Analgesics
Antiandrogens
Antihistamines
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchMolnupiravirMolnupiravir (more..)
Metformin Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta Thermotherapy Meta
Melatonin Meta

All Studies   All Outcomes       

Reactive oxygen species-mediated cytotoxic and DNA-damaging mechanism of N4-hydroxycytidine, a metabolite of the COVID-19 therapeutic drug molnupiravir

Mori et al., Free Radical Research, doi:10.1080/10715762.2025.2469738
Feb 2025  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
In Vitro study showing that molnupiravir may have cytotoxic and mutagenic effects in host cells via hydroxylamine production from N4-hydroxycytidine (NHC) by cytidine deaminase (CDA). Molnupiravir metabolite NHC may induce cytotoxicity and mutagenicity through CDA-mediated reactive oxygen species generation.
Potential risks of molnupiravir include the creation of dangerous variants, and mutagenicity, carcinogenicity, teratogenicity, and embryotoxicity1-14. Multiple analyses have identified variants potentially created by molnupiravir15-19.
Mori et al., 20 Feb 2025, Japan, peer-reviewed, 10 authors. Contact: s-oikawa@med.mie-u.ac.jp.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperMolnupiravirAll
Abstract: Free Radical Research ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/ifra20 Reactive oxygen species-mediated cytotoxic and DNA-damaging mechanism of N4-hydroxycytidine, a metabolite of the COVID-19 therapeutic drug molnupiravir Yurie Mori, Rinya Yogo, Hatasu Kobayashi, Hirotaka Katsuzaki, Yuichiro Hirao, Shinya Kato, Hirokazu Kotani, Shosuke Kawanishi, Mariko Murata & Shinji Oikawa To cite this article: Yurie Mori, Rinya Yogo, Hatasu Kobayashi, Hirotaka Katsuzaki, Yuichiro Hirao, Shinya Kato, Hirokazu Kotani, Shosuke Kawanishi, Mariko Murata & Shinji Oikawa (20 4 Feb 2025): Reactive oxygen species-mediated cytotoxic and DNA-damaging mechanism of N hydroxycytidine, a metabolite of the COVID-19 therapeutic drug molnupiravir, Free Radical Research, DOI: 10.1080/10715762.2025.2469738 To link to this article: https://doi.org/10.1080/10715762.2025.2469738 © 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group Accepted author version posted online: 20 Feb 2025. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ifra20 Revised manuscript Reactive oxygen species-mediated cytotoxic and DNA-damaging mechanism of N4-hydroxycytidine, a metabolite of the COVID-19 ip t therapeutic drug molnupiravir Yurie Mori1,#, Rinya Yogo1,2,#, Hatasu Kobayashi1, Hirotaka Katsuzaki3, Yuichiro cr Hirao1, Shinya Kato4, Hirokazu Kotani 2, Shosuke Kawanishi5, Mariko Murata1, Shinji an Yurie Mori and Rinya Yogo should be considered joint first authors. M # us Oikawa1* 1. Department of Environmental and Molecular Medicine, Mie University Graduate ed School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan pt 2. Department of Forensic Medicine and Sciences, Mie University Graduate School of ce Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan 3. Department of Life Sciences, Graduate School of Bioresources, Mie University, Ac 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan 4. Radioisotope Experimental Facility, Advanced Science Research Promotion Center, Mie University, Edobashi 2-174, Tsu, Mie 514-8507, Japan 5. Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka, Mie, 513-8670, Japan 1 * Corresponding author at: Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan. E-mail address: s-oikawa@med.mie-u.ac.jp (S. Oikawa) Running title: ROS generation mechanism of hydroxycytidine Keywords: molnupiravir, N4-hydroxycytidine, cytidine deaminase, reactive oxygen Ac ce pt ed M an us cr ip t species, cytotoxicity, DNA damage 2 Abstract Molnupiravir is a prodrug of the antiviral ribonucleoside analogue N4-hydroxycytidine (NHC), for use in treatment of coronavirus disease 2019 (COVID-19). However, it is generally considered that NHC-triphosphate is incorporated into the host genome to ip t induce mutations. In our previous preliminary report, we proposed oxidative DNA cr damage by NHC via cytidine deaminase (CDA)-mediated ROS formation. In the us present study, we investigated cell viability using the HL-60 human leukemia cell line an and its H2O2-resistant clone, HP100 cells. The survival rate was significantly reduced in HL-60 cells treated with NHC, but not in HP100 cells. LC-MS..
DOI record: { "DOI": "10.1080/10715762.2025.2469738", "ISSN": [ "1071-5762", "1029-2470" ], "URL": "http://dx.doi.org/10.1080/10715762.2025.2469738", "alternative-id": [ "10.1080/10715762.2025.2469738" ], "assertion": [ { "label": "Peer Review Statement", "name": "peerreview_statement", "order": 1, "value": "The publishing and review policy for this title is described in its Aims & Scope." }, { "URL": "http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=ifra20", "label": "Aim & Scope", "name": "aims_and_scope_url", "order": 2, "value": "http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=ifra20" }, { "group": { "label": "Publication History", "name": "publication_history" }, "label": "Received", "name": "received", "order": 0, "value": "2024-08-21" }, { "group": { "label": "Publication History", "name": "publication_history" }, "label": "Revised", "name": "revised", "order": 1, "value": "2024-12-05" }, { "group": { "label": "Publication History", "name": "publication_history" }, "label": "Accepted", "name": "accepted", "order": 2, "value": "2025-01-13" }, { "group": { "label": "Publication History", "name": "publication_history" }, "label": "Published", "name": "published", "order": 3, "value": "2025-02-20" } ], "author": [ { "affiliation": [ { "name": "Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine", "place": [ "Tsu, Japan" ] } ], "family": "Mori", "given": "Yurie", "sequence": "first" }, { "affiliation": [ { "name": "Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine", "place": [ "Tsu, Japan" ] }, { "name": "Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine", "place": [ "Tsu, Japan" ] } ], "family": "Yogo", "given": "Rinya", "sequence": "additional" }, { "affiliation": [ { "name": "Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine", "place": [ "Tsu, Japan" ] } ], "family": "Kobayashi", "given": "Hatasu", "sequence": "additional" }, { "affiliation": [ { "name": "Department of Life Sciences, Graduate School of Bioresources, Mie University", "place": [ "Tsu, Japan" ] } ], "family": "Katsuzaki", "given": "Hirotaka", "sequence": "additional" }, { "affiliation": [ { "name": "Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine", "place": [ "Tsu, Japan" ] } ], "family": "Hirao", "given": "Yuichiro", "sequence": "additional" }, { "affiliation": [ { "name": "Radioisotope Experimental Facility, Advanced Science Research Promotion Center, Mie University", "place": [ "Tsu, Japan" ] } ], "family": "Kato", "given": "Shinya", "sequence": "additional" }, { "affiliation": [ { "name": "Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine", "place": [ "Tsu, Japan" ] } ], "family": "Kotani", "given": "Hirokazu", "sequence": "additional" }, { "affiliation": [ { "name": "Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science", "place": [ "Minamitamagaki, Suzuka, Japan" ] } ], "family": "Kawanishi", "given": "Shosuke", "sequence": "additional" }, { "affiliation": [ { "name": "Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine", "place": [ "Tsu, Japan" ] } ], "family": "Murata", "given": "Mariko", "sequence": "additional" }, { "affiliation": [ { "name": "Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine", "place": [ "Tsu, Japan" ] } ], "family": "Oikawa", "given": "Shinji", "sequence": "additional" } ], "container-title": "Free Radical Research", "container-title-short": "Free Radical Research", "content-domain": { "crossmark-restriction": true, "domain": [ "www.tandfonline.com" ] }, "created": { "date-parts": [ [ 2025, 2, 20 ] ], "date-time": "2025-02-20T08:19:35Z", "timestamp": 1740039575000 }, "deposited": { "date-parts": [ [ 2025, 2, 20 ] ], "date-time": "2025-02-20T08:19:54Z", "timestamp": 1740039594000 }, "indexed": { "date-parts": [ [ 2025, 2, 21 ] ], "date-time": "2025-02-21T05:17:48Z", "timestamp": 1740115068382, "version": "3.37.3" }, "is-referenced-by-count": 0, "issued": { "date-parts": [ [ 2025, 2, 20 ] ] }, "language": "en", "link": [ { "URL": "https://www.tandfonline.com/doi/pdf/10.1080/10715762.2025.2469738", "content-type": "unspecified", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "301", "original-title": [], "page": "1-34", "prefix": "10.1080", "published": { "date-parts": [ [ 2025, 2, 20 ] ] }, "published-online": { "date-parts": [ [ 2025, 2, 20 ] ] }, "publisher": "Informa UK Limited", "reference": [ { "DOI": "10.1016/j.ijantimicag.2024.107096", "doi-asserted-by": "crossref", "key": "e_1_3_2_2_1", "unstructured": "Zheng B. et al. Small-molecule antiviral treatments for COVID-19: A systematic review and network meta-analysis. Int J Antimicrob Agents 2024. 63(3): p. 107096." }, { "DOI": "10.1126/scitranslmed.aax5866", "doi-asserted-by": "crossref", "key": "e_1_3_2_3_1", "unstructured": "Toots M. et al. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Sci Transl Med 2019. 11(515)." }, { "DOI": "10.1126/scitranslmed.abb5883", "doi-asserted-by": "crossref", "key": "e_1_3_2_4_1", "unstructured": "Sheahan T.P. et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020. 12(541)." }, { "DOI": "10.1073/pnas.1718806115", "doi-asserted-by": "crossref", "key": "e_1_3_2_5_1", "unstructured": "Ferron F. et al. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc Natl Acad Sci U S A 2018. 115(2): p. E162-E171." }, { "DOI": "10.3389/fimmu.2023.1125246", "doi-asserted-by": "crossref", "key": "e_1_3_2_6_1", "unstructured": "Yuan Y. et al. The development of COVID-19 treatment. Front Immunol 2023. 14: p. 1125246." }, { "DOI": "10.1136/bmj.o926", "doi-asserted-by": "crossref", "key": "e_1_3_2_7_1", "unstructured": "Extance A. Covid-19: What is the evidence for the antiviral molnupiravir? Bmj 2022. 377: p. o926." }, { "DOI": "10.1093/infdis/jiab247", "doi-asserted-by": "crossref", "key": "e_1_3_2_8_1", "unstructured": "Zhou S. et al. β-d-N4-hydroxycytidine Inhibits SARS-CoV-2 Through Lethal Mutagenesis But Is Also Mutagenic To Mammalian Cells. J Infect Dis 2021. 224(3): p. 415-419." }, { "DOI": "10.1002/em.22471", "doi-asserted-by": "crossref", "key": "e_1_3_2_9_1", "unstructured": "Waters M.D. et al. Human genetic risk of treatment with antiviral nucleoside analog drugs that induce lethal mutagenesis: The special case of molnupiravir. Environ Mol Mutagen 2022. 63(1): p. 37-63." }, { "DOI": "10.1128/AAC.01719-19", "doi-asserted-by": "crossref", "key": "e_1_3_2_10_1", "unstructured": "Sticher Z.M. et al. Analysis of the Potential for N(4)-Hydroxycytidine To Inhibit Mitochondrial Replication and Function. Antimicrob Agents Chemother 2020. 64(2)." }, { "DOI": "10.1016/j.toxlet.2022.04.002", "doi-asserted-by": "crossref", "key": "e_1_3_2_11_1", "unstructured": "Brandsma I. et al. Genotoxicity assessment of potentially mutagenic nucleoside analogues using ToxTracker®. Toxicol Lett 2022. 362: p. 50-58." }, { "DOI": "10.1093/infdis/jiac477", "doi-asserted-by": "crossref", "key": "e_1_3_2_12_1", "unstructured": "Kobayashi H. et al. Oxidative DNA Damage by N4-hydroxycytidine a Metabolite of the SARS-CoV-2 Antiviral Molnupiravir. J Infect Dis 2023. 227(9): p. 1068-1072." }, { "DOI": "10.1093/carcin/7.11.1849", "doi-asserted-by": "crossref", "key": "e_1_3_2_13_1", "unstructured": "Kasai H. et al. Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis 1986. 7(11): p. 1849-51." }, { "DOI": "10.1289/ehp.99107469", "doi-asserted-by": "crossref", "key": "e_1_3_2_14_1", "unstructured": "Calderon-Garciduenas L. et al. 8-hydroxy-2'-deoxyguanosine a major mutagenic oxidative DNA lesion and DNA strand breaks in nasal respiratory epithelium of children exposed to urban pollution. Environ Health Perspect 1999. 107(6): p. 469-74." }, { "DOI": "10.1016/0168-9525(93)90089-Z", "doi-asserted-by": "crossref", "key": "e_1_3_2_15_1", "unstructured": "Grollman A.P. and M. Moriya Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet 1993. 9(7): p. 246-9." }, { "DOI": "10.1016/S0021-9258(18)48474-8", "doi-asserted-by": "crossref", "key": "e_1_3_2_16_1", "unstructured": "Cheng K.C. et al. 8-Hydroxyguanine an abundant form of oxidative DNA damage causes G––T and A––C substitutions. J Biol Chem 1992. 267(1): p. 166-72." }, { "DOI": "10.1038/366704a0", "doi-asserted-by": "crossref", "key": "e_1_3_2_17_1", "unstructured": "Serrano M. G.J. Hannon and D. Beach A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993. 366(6456): p. 704-7." }, { "DOI": "10.1038/302033a0", "doi-asserted-by": "crossref", "key": "e_1_3_2_18_1", "unstructured": "Capon D.J. et al. Complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue. Nature 1983. 302(5903): p. 33-7." }, { "DOI": "10.1038/sj.onc.1206440", "doi-asserted-by": "crossref", "key": "e_1_3_2_19_1", "unstructured": "Oikawa S. K. Murakami and S. Kawanishi Oxidative damage to cellular and isolated DNA by homocysteine: implications for carcinogenesis. Oncogene 2003. 22(23): p. 3530-8." }, { "DOI": "10.1111/j.1349-7006.2002.tb01314.x", "doi-asserted-by": "crossref", "key": "e_1_3_2_20_1", "unstructured": "Ohnishi S. M. Murata and S. Kawanishi Oxidative DNA damage induced by a metabolite of 2-naphthylamine a smoking-related bladder carcinogen. Jpn J Cancer Res 2002. 93(7): p. 736-43." }, { "DOI": "10.1080/10715762.2018.1562179", "doi-asserted-by": "crossref", "key": "e_1_3_2_21_1", "unstructured": "Mori Y. et al. Mechanisms of DNA damage induced by morin an inhibitor of amyloid beta-peptide aggregation. Free Radic Res 2019. 53(1): p. 115-123." }, { "DOI": "10.1016/0145-2126(92)90129-U", "doi-asserted-by": "crossref", "key": "e_1_3_2_22_1", "unstructured": "Kasugai I. and M. Yamada High production of catalase in hydrogen peroxide-resistant human leukemia HL-60 cell lines. Leuk Res 1992. 16(2): p. 173-9." }, { "DOI": "10.1016/S0076-6879(80)65059-9", "doi-asserted-by": "crossref", "key": "e_1_3_2_23_1", "unstructured": "Maxam A.M. and W. Gilbert Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 1980. 65(1): p. 499-560." }, { "DOI": "10.1016/0006-291X(78)91562-0", "doi-asserted-by": "crossref", "key": "e_1_3_2_24_1", "unstructured": "Pryor W.A. and R.H. Tang Ethylene formation from methional. Biochem Biophys Res Commun 1978. 81(2): p. 498-503." }, { "DOI": "10.1007/s002800000223", "doi-asserted-by": "crossref", "key": "e_1_3_2_25_1", "unstructured": "Gourdeau H. et al. Comparative study of a novel nucleoside analogue (Troxatyl troxacitabine BCH-4556) and AraC against leukemic human tumor xenografts expressing high or low cytidine deaminase activity. Cancer Chemother Pharmacol 2001. 47(3): p. 236-40." }, { "DOI": "10.1128/AAC.02428-20", "doi-asserted-by": "crossref", "key": "e_1_3_2_26_1", "unstructured": "Painter W.P. et al. Human Safety Tolerability and Pharmacokinetics of Molnupiravir a Novel Broad-Spectrum Oral Antiviral Agent with Activity Against SARS-CoV-2. Antimicrob Agents Chemother 2021. 65(5)." }, { "DOI": "10.1517/17425255.2015.985648", "doi-asserted-by": "crossref", "key": "e_1_3_2_27_1", "unstructured": "Serdjebi C. G. Milano and J. Ciccolini Role of cytidine deaminase in toxicity and efficacy of nucleosidic analogs. Expert Opin Drug Metab Toxicol 2015. 11(5): p. 665-72." }, { "DOI": "10.1128/mSphere.00374-19", "doi-asserted-by": "crossref", "key": "e_1_3_2_28_1", "unstructured": "Moro-Bulnes A. et al. Contribution of Cytidine Deaminase to Thymidylate Biosynthesis in Trypanosoma brucei: Intracellular Localization and Properties of the Enzyme. mSphere 2019. 4(4)." }, { "DOI": "10.1038/srep18191", "doi-asserted-by": "crossref", "key": "e_1_3_2_29_1", "unstructured": "Marx A. M. Galilee and A. Alian Zinc enhancement of cytidine deaminase activity highlights a potential allosteric role of loop-3 in regulating APOBEC3 enzymes. Sci Rep 2015. 5: p. 18191." }, { "DOI": "10.1021/bi00014a003", "doi-asserted-by": "crossref", "key": "e_1_3_2_30_1", "unstructured": "Xiang S. et al. Transition-state selectivity for a single hydroxyl group during catalysis by cytidine deaminase. Biochemistry 1995. 34(14): p. 4516-23." }, { "DOI": "10.3109/10408448509023765", "doi-asserted-by": "crossref", "key": "e_1_3_2_31_1", "unstructured": "Gross P. Biologic activity of hydroxylamine: a review. Crit Rev Toxicol 1985. 14(1): p. 87-99." }, { "DOI": "10.1007/978-1-4615-5381-6_60", "doi-asserted-by": "crossref", "key": "e_1_3_2_32_1", "unstructured": "Vincenzetti S. et al. Studies on cysteine residues involved in the active site of human cytidine deaminase. Adv Exp Med Biol 1998. 431: p. 305-8." }, { "DOI": "10.3390/ijms22094758", "doi-asserted-by": "crossref", "key": "e_1_3_2_33_1", "unstructured": "Maj P. et al. Molecular Mechanism of Thymidylate Synthase Inhibition by N(4)-Hydroxy-dCMP in View of Spectrophotometric and Crystallographic Studies. Int J Mol Sci 2021. 22(9)." }, { "DOI": "10.1085/jgp.7.3.373", "doi-asserted-by": "crossref", "key": "e_1_3_2_34_1", "unstructured": "Northrop J.H. The Kinetics of the Decomposition of Peroxide by Catalase. J Gen Physiol 1925. 7(3): p. 373-87." }, { "DOI": "10.1016/S0003-2697(02)00031-3", "doi-asserted-by": "crossref", "key": "e_1_3_2_35_1", "unstructured": "Rapisarda V.A. et al. Quenching of bathocuproine disulfonate fluorescence by Cu(I) as a basis for copper quantification. Anal Biochem 2002. 307(1): p. 105-9." }, { "DOI": "10.1186/s41021-023-00258-5", "doi-asserted-by": "crossref", "key": "e_1_3_2_36_1", "unstructured": "Toyokuni S. et al. Environmental impact on carcinogenesis under BRCA1 haploinsufficiency. Genes Environ 2023. 45(1): p. 2." }, { "DOI": "10.1016/j.cbi.2022.110173", "doi-asserted-by": "crossref", "key": "e_1_3_2_37_1", "unstructured": "Jomova K. et al. Essential metals in health and disease. Chem Biol Interact 2022. 367: p. 110173." }, { "DOI": "10.1186/s12199-018-0740-1", "doi-asserted-by": "crossref", "key": "e_1_3_2_38_1", "unstructured": "Murata M. Inflammation and cancer. Environ Health Prev Med 2018. 23(1): p. 50." }, { "DOI": "10.1016/S0891-5849(02)00969-3", "doi-asserted-by": "crossref", "key": "e_1_3_2_39_1", "unstructured": "Sakano K. et al. Metabolism of carcinogenic urethane to nitric oxide is involved in oxidative DNA damage. Free Radic Biol Med 2002. 33(5): p. 703-14." } ], "reference-count": 38, "references-count": 38, "relation": {}, "resource": { "primary": { "URL": "https://www.tandfonline.com/doi/full/10.1080/10715762.2025.2469738" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "Reactive oxygen species-mediated cytotoxic and DNA-damaging mechanism of\n <i>N</i>\n <sup>4</sup>\n -hydroxycytidine, a metabolite of the COVID-19 therapeutic drug molnupiravir", "type": "journal-article", "update-policy": "https://doi.org/10.1080/tandf_crossmark_01" }
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit