Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All molnupiravir studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchMolnupiravirMolnupiravir (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   All Outcomes       

Investigating the Safety Profile of Fast‐Track COVID‐19 Drugs Using the FDA Adverse Event Reporting System Database: A Comparative Observational Study

Kim et al., Pharmacoepidemiology and Drug Safety, doi:10.1002/pds.70043
Nov 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
FAERS adverse event analysis for remdesivir, bebtelovimab, molnupiravir, and paxlovid. Top 10 signals for serious adverse drug reactions for remdesivir included death and acute kidney injury, for paxlovid: disease recurrence and rebound, for molnupiravir: pneumonia and dizziness, and for bebtelovimab: infusion-­related reactions and dizziness.
207 significant adverse drug reaction signals at the preferred term level were found for remdesivir, 116 for paxlovid, 64 for bebtelovimab, and 46 for molnupiravir.
Potential risks of molnupiravir include the creation of dangerous variants, and mutagenicity, carcinogenicity, teratogenicity, and embryotoxicity1-10. Multiple analyses have identified variants potentially created by molnupiravir11-15.
Study covers remdesivir, bebtelovimab, paxlovid, and molnupiravir.
Kim et al., 12 Nov 2024, peer-reviewed, 3 authors. Contact: eva@amc.seoul.kr.
This PaperMolnupiravirAll
Investigating the Safety Profile of Fast‐Track COVID‐19 Drugs Using the FDA Adverse Event Reporting System Database: A Comparative Observational Study
Hyo Jung Kim, Jeong‐hwa Yoon, Kye Hwa Lee
Pharmacoepidemiology and Drug Safety, doi:10.1002/pds.70043
Background: The US Food and Drug Administration (US FDA) granted emergency use authorization (EUA) for multiple coronavirus disease 2019 (COVID-19) drugs as a medical countermeasure during the COVID-19 pandemic. Despite these drugs' fast-track nature, concerns persist regarding their efficacy and potential adverse effects. Thus, the continuous surveillance and understanding of these drugs' safety profiles are crucial in such scenarios. Objective: Using the FDA Adverse Event Reporting System (FAERS) database, we aimed to compare the adverse drug reactions (ADRs) of four fast-track COVID-19 drugs to explore the potential of real-world data for providing prompt feedback in clinical settings. Methods: To evaluate the post-marketing safety of fast-track COVID-19 drugs, we descriptively evaluated the ADRs of four COVID-19 drugs (bebtelovimab, molnupiravir, nirmatrelvir/ritonavir, and remdesivir) using FAERS data reported from January 2020 to June 2022. We examined FAERS case records of COVID-19 drugs reported as the "primary suspect drug" as a case group and the records of other drugs as the control. "Serious adverse drug reactions (SADRs)" were defined based on FDA guidelines. Using reporting odds ratios, disproportionality analysis was conducted to determine significant signals for ADRs related to each of the four drugs compared with those of others, both at the preferred term (PT) and system organ class (SOC) levels. To explore the occurrence of reporting each serious outcome reported to the four drugs, we fitted logistic regression models, adjusting for age and sex. Results: During the study period, 5 248 221 cases were submitted to FAERS, including 17 275 cases of the four COVID-19 drugs: bebtelovimab (532 cases), molnupiravir (1106 cases), nirmatrelvir/ritonavir (9217 cases), and remdesivir (6420 cases).
Author Contributions Conceptualization was done by Lee K.H., Kim H.J., and Yoon J.-H.; Data acquisition and curation by Kim H.J.; Formal analysis by Yoon J.-H., Kim H.J., and Lee K.H.; Data interpretation by Yoon J.-H., Lee K.H., and Kim H.J.; Drafting the manuscript by all authors; Critical revision of the manuscript for important intellectual content by all authors; Technical support by Kim H.J.; Supervision by Lee K.H. All authors had full access to the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Ethics Statement Because FAERS is a publicly anonymized database, approval from the Institutional Review Board of Sungkyunkwan University was waived because FAERS is a publicly anonymized database (IRB No. 2023-07-003). Consent The authors have nothing to report. Conflicts of Interest The authors declare no conflicts of interest. Supporting Information Additional supporting information can be found online in the Supporting Information section.
References
Baker, Mahmud, Miller, Infectious Disease in an Era of Global Change, Nature Reviews Microbiology, doi:10.1038/s41579-021-00639-z
Banda, Evans, Vanguri, Tatonetti, Ryan et al., A Curated and Standardized Adverse Drug Event Resource to Accelerate Drug Safety Research, Scientific Data
Bate, Evans, Quantitative Signal Detection Using Spontaneous ADR Reporting, Pharmacoepidemiology and Drug Safety
Blais, Wei, Chui, Chan, Wong, Inconsistent Safety Outcome Reporting in Randomized Clinical Trials of COVID-19 Vaccines Complicates Informed Medical Decisions, Drug Safety, doi:10.1007/s40264-021-01108-5
Brown, Wood, Wood, The Medical Dictionary for Regulatory Activities (MedDRA), Drug Safety
Choi, Reconstruction of Korean Spontaneous Reporting Database and Signal Detection of Adverse Drug Reaction
Cohen, The Very, Very Bad look'of Remdesivir, the First FDA-Approved COVID-19 Drug
Fan, Zhang, Ma, Zhang, Safety Profile of the Antiviral Drug Remdesivir: An Update, Biomedicine & Pharmacotherapy
Food, Administration, FDA's Approval of Veklury (remdesivir) for the Treatment of COVID-19-the Science of Safety and Effectiveness
Goodman, Borio, Finding Effective Treatments for COVID-19: Scientific Integrity and Public Confidence in a Time of Crisis, Journal of the American Medical Association, doi:10.1001/jama.2020.6434
Grein, Ohmagari, Shin, Compassionate Use of Remdesivir for Patients With Severe COVID-19, New England Journal of Medicine, doi:10.1056/NEJMoa2007016
Guo, Duan, Liu, Yuan, Adverse Drug Events in the Prevention and Treatment of COVID-19: A Data Mining Study on the FDA Adverse Event Reporting System, Frontiers in Pharmacology, doi:10.3389/fphar.2022.954359
Harpaz, Dumouchel, Shah, Madigan, Ryan et al., Novel Data-Mining Methodologies for Adverse Drug Event Discovery and Analysis, Clinical Pharmacology & Therapeutics
Ibara, Richesson, Back to the Future: The Evolution of Pharmacovigilance in the Age of Digital Healthcare
Ison, Wolfe, Boucher, Emergency Use Authorization of Remdesivir: The Need for a Transparent Distribution Process, JAMA
Klein, Lewis, Goddard, Surveillance for Adverse Events After COVID-19 mRNA Vaccination, JAMA, doi:10.1001/jama.2021.15072
Lamontagne, Agarwal, Rochwerg, A Living WHO Guideline on Drugs for Covid-19, BMJ, doi:10.1136/bmj.m3379
Lee, Lee, Kim, A Data-Driven Reference Standard for Adverse Drug Reaction (RS-ADR) Signal Assessment: Development and Validation, Journal of Medical Internet Research
Lescure, Bouadma, Nguyen, Clinical and Virological Data of the First Cases of COVID-19 in Europe: A Case Series, Lancet Infectious Diseases, doi:10.1016/S1473-3099(20)30200-0
Maciejewski, Lounkine, Whitebread, Reverse Translation of Adverse Event Reports Paves the Way for de-Risking Preclinical Off-Targets, eLife, doi:10.7554/eLife.25818
Montastruc, Sommet, Bagheri, Lapeyre-Mestre, Benefits and Strengths of the Disproportionality Analysis for Identification of Adverse Drug Reactions in a Pharmacovigilance Database, British Journal of Clinical Pharmacology
Morens, Taubenberger, Fauci, Universal Coronavirus Vaccines-An Urgent Need, New England Journal of Medicine, doi:10.1056/NEJMp2118468
Moshkovits, Shepshelovich, Emergency Use Authorizations of COVID-19-Related Medical Products, JAMA Internal Medicine, doi:10.1001/jamainternmed.2021.7257
Najjar-Debbiny, Gronich, Weber, Effectiveness of Paxlovid in Reducing Severe Coronavirus Disease 2019 and Mortality in High-Risk Patients, Clinical Infectious Diseases
Pan, Peto, Restrepo, Remdesivir and Three Other Drugs for Hospitalised Patients With COVID-19: Final Results of the WHO Solidarity Randomised Trial and Updated Meta-Analyses, Lancet
Pardo, Shukla, Chamarthi, Gupte, The Journey of Remdesivir: From Ebola to COVID-19, Drugs in Context
Poluzzi, Raschi, Piccinni, Ponti, Data Mining Techniques in Pharmacovigilance: Analysis of the Publicly Accessible FDA Adverse Event Reporting System (AERS), doi:10.5772/50095
Rochwerg, Agarwal, Zeng, Remdesivir for Severe Covid-19: A Clinical Practice Guideline, BMJ, doi:10.1136/bmj.m2924
Sakaeda, Tamon, Kadoyama, Okuno, Data Mining of the Public Version of the FDA Adverse Event Reporting System, International Journal of Medical Sciences, doi:10.7150/ijms.6048
Seong, Choi, Ahn, Park, Development of Signal Detection Program for Adverse Drug Reactions, Pharmacoepidemiology and Risk Management
Shaffer, Multiple Hypothesis Testing, Annual Review of Psychology
Singh, Kamath, Assessment of Adverse Events Associated With Remdesivir Use for Coronavirus Disease 2019 Using Real-World Data, Expert Opinion on Drug Safety, doi:10.1080/14740338.2021.1962846
Tang, Zhou, Li, Drug-Induced Liver Injury Associated With Lopinavir-Ritonavir in Patients With COVID-19: A Disproportionality Analysis of US Food and Drug Administration Adverse Event Reporting System (FAERS) Data, International Journal of Clinical Pharmacy, doi:10.1007/s11096-021-01311-5
Tran, Witek, The Emergency Use Authorization of Pharmaceuticals: History and Utility During the COVID-19 Pandemic, Pharmaceutical Medicine, doi:10.1007/s40290-021-00397-6
Wadhwa, Kumar, Batra, Sharma, Automation in Signal Management in Pharmacovigilance-An Insight, Briefings in Bioinformatics, doi:10.1093/bib/bbaa363
Wang, Jiang, Li, Liu, Standardizing Adverse Drug Event Reporting Data, Journal of Biomedical Semantics
Wang, Zhang, Du, Remdesivir in Adults With Severe COVID-19: A Randomised, Double-Blind, Placebo-Controlled, Multicentre Trial, Lancet, doi:10.1016/S0140-6736(20)31022-9
Webster, Gower, Knowles, Molyneux, Fenton, One Health-an Ecological and Evolutionary Framework for Tackling Neglected Zoonotic Diseases, Evolutionary Applications, doi:10.1111/eva.12341
Won, Cho, Choi, Choi, Statistical Methodologies for Detecting Drug-Drug Interaction Using Spontaneous Reporting System, Journal of Health Informatics and Statistics, doi:10.21032/jhis.2024.49.1.1
Wong, Ho, Saini, Hibbs, Fois, Standardisation of the FAERS Database: A Systematic Approach to Manually Recoding Drug Name Variants, Pharmacoepidemiology and Drug Safety, doi:10.1002/pds.3805
Wu, Luo, Wu, He, Li et al., Acute Kidney Injury Associated With Remdesivir: A Comprehensive Pharmacovigilance Analysis of COVID-19 Reports in FAERS, Frontiers in Pharmacology, doi:10.3389/fphar.2022.692828
Zampino, Mele, Florio, Liver Injury in Remdesivir-Treated COVID-19 Patients, Hepatology International
Zhai, Lye, Kesselheim, Need for Transparency and Reliable Evidence in Emergency Use Authorizations for Coronavirus Disease 2019 (COVID-19) Therapies, JAMA Internal Medicine, doi:10.1001/jamainternmed.2020.2402
Zhao, Wang, Zhang, Hu, Xu et al., Evaluation of Adverse Events of Bamlanivimab, Bamlanivimab/Etesevimab Used for COVID-19 Based on FAERS Database, Expert Opinion on Drug Safety, doi:10.1080/14740338.2023.2130888
{ 'indexed': { 'date-parts': [[2024, 11, 14]], 'date-time': '2024-11-14T05:23:16Z', 'timestamp': 1731561796346, 'version': '3.28.0'}, 'reference-count': 55, 'publisher': 'Wiley', 'issue': '11', 'license': [ { 'start': { 'date-parts': [[2024, 11, 12]], 'date-time': '2024-11-12T00:00:00Z', 'timestamp': 1731369600000}, 'content-version': 'vor', 'delay-in-days': 11, 'URL': 'http://creativecommons.org/licenses/by-nc-nd/4.0/'}], 'funder': [ { 'DOI': '10.13039/501100003625', 'name': 'Ministry of Health and Welfare', 'doi-asserted-by': 'publisher', 'id': [{'id': '10.13039/501100003625', 'id-type': 'DOI', 'asserted-by': 'publisher'}]}, { 'DOI': '10.13039/501100002701', 'name': 'Ministry of Education', 'doi-asserted-by': 'publisher', 'id': [{'id': '10.13039/501100002701', 'id-type': 'DOI', 'asserted-by': 'publisher'}]}], 'content-domain': {'domain': ['onlinelibrary.wiley.com'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2024, 11]]}, 'abstract': '<jats:title>ABSTRACT</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>The US ' 'Food and Drug Administration (US FDA) granted emergency use authorization (EUA) for multiple ' 'coronavirus disease 2019 (COVID‐19) drugs as a medical countermeasure during the COVID‐19 ' "pandemic. Despite these drugs' fast‐track nature, concerns persist regarding their efficacy " 'and potential adverse effects. Thus, the continuous surveillance and understanding of these ' "drugs' safety profiles are crucial in such " 'scenarios.</jats:p></jats:sec><jats:sec><jats:title>Objective</jats:title><jats:p>Using the ' 'FDA Adverse Event Reporting System (FAERS) database, we aimed to compare the adverse drug ' 'reactions (ADRs) of four fast‐track COVID‐19 drugs to explore the potential of real‐world ' 'data for providing prompt feedback in clinical ' 'settings.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>To evaluate ' 'the post‐marketing safety of fast‐track COVID‐19 drugs, we descriptively evaluated the ADRs ' 'of four COVID‐19 drugs (bebtelovimab, molnupiravir, nirmatrelvir/ritonavir, and remdesivir) ' 'using FAERS data reported from January 2020 to June 2022. We examined FAERS case records of ' 'COVID‐19 drugs reported as the “primary suspect drug” as a case group and the records of ' 'other drugs as the control. “Serious adverse drug reactions (SADRs)” were defined based on ' 'FDA guidelines. Using reporting odds ratios, disproportionality analysis was conducted to ' 'determine significant signals for ADRs related to each of the four drugs compared with those ' 'of others, both at the preferred term (PT) and system organ class (SOC) levels. To explore ' 'the occurrence of reporting each serious outcome reported to the four drugs, we fitted ' 'logistic regression models, adjusting for age and ' 'sex.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>During the study ' 'period, 5\u2009248\u2009221 cases were submitted to FAERS, including 17\u2009275 cases of the ' 'four COVID‐19 drugs: bebtelovimab (532 cases), molnupiravir (1106 cases), ' 'nirmatrelvir/ritonavir (9217 cases), and remdesivir (6420 cases). A total of 64, 46, 116, and ' '207 PTs with significant disproportionality were identified for each drug, respectively. ' '“Infusion‐related reaction” (18.4%), “diarrhea” (7.4%), “dysgeusia” (11.4%), and “increased ' 'alanine aminotransferase” (14.5%) were the most frequently reported SADRs for bebtelovimab, ' 'molnupiravir, nirmatrelvir/ritonavir, and remdesivir, respectively. Among the 27 SOCs, ' 'statistically significant signals were observed in 10, 3, 0, and 8 SOCs for bebtelovimab, ' 'molnupiravir, nirmatrelvir/ritonavir, and remdesivir, respectively. Remdesivir showed a ' 'higher occurrence for the reporting of death or life‐threatening ADRs compared with the ' 'control (adjusted odds ratio (OR)\u2009=\u20092.44, 95% confidence interval (CI)\u2009=\u2009' '2.23–2.59; adjusted OR\u2009=\u20091.82, 95% CI\u2009=\u20091.64–2.02, ' 'respectively).</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>We ' 'identified potential ADRs associated with COVID‐19 drugs and provided insights into their ' 'real‐world safety. This study demonstrated that real‐world data and real‐time safety reviews ' 'could be effective methods for the timely detection of ADR signals of drugs that have ' 'received fast‐track approval, as exemplified by COVID‐19 drugs. These findings underscore the ' 'importance of the continued surveillance, efficient data processing, and establishment of ' 'automated pipelines for real‐time safety reviews.</jats:p></jats:sec>', 'DOI': '10.1002/pds.70043', 'type': 'journal-article', 'created': { 'date-parts': [[2024, 11, 13]], 'date-time': '2024-11-13T12:25:18Z', 'timestamp': 1731500718000}, 'update-policy': 'http://dx.doi.org/10.1002/crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Investigating the Safety Profile of Fast‐Track <scp>COVID</scp>‐19 Drugs Using the ' '<scp>FDA</scp> Adverse Event Reporting System Database: A Comparative Observational Study', 'prefix': '10.1002', 'volume': '33', 'author': [ { 'ORCID': 'http://orcid.org/0000-0001-9555-0926', 'authenticated-orcid': False, 'given': 'Hyo Jung', 'family': 'Kim', 'sequence': 'first', 'affiliation': [ { 'name': 'Department of Digital Health, Samsung Advanced Institute for ' 'Health Science and Technology Sungkyunkwan University Seoul ' 'Korea'}, { 'name': 'Center of Research Resource Standardization Research Institution ' 'for Future Medicine, Samsung Medical Center Seoul Korea'}]}, { 'ORCID': 'http://orcid.org/0000-0002-9150-3732', 'authenticated-orcid': False, 'given': 'Jeong‐Hwa', 'family': 'Yoon', 'sequence': 'additional', 'affiliation': [ { 'name': 'Medical Big Data Research Center, Medical Research Center Seoul ' 'National University Seoul Korea'}]}, { 'ORCID': 'http://orcid.org/0000-0002-7593-7020', 'authenticated-orcid': False, 'given': 'Kye Hwa', 'family': 'Lee', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Information Medicine, Asan Medical Center Seoul ' 'Korea'}, { 'name': 'Department of Digital Medicine Ulsan University College of ' 'Medicine Seoul Korea'}]}], 'member': '311', 'published-online': {'date-parts': [[2024, 11, 12]]}, 'reference': [ {'key': 'e_1_2_14_2_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMp2118468'}, {'key': 'e_1_2_14_3_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s40290‐021‐00397‐6'}, { 'key': 'e_1_2_14_4_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1001/jamainternmed.2021.7257'}, { 'key': 'e_1_2_14_5_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1001/jamainternmed.2020.2402'}, { 'key': 'e_1_2_14_6_1', 'unstructured': 'U.S. Food and Drug Administration “FDA Announces Bebtelovimab is Not ' 'Currently Authorized in Any US Region ”(2020) accessed March 16 2023 ' 'https://www.fda.gov/drugs/drug‐safety‐and‐availability/fda‐announces‐bebtelovimab‐not‐currently‐authorized‐any‐us‐region.'}, { 'key': 'e_1_2_14_7_1', 'unstructured': 'US Food and Drug Administration “Request for Emergency Use Authorization ' 'for Use of Chloroquine Phosphate or Hydroxychloroquine Sulfate Supplied ' 'From the Strategic National Stockpile for Treatment of 2019 Coronavirus ' 'Disease ”(2020) accessed July 23 2022 ' 'https://www.fda.gov/media/136534/download.'}, { 'key': 'e_1_2_14_8_1', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.7573/dic.2020-4-14', 'article-title': 'The Journey of Remdesivir: From Ebola to COVID‐19', 'volume': '9', 'author': 'Pardo J.', 'year': '2020', 'journal-title': 'Drugs in Context'}, { 'key': 'e_1_2_14_9_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S1473‐3099(20)30200‐0'}, {'key': 'e_1_2_14_10_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2007016'}, { 'key': 'e_1_2_14_11_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0140‐6736(20)31022‐9'}, { 'issue': '23', 'key': 'e_1_2_14_12_1', 'first-page': '2365', 'article-title': 'Emergency Use Authorization of Remdesivir: The Need for a Transparent ' 'Distribution Process', 'volume': '323', 'author': 'Ison M. G.', 'year': '2020', 'journal-title': 'JAMA'}, { 'key': 'e_1_2_14_13_1', 'volume-title': "The Very, Very Bad look'of Remdesivir, the First FDA‐Approved COVID‐19 " 'Drug', 'author': 'Jon Cohen K. K.', 'year': '2020'}, { 'key': 'e_1_2_14_14_1', 'unstructured': 'Website: FDA Adverse Event Reporting System (FAERS) “US Food and Drug ' 'Administration ”accessed March 16 2023 ' 'https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.html.'}, { 'key': 'e_1_2_14_15_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s11096‐021‐01311‐5'}, { 'key': 'e_1_2_14_16_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/14740338.2021.1962846'}, {'key': 'e_1_2_14_17_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fphar.2022.692828'}, {'key': 'e_1_2_14_18_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fphar.2022.954359'}, { 'key': 'e_1_2_14_19_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.biopha.2020.110532'}, { 'key': 'e_1_2_14_20_1', 'unstructured': 'Website: FAERS quarterly data extract (QDE) files “FDA Adverse Event ' 'Reporting System (FAERS) Quarterly Data Extract Files ”accessed July 10 ' '2023 https://fis.fda.gov/extensions/FPD‐QDE‐FAERS/FPD‐QDE‐FAERS.html.'}, {'key': 'e_1_2_14_21_1', 'doi-asserted-by': 'publisher', 'DOI': '10.5772/50095'}, { 'issue': '1', 'key': 'e_1_2_14_22_1', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1038/sdata.2016.26', 'article-title': 'A Curated and Standardized Adverse Drug Event Resource to Accelerate ' 'Drug Safety Research', 'volume': '3', 'author': 'Banda J. M.', 'year': '2016', 'journal-title': 'Scientific Data'}, { 'key': 'e_1_2_14_23_1', 'doi-asserted-by': 'publisher', 'DOI': '10.2165/00002018-199920020-00002'}, { 'issue': '1', 'key': 'e_1_2_14_24_1', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1186/2041-1480-5-36', 'article-title': 'Standardizing Adverse Drug Event Reporting Data', 'volume': '5', 'author': 'Wang L.', 'year': '2014', 'journal-title': 'Journal of Biomedical Semantics'}, { 'key': 'e_1_2_14_25_1', 'unstructured': 'Website: MedDRA the Medical Dictionary for Regulatory Activities ' '“Browsers ”accessed October 1 2023 https://www.meddra.org/browsers.'}, { 'key': 'e_1_2_14_26_1', 'unstructured': 'U.S. Food and Drug Administration “FDA Updates on Bebtelovimab ”accessed ' 'June 13 2023 ' 'https://www.fda.gov/drugs/drug‐safety‐and‐availability/fda‐updates‐bebtelovimab.'}, { 'key': 'e_1_2_14_27_1', 'unstructured': 'U.S. Food and Drug Administration “Coronavirus (COVID‐19) Update: FDA ' 'Authorizes Additional Oral Antiviral for Treatment of COVID‐19 in ' 'Certain Adults ”accessed June 13 2023 ' 'https://www.fda.gov/news‐events/press‐announcements/coronavirus‐covid‐19‐update‐fda‐authorizes‐additional‐oral‐antiviral‐treatment‐covid‐19‐certain.'}, { 'key': 'e_1_2_14_28_1', 'unstructured': 'U.S. Food and Drug Administration “Coronavirus (COVID‐19) Update: FDA ' 'Authorizes First Oral Antiviral for Treatment of COVID‐19 ”accessed June ' '13 2023 ' 'https://www.fda.gov/news‐events/press‐announcements/coronavirus‐covid‐19‐update‐fda‐authorizes‐first‐oral‐antiviral‐treatment‐covid‐19.'}, { 'key': 'e_1_2_14_29_1', 'unstructured': "U.S. Food and Drug Administration “FDA's Approval of Veklury " '(remdesivir) for the Treatment of COVID‐19—the Science of Safety and ' 'Effectiveness ”accessed April 28 2023 ' 'https://www.fda.gov/drugs/news‐events‐human‐drugs/fdas‐approval‐veklury‐remdesivir‐treatment‐covid‐19‐science‐safety‐and‐effectiveness.'}, {'key': 'e_1_2_14_30_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/pds.1742'}, {'key': 'e_1_2_14_31_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/clpt.2012.50'}, { 'key': 'e_1_2_14_32_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/j.1365-2125.2011.04037.x'}, {'key': 'e_1_2_14_33_1', 'doi-asserted-by': 'publisher', 'DOI': '10.7150/ijms.6048'}, { 'key': 'e_1_2_14_34_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1146/annurev.ps.46.020195.003021'}, { 'key': 'e_1_2_14_35_1', 'unstructured': 'World Health Organization “Statement on the Fifteenth Meeting of the IHR ' '(2005) Emergency Committee on the COVID‐19 Pandemic ”(2005) assessed ' 'July 1 2023 ' 'https://www.who.int/news/item/05‐05‐2023‐statement‐on‐the‐fifteenth‐meeting‐of‐the‐international‐health‐regulations‐(2005)‐emergency‐committee‐regarding‐the‐coronavirus‐disease‐(COVID‐19)‐pandemic.'}, {'key': 'e_1_2_14_36_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/eva.12341'}, { 'key': 'e_1_2_14_37_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41579‐021‐00639‐z'}, {'key': 'e_1_2_14_38_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/cid/ciac443'}, { 'key': 'e_1_2_14_39_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0140-6736(22)00519-0'}, {'key': 'e_1_2_14_40_1', 'doi-asserted-by': 'publisher', 'DOI': '10.7554/eLife.25818'}, { 'key': 'e_1_2_14_41_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s12072-020-10077-3'}, { 'key': 'e_1_2_14_42_1', 'first-page': '3', 'volume-title': 'WHO Recommends Against the Use of Remdesivir in COVID‐19 Patients', 'author': 'World Health Organization', 'year': '2020'}, {'key': 'e_1_2_14_43_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2023184'}, {'key': 'e_1_2_14_44_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1001/jama.2020.6434'}, { 'key': 'e_1_2_14_45_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/14740338.2023.2130888'}, {'key': 'e_1_2_14_46_1', 'doi-asserted-by': 'publisher', 'DOI': '10.21032/jhis.2024.49.1.1'}, { 'key': 'e_1_2_14_47_1', 'first-page': '15', 'article-title': 'Development of Signal Detection Program for Adverse Drug Reactions', 'volume': '4', 'author': 'Seong J. M.', 'year': '2011', 'journal-title': 'Pharmacoepidemiology and Risk Management'}, { 'key': 'e_1_2_14_48_1', 'volume-title': 'Reconstruction of Korean Spontaneous Reporting Database and Signal ' 'Detection of Adverse Drug Reaction', 'author': 'Choi N. K.', 'year': '2013'}, {'key': 'e_1_2_14_49_1', 'doi-asserted-by': 'publisher', 'DOI': '10.2196/35464'}, { 'key': 'e_1_2_14_50_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s40264‐021‐01108‐5'}, {'key': 'e_1_2_14_51_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1136/bmj.m2924'}, {'key': 'e_1_2_14_52_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1136/bmj.m3379'}, {'key': 'e_1_2_14_53_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1001/jama.2021.15072'}, {'key': 'e_1_2_14_54_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/bib/bbaa363'}, { 'key': 'e_1_2_14_55_1', 'doi-asserted-by': 'crossref', 'first-page': '455', 'DOI': '10.1007/978-3-031-27173-1_22', 'volume-title': 'In Clinical Research Informatics', 'author': 'Ibara M. A.', 'year': '2023'}, {'key': 'e_1_2_14_56_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/pds.3805'}], 'container-title': 'Pharmacoepidemiology and Drug Safety', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://onlinelibrary.wiley.com/doi/pdf/10.1002/pds.70043', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 11, 13]], 'date-time': '2024-11-13T12:25:35Z', 'timestamp': 1731500735000}, 'score': 1, 'resource': {'primary': {'URL': 'https://onlinelibrary.wiley.com/doi/10.1002/pds.70043'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 11]]}, 'references-count': 55, 'journal-issue': {'issue': '11', 'published-print': {'date-parts': [[2024, 11]]}}, 'alternative-id': ['10.1002/pds.70043'], 'URL': 'http://dx.doi.org/10.1002/pds.70043', 'relation': {}, 'ISSN': ['1053-8569', '1099-1557'], 'subject': [], 'container-title-short': 'Pharmacoepidemiology and Drug', 'published': {'date-parts': [[2024, 11]]}, 'assertion': [ { 'value': '2024-04-17', 'order': 0, 'name': 'received', 'label': 'Received', 'group': {'name': 'publication_history', 'label': 'Publication History'}}, { 'value': '2024-10-06', 'order': 2, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'publication_history', 'label': 'Publication History'}}, { 'value': '2024-11-12', 'order': 3, 'name': 'published', 'label': 'Published', 'group': {'name': 'publication_history', 'label': 'Publication History'}}]}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit