Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchMolnupiravirMolnupiravir (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   All Outcomes       

N4-hydroxycytidine, the active compound of Molnupiravir, promotes SARS-CoV-2 mutagenesis and escape from a neutralizing nanobody

Zibat et al., iScience, doi:10.1016/j.isci.2023.107786
Aug 2023  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
In Vitro study showing that NHC, the active compound molnupiravir, can promote rapid selection of immune escape mutants. NHC treatment enabled selection of nanobody-resistant mutants much faster than without NHC. While an in vitro model with limitations, these results provide additional evidence that molnupiravir facilitates the emergence of new SARS-CoV-2 variants.
Authors note that combined use with other antivirals like paxlovid may create variants resistant to those antivirals.
Potential risks of molnupiravir include the creation of dangerous variants, and mutagenicity, carcinogenicity, teratogenicity, and embryotoxicity1-10. Multiple analyses have identified variants potentially created by molnupiravir11-15.
Zibat et al., 31 Aug 2023, Germany, peer-reviewed, 13 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperMolnupiravirAll
N4-hydroxycytidine, the active compound of Molnupiravir, promotes SARS-CoV-2 mutagenesis and escape from a neutralizing nanobody
Arne Zibat, Xiaoxiao Zhang, Antje Dickmanns, Kim M Stegmann, Adrian Dobbelstein, Halima Alachram, Rebecca Soliwoda, Gabriela Salinas, Uwe Groß, Dirk Görlich, Maik Kschischo, Bernd Wollnik, Matthias Dobbelstein
iScience, doi:10.1016/j.isci.2023.107786
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
J o u r n a l P r e -p r o o f additional information required to reanalyze the data reported in this paper is available from the lead contact upon request. • This paper does not report original code. Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request. EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS Vero E6 cells (Vero C1008) were obtained from the German Primate Research Center Göttingen. Cells were maintained in Dulbecco's modified Eagle's medium (DMEM with GlutaMAX TM , Gibco) supplemented with 10% fetal bovine serum (FBS; Merck), 50 units/mL penicillin, 50 μg/mL streptomycin (Gibco), 2 µg/mL tetracycline (Sigma) and 10 µg/mL ciprofloxacin (Bayer) at 37°C in a humidified atmosphere with 5% CO2. Vero E6 cells were authenticated in 2021 by means of Cytochrome C Subunit I (COI) DNA Barcoding by the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ). Furthermore, the cells were routinely tested to ensure they were negative for mycoplasma contamination, using the MycoAlert Assay Control Set (Lonza). J o u r n a l P r e -p r o o f
References
Agostini, Pruijssers, Chappell, Gribble, Lu et al., Small-Molecule Antiviral β-d-N (4)-Hydroxycytidine Inhibits a Proofreading-Intact Coronavirus with a High Genetic Barrier to Resistance, J Virol, doi:10.1128/jvi.01348-19
Alteri, Fox, Scutari, Burastero, Volpi et al., A proof-of-concept study on the genomic evolution of Sars-Cov-2 in molnupiravir-treated, paxlovid-treated and drugnaïve patients, Commun Biol, doi:1376.10.1038/s42003-022-04322-8
Andrews, FastQC -a quality control tool for high throughput sequencing data
Bajema, Berry, Streja, Rajeevan, Li et al., Effectiveness of COVID-19 Treatment With Nirmatrelvir-Ritonavir or Molnupiravir Among U.S. Veterans: Target Trial Emulation Studies With One-Month and Six-Month Outcomes, Ann Intern Med, doi:10.7326/m22-3565
Bernal, Gomes Da Silva, Musungaie, Kovalchuk, Gonzalez et al., Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients, N Engl J Med, doi:10.1056/NEJMoa2116044
Butt, Yan, Molnupiravir Use and 30-Day Hospitalizations or Death in Previously Uninfected Non-hospitalized Highrisk Population with COVID-19, J Infect Dis, doi:10.1093/infdis/jiad195
Callaway, COVID drug drives viral mutations -and now some want to halt its use, Nature, doi:399.10.1038/d41586-023-00347-z
Chan, Law, Ho, Chan, Ma et al., Genomic characteristics and viral load dynamics of a SARS-CoV-2 Omicron BA.2.2 variant from a hospitalized patient treated with molnupiravir, Infect Genet Evol, doi:105376.10.1016/j.meegid.2022.105376
Chatterjee, Bhattacharya, Dhama, Lee, Chakraborty, Molnupiravir's mechanism of action drives "error catastrophe" in SARS-CoV-2: A therapeutic strategy that leads to lethal mutagenesis of the virus, Mol Ther Nucleic Acids, doi:10.1016/j.omtn.2023.06.006
Chaudhry, Eschke, Hoffmann, Grashoff, Abassi et al., Rapid SARS-CoV-2 Adaptation to Available Cellular Proteases, J Virol, doi:0218621.10.1128/jvi.02186-21
Chen, Turcinovic, Feng, Kenney, Chin et al., Cell culture systems for isolation of SARS-CoV-2 clinical isolates and generation of recombinant virus, doi:10.1016/j.isci.2023.106634
Chiliveri, Louis, Ghirlando, Bax, Transient lipid-bound states of spike protein heptad repeats provide insights into SARS-CoV-2 membrane fusion, Sci Adv, doi:2226.10.1126/sciadv.abk2226
Cingolani, Platts, Wang Le, Coon, Nguyen et al., A program for annotating and predicting the effects of single nucleotide polymorphisms, Fly, doi:10.4161/fly.19695
Corman, Landt, Kaiser, Molenkamp, Meijer et al., Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR, doi:10.2807/1560-7917.es.2020.25.3.2000045
Coutard, Valle, De Lamballerie, Canard, Seidah et al., The spike glycoprotein of the new coronavirus 2019-nCoV contains a furinlike cleavage site absent in CoV of the same clade, Antiviral Res, doi:104742.10.1016/j.antiviral.2020.104742
Cox, Wolf, Plemper, Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets, Nat Microbiol, doi:10.1038/s41564-020-00835-2
Crotty, Maag, Arnold, Zhong, Lau et al., The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen, Nature Medicine, doi:10.1038/82191
Donovan-Banfield, Penrice-Randal, Goldswain, Rzeszutek, Pilgrim et al., Characterisation of SARS-CoV-2 genomic variation in response to molnupiravir treatment in the AGILE Phase IIa clinical trial, Nat Commun, doi:7284.10.1038/s41467-022-34839-9
Emeny, Morgan, Regulation of the interferon system: evidence that Vero cells have a genetic defect in interferon production, J Gen Virol, doi:10.1099/0022-1317-43-1-247
Evans, O'neill, Pritzel, Antropova, Senior et al., Protein complex prediction with AlphaFold-Multimer, bioRxiv, doi:463034.10.1101/2021.10.04.463034
Fillâtre, Dufour, Behillil, Vatan, Reusse et al., A new SARS-CoV-2 variant with high lethality poorly detected by RT-PCR on nasopharyngeal samples: an observational study, Clin Microbiol Infect, doi:10.1016/j.cmi.2021.09.035
Fischer, Eron, Jr, Holman, Cohen et al., A phase 2a clinical trial of molnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious virus, Sci Transl Med, doi:7430.10.1126/scitranslmed.abl7430
Focosi, Molnupiravir: From Hope to Epic Fail? Viruses, doi:14.10.3390/v14112560
Garrison, Kronenberg, Dawson, Pedersen, Prins, A spectrum of free software tools for processing the VCF variant call format: vcflib, biovcf, cyvcf2, hts-nim and slivar, PLoS Comput Biol, doi:1009123.10.1371/journal.pcbi.1009123
Garrison, Marth, Haplotype-based variant detection from shortread sequencing, doi:arXiv:Genomics.10.48550/ARXIV.1207.3907
Gordon, Tchesnokov, Schinazi, Götte, Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template, The Journal of biological chemistry, doi:100770.10.1016/j.jbc.2021.100770
Grubaugh, Gangavarapu, Quick, Matteson, De et al., An ampliconbased sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar, Genome Biol, doi:10.1186/s13059-018-1618-7
Güttler, Aksu, Dickmanns, Stegmann, Gregor et al., Neutralization of SARS-CoV-2 by highly potent, hyperthermostable, and mutation-tolerant nanobodies, The EMBO Journal
Hoffmann, Krüger, Schulz, Cossmann, Rocha et al., The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic, doi:10.1016/j.cell.2021.12.032
Iketani, Mohri, Culbertson, Hong, Duan et al., Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir, Nature, doi:10.1038/s41586-022-05514-2
Ivanov, Taldaev, Lisitsa, Ponomarenko, Archakov, Prediction of Monomeric and Dimeric Structures of CYP102A1 Using AlphaFold2 and AlphaFold Multimer and Assessment of Point Mutation Effect on the Efficiency of Intra-and Interprotein Electron Transfer, Molecules
Jangra, Ye, Rathnasinghe, Stadlbauer, Krammer et al., SARS-CoV-2 spike E484K mutation reduces antibody neutralisation, Lancet Microbe, doi:10.1016/s2666-5247(21)00068-9
Jena, Role of different tautomers in the base-pairing abilities of some of the vital antiviral drugs used against COVID-19, Phys Chem Chem Phys, doi:10.1039/d0cp05297c
Jeong, Chokkakula, Min, Kim, Choi et al., Combination therapy with nirmatrelvir and molnupiravir improves the survival of SARS-CoV-2 infected mice, Antiviral Res, doi:105430.10.1016/j.antiviral.2022.105430
Johnson, Xie, Bailey, Kalveram, Lokugamage et al., Loss of furin cleavage site J o u r n a l P r e -p r o o f attenuates SARS-CoV-2 pathogenesis, doi:10.1038/s41586-021-03237-4
Jumper, Evans, Pritzel, Green, Figurnov et al., Highly accurate protein structure prediction with AlphaFold, Nature, doi:10.1038/s41586-021-03819-2
Kabinger, Stiller, Schmitzova, Dienemann, Kokic et al., Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis, Nat Struct Mol Biol, doi:10.1038/s41594-021-00651-0
Kimura, Kosugi, Wu, Yamasoba, Butlertanaka et al., SARS-CoV-2 Lambda variant exhibits higher infectivity and immune resistance. bioRxiv, 2021, doi:454085.10.1101/2021.07.28.454085
Kobayashi, Mori, Ahmed, Hirao, Kato et al., Oxidative DNA Damage by N4-hydroxycytidine, a Metabolite of the SARS-CoV-2 Antiviral Molnupiravir, J Infect Dis, doi:10.1093/infdis/jiac477
Koenig, Das, Liu, Kümmerer, Gohr et al., Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape, Science, doi:10.1126/science.abe6230
Kozlov, Why scientists are racing to develop more COVID antivirals, Nature, doi:496.10.1038/d41586-022-00112-8
Kärber, Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche, Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie, doi:10.1007/BF01863914
Li, Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, doi:10.1093/bioinformatics/btp324
Li, Handsaker, Wysoker, Fennell, Ruan et al., The Sequence Alignment/Map format and SAMtools, doi:10.1093/bioinformatics/btp352
Liu, Wei, Zhang, Aviszus, Linderberger et al., The Lambda variant of SARS-CoV-2 has a better chance than the Delta variant to escape vaccines, doi:bioRxiv.10.1101/2021.08.25.457692
Mahase, Covid-19: Pfizer's paxlovid is 89% effective in patients at risk of serious illness, company reports, Bmj, doi:2713.10.1136/bmj.n2713
Mahase, Covid-19: UK becomes first country to authorise antiviral molnupiravir, BMJ, doi:10.1136/bmj.n2697
Malin, Weibel, Gruell, Kreuzberger, Stegemann et al., Efficacy and safety of molnupiravir for the treatment of SARS-CoV-2 infection: a systematic review and meta-analysis, J Antimicrob Chemother, doi:1586-1598.10.1093/jac/dkad132
Mcgaughey, Gagné, Rappé, pi-Stacking interactions. Alive and well in proteins, The Journal of biological chemistry, doi:10.1074/jbc.273.25.15458
Miranda, Mckinzie, Dobrovolsky, Revollo, Evaluation of the mutagenic effects of Molnupiravir and N4-hydroxycytidine in bacterial and mammalian cells by HiFi sequencing, Environ Mol Mutagen, doi:10.1002/em.22510
Molina-Mora, Cordero-Laurent, Godínez, Calderón-Osorno, Brenes et al., SARS-CoV-2 genomic surveillance in Costa Rica: Evidence of a divergent population and an increased detection of a spike T1117I mutation, Infect Genet Evol, doi:104872.10.1016/j.meegid.2021.104872
Motozono, Toyoda, Zahradnik, Saito, Nasser et al., SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity, Cell Host Microbe, doi:1111.10.1016/j.chom.2021.06.006
Najjar-Debbiny, Gronich, Weber, Khoury, Amar et al., Effectiveness of Molnupiravir in High-Risk Patients: A Propensity Score Matched Analysis, Clinical Infectious Diseases, doi:10.1093/cid/ciac781
Ogando, Dalebout, Zevenhoven-Dobbe, Limpens, Van Der Meer et al., SARScoronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology, J Gen Virol, doi:10.1099/jgv.0.001453
Ou, Zhu, trackViewer: a Bioconductor package for interactive and integrative visualization of multi-omics data, Nat Methods, doi:10.1038/s41592-019-0430-y
Painter, Holman, Bush, Almazedi, Malik et al., Human Safety, Tolerability, doi:10.1128/aac.02428-20
Pak, Markhieva, Novikova, Petrov, Vorobyev et al., Using AlphaFold to predict the impact of single mutations on protein stability and function, bioRxiv, doi:460937.10.1101/2021.09.19.460937
Peacock, Goldhill, Zhou, Baillon, Frise et al., The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets, Nat Microbiol, doi:10.1038/s41564-021-00908-w
Redondo, Zaldívar-López, Garrido, Montoya, SARS-CoV-2 Accessory Proteins in Viral Pathogenesis: Knowns and Unknowns, Front Immunol, doi:708264.10.3389/fimmu.2021.708264
Reynard, Nguyen, Alazard-Dany, Barateau, Cimarelli et al., Identification of a New Ribonucleoside Inhibitor of Ebola Virus Replication, Viruses, doi:10.3390/v7122934
Rosenke, Okumura, Lewis, Feldmann, Meade-White et al., Molnupiravir inhibits SARS-CoV-2 variants including Omicron in the hamster model, JCI Insight, doi:10.1172/jci.insight.160108
Sanderson, Hisner, Donovan-Banfield, Hartman, Løchen et al., Identification of a molnupiravir-associated mutational signature in SARS-CoV-2 sequencing databases. medRxiv, doi:23284998.10.1101/2023.01.26.23284998
Sen, Anishchenko, Bordin, Sillitoe, Velankar et al., Characterizing and explaining the impact of disease-associated mutations in proteins without known structures or structural homologs, Briefings in bioinformatics, doi:10.1093/bib/bbac187
Service, A prominent virologist warns COVID-19 pill could unleash dangerous mutants. Others see little cause for alarm, doi:10.1126/science.acx9591
Service, Could a popular antiviral supercharge the pandemic?, Science, doi:526.10.1126/science.adh0582
Sheahan, Sims, Zhou, Graham, Pruijssers et al., An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice, Sci Transl Med, doi:10.1126/scitranslmed.abb5883
Stegmann, Dickmanns, Gerber, Nikolova, Klemke et al., The folate antagonist methotrexate diminishes replication of the coronavirus SARS-CoV-2 and enhances the antiviral efficacy of remdesivir in cell culture models, Virus Res, doi:198469.10.1016/j.virusres.2021.198469
Stegmann, Dickmanns, Heinen, Blaurock, Karrasch et al., Inhibitors of dihydroorotate dehydrogenase cooperate with molnupiravir and N4-hydroxycytidine to suppress SARS-CoV-2 replication, doi:104293.10.1016/j.isci.2022.104293
Swanstrom, Schinazi, Lethal mutagenesis as an antiviral strategy, Science, doi:10.1126/science.abn0048
Sztain, Ahn, Bogetti, Casalino, Goldsmith et al., A glycan gate controls opening of the SARS-CoV-2 spike protein, Nature Chemistry, doi:10.1038/s41557-021-00758-3
Toots, Yoon, Cox, Hart, Sticher et al., Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia, Sci Transl Med, doi:10.1126/scitranslmed.aax5866
Toots, Yoon, Hart, Natchus, Painter et al., Quantitative efficacy paradigms of the influenza clinical drug candidate EIDD-2801 in the ferret model, Transl Res, doi:10.1016/j.trsl.2019.12.002
Toussi, Hammond, Gerstenberger, Anderson, Therapeutics for COVID-19, Nat Microbiol, doi:10.1038/s41564-023-01356-4
Wahl, Gralinski, Johnson, Yao, Kovarova et al., SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801, Nature, doi:10.1038/s41586-021-03312-w
Waters, Warren, Hughes, Lewis, Zhang, Human genetic risk of treatment with antiviral nucleoside analog drugs that induce lethal mutagenesis: The special case of molnupiravir, Environ Mol Mutagen, doi:10.1002/em.22471
Wong, Au, Lau, Lau, Cowling et al., Real-world effectiveness of molnupiravir and nirmatrelvir plus ritonavir against mortality, hospitalisation, and in-hospital outcomes among community-dwelling, ambulatory patients with confirmed SARS-CoV-2 infection during the omicron wave in Hong Kong: an observational study, Lancet, doi:10.1016/s0140-6736(22)01586-0
Wood, Salzberg, Kraken: ultrafast metagenomic sequence classification using exact alignments, Genome Biol, doi:46.10.1186/gb-2014-15-3-r46
Xia, Liu, Wang, Xu, Lan et al., Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion, Cell Res, doi:10.1038/s41422-020-0305-x
Xu, Wang, Liu, Zhang, Han et al., Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM, Sci Adv, doi:10.1126/sciadv.abe5575
Yi, Kim, Bleazard, Kim, Youk et al., Mutational spectrum of SARS-CoV-2 during the global pandemic, Experimental & Molecular Medicine, doi:10.1038/s12276-021-00658-z
Yip, Low, Chow, Lal, Repurposing Molnupiravir for COVID-19: The Mechanisms of Antiviral Activity, Viruses, doi:10.3390/v14061345
Zhang, Xiang, Huo, Zhou, Jiang et al., Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy, Signal Transduction and Targeted Therapy, doi:233.10.1038/s41392-021-00653-w
Zhao, Abbasi, Illingworth, Mutational load causes stochastic evolutionary outcomes in acute RNA viral infection, Virus Evolution, doi:008.10.1093/ve/vez008
Zhou, Hill, Sarkar, Tse, Woodburn et al., Is Also Mutagenic To Mammalian Cells, J Infect Dis, doi:10.1093/infdis/jiab247
Zhou, Xie, Tang, Pu, Zhu et al., Therapeutic targets and interventional strategies in COVID-19: mechanisms and clinical studies, Signal Transduction and Targeted Therapy, doi:317.10.1038/s41392-021-00733-x
{ 'indexed': {'date-parts': [[2023, 8, 31]], 'date-time': '2023-08-31T13:40:40Z', 'timestamp': 1693489240326}, 'reference-count': 0, 'publisher': 'Elsevier BV', 'license': [ { 'start': { 'date-parts': [[2023, 8, 1]], 'date-time': '2023-08-01T00:00:00Z', 'timestamp': 1690848000000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.elsevier.com/tdm/userlicense/1.0/'}, { 'start': { 'date-parts': [[2023, 8, 29]], 'date-time': '2023-08-29T00:00:00Z', 'timestamp': 1693267200000}, 'content-version': 'vor', 'delay-in-days': 28, 'URL': 'http://creativecommons.org/licenses/by/4.0/'}], 'content-domain': { 'domain': ['cell.com', 'elsevier.com', 'sciencedirect.com'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2023, 8]]}, 'DOI': '10.1016/j.isci.2023.107786', 'type': 'journal-article', 'created': {'date-parts': [[2023, 8, 30]], 'date-time': '2023-08-30T16:07:59Z', 'timestamp': 1693411679000}, 'page': '107786', 'update-policy': 'http://dx.doi.org/10.1016/elsevier_cm_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'N4-hydroxycytidine, the active compound of Molnupiravir, promotes SARS-CoV-2 mutagenesis and ' 'escape from a neutralizing nanobody', 'prefix': '10.1016', 'author': [ {'given': 'Arne', 'family': 'Zibat', 'sequence': 'first', 'affiliation': []}, {'given': 'Xiaoxiao', 'family': 'Zhang', 'sequence': 'additional', 'affiliation': []}, {'given': 'Antje', 'family': 'Dickmanns', 'sequence': 'additional', 'affiliation': []}, {'given': 'Kim M.', 'family': 'Stegmann', 'sequence': 'additional', 'affiliation': []}, {'given': 'Adrian', 'family': 'Dobbelstein', 'sequence': 'additional', 'affiliation': []}, {'given': 'Halima', 'family': 'Alachram', 'sequence': 'additional', 'affiliation': []}, {'given': 'Rebecca', 'family': 'Soliwoda', 'sequence': 'additional', 'affiliation': []}, {'given': 'Gabriela', 'family': 'Salinas', 'sequence': 'additional', 'affiliation': []}, {'given': 'Uwe', 'family': 'Groß', 'sequence': 'additional', 'affiliation': []}, {'given': 'Dirk', 'family': 'Görlich', 'sequence': 'additional', 'affiliation': []}, {'given': 'Maik', 'family': 'Kschischo', 'sequence': 'additional', 'affiliation': []}, {'given': 'Bernd', 'family': 'Wollnik', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-5052-3967', 'authenticated-orcid': False, 'given': 'Matthias', 'family': 'Dobbelstein', 'sequence': 'additional', 'affiliation': []}], 'member': '78', 'container-title': 'iScience', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://api.elsevier.com/content/article/PII:S2589004223018631?httpAccept=text/xml', 'content-type': 'text/xml', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://api.elsevier.com/content/article/PII:S2589004223018631?httpAccept=text/plain', 'content-type': 'text/plain', 'content-version': 'vor', 'intended-application': 'text-mining'}], 'deposited': { 'date-parts': [[2023, 8, 30]], 'date-time': '2023-08-30T16:08:00Z', 'timestamp': 1693411680000}, 'score': 1, 'resource': {'primary': {'URL': 'https://linkinghub.elsevier.com/retrieve/pii/S2589004223018631'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2023, 8]]}, 'references-count': 0, 'alternative-id': ['S2589004223018631'], 'URL': 'http://dx.doi.org/10.1016/j.isci.2023.107786', 'relation': {}, 'ISSN': ['2589-0042'], 'subject': ['Multidisciplinary'], 'container-title-short': 'iScience', 'published': {'date-parts': [[2023, 8]]}, 'assertion': [ {'value': 'Elsevier', 'name': 'publisher', 'label': 'This article is maintained by'}, { 'value': 'N4-hydroxycytidine, the active compound of Molnupiravir, promotes SARS-CoV-2 ' 'mutagenesis and escape from a neutralizing nanobody', 'name': 'articletitle', 'label': 'Article Title'}, {'value': 'iScience', 'name': 'journaltitle', 'label': 'Journal Title'}, { 'value': 'https://doi.org/10.1016/j.isci.2023.107786', 'name': 'articlelink', 'label': 'CrossRef DOI link to publisher maintained version'}, {'value': 'article', 'name': 'content_type', 'label': 'Content Type'}, {'value': '© 2023 The Author(s).', 'name': 'copyright', 'label': 'Copyright'}], 'article-number': '107786'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit