'affiliation': []}, {'given': 'Wei', 'family': 'Zhang', 'sequence': 'additional', 'affiliation': []}, {'given': 'Feng', 'family': 'He', 'sequence': 'additional', 'affiliation': []}, {'given': 'Chendong', 'family': 'Pan', 'sequence': 'additional', 'affiliation': []}, {'given': 'Junjie', 'family': 'Wu', 'sequence': 'additional', 'affiliation': []}, {'given': 'Yaoxing', 'family': 'Huang', 'sequence': 'additional', 'affiliation': []}, {'given': 'Todd', 'family': 'Evans', 'sequence': 'additional', 'affiliation': []}, {'given': 'Paul', 'family': 'van der Valk', 'sequence': 'additional', 'affiliation': []}, {'given': 'Maarten J.', 'family': 'Titulaer', 'sequence': 'additional', 'affiliation': []}, {'given': 'Jochem K.H.', 'family': 'Spoor', 'sequence': 'additional', 'affiliation': []}, {'given': 'Robert L.', 'family': 'Furler O’Brien', 'sequence': 'additional', 'affiliation': []}, {'given': 'Marianna', 'family': 'Bugiani', 'sequence': 'additional', 'affiliation': []}, {'given': 'Wilma', 'family': 'D.J. Van de Berg', 'sequence': 'additional', 'affiliation': []}, {'given': 'Robert E.', 'family': 'Schwartz', 'sequence': 'additional', 'affiliation': []}, {'given': 'David D.', 'family': 'Ho', 'sequence': 'additional', 'affiliation': []}, {'given': 'Lorenz', 'family': 'Studer', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-6294-5187', 'authenticated-orcid': False, 'given': 'Shuibing', 'family': 'Chen', 'sequence': 'additional', 'affiliation': []}], 'member': '78', 'reference': [ { 'key': '10.1016/j.stem.2023.12.012_bib1', 'doi-asserted-by': 'crossref', 'first-page': '636', 'DOI': '10.1038/s41582-020-0398-3', 'article-title': 'Lifting the mask on neurological manifestations of COVID-19', 'volume': '16', 'author': 'Pezzini', 'year': '2020', 'journal-title': 'Nat. Rev. Neurol.'}, { 'key': '10.1016/j.stem.2023.12.012_bib2', 'doi-asserted-by': 'crossref', 'first-page': '416', 'DOI': '10.1016/S2215-0366(21)00084-5', 'article-title': '6-month neurological and psychiatric outcomes in 236 379 survivors of ' 'COVID-19: a retrospective cohort study using electronic health records', 'volume': '8', 'author': 'Taquet', 'year': '2021', 'journal-title': 'Lancet Psychiatry'}, { 'key': '10.1016/j.stem.2023.12.012_bib3', 'doi-asserted-by': 'crossref', 'first-page': '951', 'DOI': '10.1016/j.stem.2020.10.001', 'article-title': 'SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF ' 'barrier in human brain organoids', 'volume': '27', 'author': 'Pellegrini', 'year': '2020', 'journal-title': 'Cell Stem Cell'}, { 'key': '10.1016/j.stem.2023.12.012_bib4', 'doi-asserted-by': 'crossref', 'first-page': '937', 'DOI': '10.1016/j.stem.2020.09.016', 'article-title': 'Human pluripotent stem cell-derived neural cells and brain organoids ' 'reveal SARS-CoV-2 neurotropism predominates in choroid plexus ' 'epithelium', 'volume': '27', 'author': 'Jacob', 'year': '2020', 'journal-title': 'Cell Stem Cell'}, { 'key': '10.1016/j.stem.2023.12.012_bib5', 'doi-asserted-by': 'crossref', 'first-page': 'e20202135', 'DOI': '10.1084/jem.20202135', 'article-title': 'Neuroinvasion of SARS-CoV-2 in human and mouse brain', 'volume': '218', 'author': 'Song', 'year': '2021', 'journal-title': 'J.\xa0Exp. Med.'}, { 'key': '10.1016/j.stem.2023.12.012_bib6', 'doi-asserted-by': 'crossref', 'first-page': '358', 'DOI': '10.1016/j.tins.2022.02.006', 'article-title': 'The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2', 'volume': '45', 'author': 'Bauer', 'year': '2022', 'journal-title': 'Trends Neurosci.'}, { 'key': '10.1016/j.stem.2023.12.012_bib7', 'doi-asserted-by': 'crossref', 'first-page': '125', 'DOI': '10.1016/j.stem.2020.06.015', 'article-title': 'A human pluripotent stem cell-based platform to study SARS-CoV-2 ' 'tropism and model virus infection in human cells and organoids', 'volume': '27', 'author': 'Yang', 'year': '2020', 'journal-title': 'Cell Stem Cell'}, { 'key': '10.1016/j.stem.2023.12.012_bib8', 'doi-asserted-by': 'crossref', 'first-page': '514', 'DOI': '10.1016/j.stem.2019.08.013', 'article-title': 'Loss of SATB1 induces p21-dependent cellular senescence in post-mitotic ' 'dopaminergic neurons', 'volume': '25', 'author': 'Riessland', 'year': '2019', 'journal-title': 'Cell Stem Cell'}, { 'key': '10.1016/j.stem.2023.12.012_bib9', 'doi-asserted-by': 'crossref', 'first-page': '343', 'DOI': '10.1016/j.stem.2021.01.005', 'article-title': 'Biphasic activation of WNT signaling facilitates the derivation of ' 'midbrain dopamine neurons from hESCs for translational use', 'volume': '28', 'author': 'Kim', 'year': '2021', 'journal-title': 'Cell Stem Cell'}, { 'key': '10.1016/j.stem.2023.12.012_bib10', 'doi-asserted-by': 'crossref', 'first-page': '365', 'DOI': '10.1016/j.jviromet.2010.08.006', 'article-title': 'Generation of VSV pseudotypes using recombinant ΔG-VSV for studies on ' 'virus entry, identification of entry inhibitors, and immune responses ' 'to vaccines', 'volume': '169', 'author': 'Whitt', 'year': '2010', 'journal-title': 'J.\xa0Virol. Methods'}, { 'key': '10.1016/j.stem.2023.12.012_bib11', 'doi-asserted-by': 'crossref', 'first-page': '680', 'DOI': '10.1080/22221751.2020.1743767', 'article-title': 'Establishment and validation of a pseudovirus neutralization assay for ' 'SARS-CoV-2', 'volume': '9', 'author': 'Nie', 'year': '2020', 'journal-title': 'Emerg. Microbes Infect.'}, { 'key': '10.1016/j.stem.2023.12.012_bib12', 'doi-asserted-by': 'crossref', 'first-page': '566', 'DOI': '10.1016/j.cell.2016.09.027', 'article-title': 'Molecular diversity of midbrain development in mouse, human, and stem ' 'cells', 'volume': '167', 'author': 'La Manno', 'year': '2016', 'journal-title': 'Cell'}, { 'key': '10.1016/j.stem.2023.12.012_bib13', 'doi-asserted-by': 'crossref', 'first-page': '381', 'DOI': '10.1038/nmeth.4220', 'article-title': 'Power analysis of single-cell RNA-sequencing experiments', 'volume': '14', 'author': 'Svensson', 'year': '2017', 'journal-title': 'Nat. Methods'}, { 'key': '10.1016/j.stem.2023.12.012_bib14', 'doi-asserted-by': 'crossref', 'first-page': '163', 'DOI': '10.1038/nmeth.2772', 'article-title': 'Quantitative single-cell RNA-seq with unique molecular identifiers', 'volume': '11', 'author': 'Islam', 'year': '2014', 'journal-title': 'Nat. Methods'}, { 'key': '10.1016/j.stem.2023.12.012_bib15', 'doi-asserted-by': 'crossref', 'first-page': '297', 'DOI': '10.1002/cne.903310302', 'article-title': 'Midbrain dopaminergic neurons (nuclei A8, A9, and A10): ' 'three-dimensional reconstruction in the rat', 'volume': '331', 'author': 'German', 'year': '1993', 'journal-title': 'J.\xa0Comp. Neurol.'}, { 'key': '10.1016/j.stem.2023.12.012_bib16', 'doi-asserted-by': 'crossref', 'first-page': '3714', 'DOI': '10.1016/j.febslet.2015.10.022', 'article-title': 'Molecular heterogeneity of midbrain dopaminergic neurons--moving toward ' 'single cell resolution', 'volume': '589', 'author': 'Anderegg', 'year': '2015', 'journal-title': 'FEBS Lett.'}, { 'key': '10.1016/j.stem.2023.12.012_bib17', 'doi-asserted-by': 'crossref', 'first-page': '510', 'DOI': '10.1111/ejn.14286', 'article-title': 'Engineering synucleinopathy-resistant human dopaminergic neurons by ' 'CRISPR-mediated deletion of the SNCA gene', 'volume': '49', 'author': 'Chen', 'year': '2019', 'journal-title': 'Eur. J. Neurosci.'}, { 'key': '10.1016/j.stem.2023.12.012_bib18', 'doi-asserted-by': 'crossref', 'first-page': '37', 'DOI': '10.18632/aging.100527', 'article-title': 'Specific lipofuscin staining as a novel biomarker to detect replicative ' 'and stress-induced senescence. A method applicable in cryo-preserved ' 'and archival tissues', 'volume': '5', 'author': 'Georgakopoulou', 'year': '2013', 'journal-title': 'Aging (Albany, NY)'}, { 'key': '10.1016/j.stem.2023.12.012_bib19', 'doi-asserted-by': 'crossref', 'first-page': 'e911', 'DOI': '10.1038/cddis.2013.445', 'article-title': 'Insulin-like growth factor binding proteins 4 and 7 released by ' 'senescent cells promote premature senescence in mesenchymal stem cells', 'volume': '4', 'author': 'Severino', 'year': '2013', 'journal-title': 'Cell Death Dis.'}, { 'key': '10.1016/j.stem.2023.12.012_bib20', 'doi-asserted-by': 'crossref', 'first-page': '917797', 'DOI': '10.3389/fnagi.2022.917797', 'article-title': 'Age-related midbrain inflammation and senescence in Parkinson’s disease', 'volume': '14', 'author': 'Russo', 'year': '2022', 'journal-title': 'Front. Aging Neurosci.'}, { 'key': '10.1016/j.stem.2023.12.012_bib21', 'doi-asserted-by': 'crossref', 'first-page': '2045', 'DOI': '10.1126/science.276.5321.2045', 'article-title': 'Mutation in the alpha-synuclein gene identified in families with ' 'Parkinson’s disease', 'volume': '276', 'author': 'Polymeropoulos', 'year': '1997', 'journal-title': 'Science'}, { 'key': '10.1016/j.stem.2023.12.012_bib22', 'doi-asserted-by': 'crossref', 'first-page': '1167', 'DOI': '10.1016/S0140-6736(04)17103-1', 'article-title': 'Alpha-synuclein locus duplication as a cause of familial Parkinson’s ' 'disease', 'volume': '364', 'author': 'Chartier-Harlin', 'year': '2004', 'journal-title': 'Lancet'}, { 'key': '10.1016/j.stem.2023.12.012_bib23', 'doi-asserted-by': 'crossref', 'first-page': '841', 'DOI': '10.1126/science.1090278', 'article-title': 'alpha-Synuclein locus triplication causes Parkinson’s disease', 'volume': '302', 'author': 'Singleton', 'year': '2003', 'journal-title': 'Science'}, { 'key': '10.1016/j.stem.2023.12.012_bib24', 'doi-asserted-by': 'crossref', 'first-page': '1151', 'DOI': '10.1093/hmg/ddl030', 'article-title': 'Multiple candidate gene analysis identifies alpha-synuclein as a ' 'susceptibility gene for sporadic Parkinson’s disease', 'volume': '15', 'author': 'Mizuta', 'year': '2006', 'journal-title': 'Hum. Mol. Genet.'}, { 'key': '10.1016/j.stem.2023.12.012_bib25', 'doi-asserted-by': 'crossref', 'first-page': '103', 'DOI': '10.1007/s00401-018-1907-y', 'article-title': 'Picomolar concentrations of oligomeric alpha-synuclein sensitizes TLR4 ' 'to play an initiating role in Parkinson’s disease pathogenesis', 'volume': '137', 'author': 'Hughes', 'year': '2019', 'journal-title': 'Acta Neuropathol.'}, { 'key': '10.1016/j.stem.2023.12.012_bib26', 'doi-asserted-by': 'crossref', 'first-page': '2108', 'DOI': '10.3390/ijms22042108', 'article-title': 'Innate receptor activation patterns involving TLR and NLR synergisms in ' 'COVID-19, ALI/ARDS and sepsis cytokine storms: a review and model ' 'making novel predictions and therapeutic suggestions', 'volume': '22', 'author': 'Root-Bernstein', 'year': '2021', 'journal-title': 'Int. J. Mol. Sci.'}, { 'key': '10.1016/j.stem.2023.12.012_bib27', 'doi-asserted-by': 'crossref', 'first-page': '1016', 'DOI': '10.1016/j.cell.2020.04.035', 'article-title': 'SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human ' 'airway epithelial cells and is detected in specific cell subsets across ' 'tissues', 'volume': '181', 'author': 'Ziegler', 'year': '2020', 'journal-title': 'Cell'}, { 'key': '10.1016/j.stem.2023.12.012_bib28', 'doi-asserted-by': 'crossref', 'first-page': '143', 'DOI': '10.1021/acschemneuro.1c00666', 'article-title': 'Interactions between SARS-CoV-2 N-protein and alpha-synuclein ' 'accelerate amyloid formation', 'volume': '13', 'author': 'Semerdzhiev', 'year': '2022', 'journal-title': 'ACS Chem. Neurosci.'}, { 'key': '10.1016/j.stem.2023.12.012_bib29', 'doi-asserted-by': 'crossref', 'first-page': '3394', 'DOI': '10.3390/ijms23063394', 'article-title': 'SARS-CoV-2 proteins interact with alpha synuclein and induce Lewy ' 'body-like pathology in\xa0vitro', 'volume': '23', 'author': 'Wu', 'year': '2022', 'journal-title': 'Int. J. Mol. Sci.'}, { 'key': '10.1016/j.stem.2023.12.012_bib30', 'doi-asserted-by': 'crossref', 'first-page': '270', 'DOI': '10.1038/s41586-020-2901-9', 'article-title': 'Identification of SARS-CoV-2 inhibitors using lung and colonic ' 'organoids', 'volume': '589', 'author': 'Han', 'year': '2021', 'journal-title': 'Nature'}, { 'key': '10.1016/j.stem.2023.12.012_bib31', 'doi-asserted-by': 'crossref', 'first-page': '109920', 'DOI': '10.1016/j.celrep.2021.109920', 'article-title': 'An airway organoid-based screen identifies a role for the ' 'HIF1alpha-glycolysis axis in SARS-CoV-2 infection', 'volume': '37', 'author': 'Duan', 'year': '2021', 'journal-title': 'Cell Rep.'}, { 'key': '10.1016/j.stem.2023.12.012_bib32', 'doi-asserted-by': 'crossref', 'first-page': '1624', 'DOI': '10.1016/j.apsb.2022.02.019', 'article-title': 'Suppressing fatty acid synthase by type I interferon and chemical ' 'inhibitors as a broad spectrum anti-viral strategy against SARS-CoV-2', 'volume': '12', 'author': 'Aliyari', 'year': '2022', 'journal-title': 'Acta Pharm. Sin. B'}, { 'key': '10.1016/j.stem.2023.12.012_bib33', 'doi-asserted-by': 'crossref', 'first-page': '199010', 'DOI': '10.1016/j.virusres.2022.199010', 'article-title': 'Metformin suppresses SARS-CoV-2 in cell culture', 'volume': '323', 'author': 'Parthasarathy', 'year': '2023', 'journal-title': 'Virus Res.'}, { 'key': '10.1016/j.stem.2023.12.012_bib34', 'doi-asserted-by': 'crossref', 'first-page': '2696', 'DOI': '10.1093/brain/awab148', 'article-title': 'COVID-19 neuropathology at Columbia University Irving Medical ' 'Center/New York Presbyterian Hospital', 'volume': '144', 'author': 'Thakur', 'year': '2021', 'journal-title': 'Brain'}, { 'key': '10.1016/j.stem.2023.12.012_bib35', 'doi-asserted-by': 'crossref', 'first-page': '441', 'DOI': '10.1038/s41577-020-00474-y', 'article-title': 'Human stem cell models to study host-virus interactions in the central ' 'nervous system', 'volume': '21', 'author': 'Harschnitz', 'year': '2021', 'journal-title': 'Nat. Rev. Immunol.'}, { 'key': '10.1016/j.stem.2023.12.012_bib36', 'doi-asserted-by': 'crossref', 'first-page': '1151', 'DOI': '10.1016/j.biopsych.2005.09.018', 'article-title': 'The mesolimbic dopamine reward circuit in depression', 'volume': '59', 'author': 'Nestler', 'year': '2006', 'journal-title': 'Biol. Psychiatry'}, { 'key': '10.1016/j.stem.2023.12.012_bib37', 'doi-asserted-by': 'crossref', 'first-page': '7135', 'DOI': '10.3390/ijms22137135', 'article-title': 'Possible link between SARS-CoV-2 infection and Parkinson’s disease: the ' 'role of Toll-Like Receptor 4', 'volume': '22', 'author': 'Conte', 'year': '2021', 'journal-title': 'Int. J. Mol. Sci.'}, { 'key': '10.1016/j.stem.2023.12.012_bib38', 'doi-asserted-by': 'crossref', 'first-page': 'e34', 'DOI': '10.1016/S2666-7568(20)30033-7', 'article-title': 'Metformin and risk of mortality in patients hospitalised with COVID-19: ' 'a retrospective cohort analysis', 'volume': '2', 'author': 'Bramante', 'year': '2021', 'journal-title': 'Lancet Healthy Longev.'}, { 'key': '10.1016/j.stem.2023.12.012_bib39', 'doi-asserted-by': 'crossref', 'first-page': '101216', 'DOI': '10.1016/j.diabet.2020.101216', 'article-title': 'Metformin use is associated with a reduced risk of mortality in ' 'patients with diabetes hospitalised for COVID-19', 'volume': '47', 'author': 'Lalau', 'year': '2021', 'journal-title': 'Diabetes Metab.'}, { 'key': '10.1016/j.stem.2023.12.012_bib40', 'doi-asserted-by': 'crossref', 'first-page': '450', 'DOI': '10.1038/s41586-020-2571-7', 'article-title': 'Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 ' 'spike', 'volume': '584', 'author': 'Liu', 'year': '2020', 'journal-title': 'Nature'}, { 'key': '10.1016/j.stem.2023.12.012_bib41', 'doi-asserted-by': 'crossref', 'first-page': '4815', 'DOI': '10.1038/s41467-018-07201-1', 'article-title': 'A hPSC-based platform to discover gene-environment interactions that ' 'impact human beta-cell and dopamine neuron survival', 'volume': '9', 'author': 'Zhou', 'year': '2018', 'journal-title': 'Nat. Commun.'}, { 'key': '10.1016/j.stem.2023.12.012_bib47', 'series-title': 'Atlas of the Human Brain Stem, 1995 edition', 'author': 'Paxinos', 'year': '1995'}, { 'key': '10.1016/j.stem.2023.12.012_bib48', 'doi-asserted-by': 'crossref', 'first-page': '410', 'DOI': '10.1016/j.ymgme.2011.04.015', 'article-title': 'Glucocerebrosidase mutations do not cause increased Lewy body pathology ' 'in Parkinson’s disease', 'volume': '103', 'author': 'Parkkinen', 'year': '2011', 'journal-title': 'Molecular genetics and metabolism'}, { 'key': '10.1016/j.stem.2023.12.012_bib49', 'doi-asserted-by': 'crossref', 'first-page': '1244', 'DOI': '10.1002/mds.25952', 'article-title': 'Stage-dependent nigral neuronal loss in incidental Lewy body and ' 'Parkinson’s disease', 'volume': '29', 'author': 'Dijkstra', 'year': '2014', 'journal-title': 'Movement disorders\u202f: official journal of the Movement Disorder ' 'Society'}, { 'key': '10.1016/j.stem.2023.12.012_bib42', 'doi-asserted-by': 'crossref', 'first-page': 'giz022', 'DOI': '10.1093/gigascience/giz022', 'article-title': 'Digital expression explorer 2: a repository of uniformly processed RNA ' 'sequencing data', 'volume': '8', 'author': 'Ziemann', 'year': '2019', 'journal-title': 'GigaScience'}, { 'key': '10.1016/j.stem.2023.12.012_bib43', 'doi-asserted-by': 'crossref', 'first-page': '182', 'DOI': '10.1186/1471-2105-15-182', 'article-title': 'Skewer: a fast and accurate adapter trimmer for next-generation ' 'sequencing paired-end reads', 'volume': '15', 'author': 'Jiang', 'year': '2014', 'journal-title': 'BMC Bioinformatics'}, { 'key': '10.1016/j.stem.2023.12.012_bib44', 'doi-asserted-by': 'crossref', 'first-page': '41', 'DOI': '10.1016/j.ymeth.2013.06.027', 'article-title': 'Kraken: a set of tools for quality control and analysis of ' 'high-throughput sequence data', 'volume': '63', 'author': 'Davis', 'year': '2013', 'journal-title': 'Methods'}, { 'key': '10.1016/j.stem.2023.12.012_bib45', 'doi-asserted-by': 'crossref', 'first-page': '15', 'DOI': '10.1093/bioinformatics/bts635', 'article-title': 'STAR: ultrafast universal RNA-seq aligner', 'volume': '29', 'author': 'Dobin', 'year': '2013', 'journal-title': 'Bioinformatics'}, { 'key': '10.1016/j.stem.2023.12.012_bib46', 'doi-asserted-by': 'crossref', 'first-page': 'W160', 'DOI': '10.1093/nar/gkw257', 'article-title': 'deepTools2: a next generation web server for deep-sequencing data ' 'analysis', 'volume': '44', 'author': 'Ramírez', 'year': '2016', 'journal-title': 'Nucleic Acids Res.'}], 'container-title': 'Cell Stem Cell', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://api.elsevier.com/content/article/PII:S1934590923004423?httpAccept=text/xml', 'content-type': 'text/xml', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://api.elsevier.com/content/article/PII:S1934590923004423?httpAccept=text/plain', 'content-type': 'text/plain', 'content-version': 'vor', 'intended-application': 'text-mining'}], 'deposited': { 'date-parts': [[2024, 1, 17]], 'date-time': '2024-01-17T15:42:27Z', 'timestamp': 1705506147000}, 'score': 1, 'resource': {'primary': {'URL': 'https://linkinghub.elsevier.com/retrieve/pii/S1934590923004423'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 1]]}, 'references-count': 49, 'alternative-id': ['S1934590923004423'], 'URL': 'http://dx.doi.org/10.1016/j.stem.2023.12.012', 'relation': {}, 'ISSN': ['1934-5909'], 'subject': ['Cell Biology', 'Genetics', 'Molecular Medicine'], 'container-title-short': 'Cell Stem Cell', 'published': {'date-parts': [[2024, 1]]}, 'assertion': [ {'value': 'Elsevier', 'name': 'publisher', 'label': 'This article is maintained by'}, { 'value': 'SARS-CoV-2 infection causes dopaminergic neuron senescence', 'name': 'articletitle', 'label': 'Article Title'}, {'value': 'Cell Stem Cell', 'name': 'journaltitle', 'label': 'Journal Title'}, { 'value': 'https://doi.org/10.1016/j.stem.2023.12.012', 'name': 'articlelink', 'label': 'CrossRef DOI link to publisher maintained version'}, {'value': 'article', 'name': 'content_type', 'label': 'Content Type'}, { 'value': '© 2023 The Author(s). Published by Elsevier Inc.', 'name': 'copyright', 'label': 'Copyright'}]}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit