Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Results
Abstract
All molnupiravir studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchMolnupiravirMolnupiravir (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   All Outcomes    Recent:   

Randomized controlled trial of molnupiravir SARS-CoV-2 viral and antibody response in at-risk adult outpatients

Standing et al., Nature Communications, doi:10.1038/s41467-024-45641-0, ISRCTN30448031
Feb 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Viral culture+, days 6-20 -103% Improvement Relative Risk Viral culture+, days 2-5 31% Molnupiravir  Standing et al.  EARLY TREATMENT  RCT Is early treatment with molnupiravir beneficial for COVID-19? RCT 592 patients in the United Kingdom (March - April 2022) Worse viral clearance with molnupiravir (not stat. sig., p=0.33) c19early.org Standing et al., Nature Communications, Feb 2024 Favorsmolnupiravir Favorscontrol 0 0.5 1 1.5 2+
PANORAMIC virology-sub-study showing increased viral persistence with molnupiravir treatment. Molnupiravir 800mg twice daily for 5 days led to faster initial viral decline but 86% still had detectable virus by day 5. By day 14, molnupiravir was associated with significantly higher proportions with detectable virus and lower anti-spike antibodies compared to usual care. Serial genome sequencing revealed substantially increased mutagenesis with molnupiravir. Viable virus was cultured from samples up to 9 days post-treatment.
Potential risks include the creation of dangerous variants, and mutagenicity, carcinogenicity, teratogenicity, and embryotoxicity1-10. Multiple analyses have identified variants potentially created by molnupiravir11-14.
viral culture+, 103.4% higher, RR 2.03, p = 0.33, treatment 6 of 117 (5.1%), control 3 of 119 (2.5%), days 6-20.
viral culture+, 31.1% lower, RR 0.69, p = 0.11, treatment 26 of 249 (10.4%), control 52 of 343 (15.2%), NNT 21, days 2-5.
Effect extraction follows pre-specified rules prioritizing more serious outcomes. Submit updates
Standing et al., 23 Feb 2024, Randomized Controlled Trial, United Kingdom, peer-reviewed, 54 authors, study period March 2022 - April 2022, trial ISRCTN30448031. Contact: j.standing@ucl.ac.uk.
This PaperMolnupiravirAll
Abstract: Article https://doi.org/10.1038/s41467-024-45641-0 Randomized controlled trial of molnupiravir SARS-CoV-2 viral and antibody response in at-risk adult outpatients Received: 4 August 2023 A list of authors and their affiliations appears at the end of the paper 1234567890():,; 1234567890():,; Accepted: 26 January 2024 Check for updates Viral clearance, antibody response and the mutagenic effect of molnupiravir has not been elucidated in at-risk populations. Non-hospitalised participants within 5 days of SARS-CoV-2 symptoms randomised to receive molnupiravir (n = 253) or Usual Care (n = 324) were recruited to study viral and antibody dynamics and the effect of molnupiravir on viral whole genome sequence from 1437 viral genomes. Molnupiravir accelerates viral load decline, but virus is detectable by Day 5 in most cases. At Day 14 (9 days post-treatment), molnupiravir is associated with significantly higher viral persistence and significantly lower anti-SARS-CoV-2 spike antibody titres compared to Usual Care. Serial sequencing reveals increased mutagenesis with molnupiravir treatment. Persistence of detectable viral RNA at Day 14 in the molnupiravir group is associated with higher transition mutations following treatment cessation. Viral viability at Day 14 is similar in both groups with post-molnupiravir treated samples cultured up to 9 days post cessation of treatment. The current 5-day molnupiravir course is too short. Longer courses should be tested to reduce the risk of potentially transmissible molnupiravir-mutated variants being generated. Trial registration: ISRCTN30448031 Treatment of SARS-CoV-2 with the nucleoside analogue molnupiravir (MK4482, EIDD2801) was reported to reduce viral load, hospitalisation and mortality in unvaccinated participants with early COVID-19 in the MOVeOUT trial1,2. Based on these data, molnupiravir received emergency use authorisation in the UK in November 2021 for early treatment of SARS-CoV-2 in individuals deemed to be at higher risk of complications due to age or underlying comorbidities. Molnupiravir is metabolised intracellularly to NHC-triphosphate, which competes with natural cytidine and uridine for incorporation by the viral RNA-dependent RNA polymerase (RdRp) into the nascent viral RNA. This leads to abnormal, non-Watson-Crick pairing with guanosine and uridine in further rounds of replication, increasing the substitution of adenosine for guanosine and cytosine for uridine, so-called transition mutations, within the SARS-CoV-2 genome. Lethal mutagenesis resulting from treatment with RdRp inhibitors eventually leads to viral extinction3,4. A distinctive pattern of transition mutagenesis is evident in viral genomes recovered from animals and humans who have received molnupiravir3–5. The risk that, following molnupiravir treatment, some highly mutated viruses might remain viable and capable of onward transmission has been postulated6,7. To measure the impact of molnupiravir in a largely vaccinated population, the Platform Adaptive trial of NOvel antiviRals for eArly treatMent of covid-19 In the Community (PANORAMIC) was established. The first drug tested in PANORAMIC was molnupiravir, and amongst 25,783 mostly vaccinated individuals, found that molnupiravir did not reduce hospitalisation or death8 (primary endpoint). Secondary outcomes showed those receiving molnupiravir experienced significantly reduced viral load during treatment and reported faster symptom recovery and fewer general..
{ 'indexed': {'date-parts': [[2024, 2, 24]], 'date-time': '2024-02-24T00:37:28Z', 'timestamp': 1708735048852}, 'reference-count': 46, 'publisher': 'Springer Science and Business Media LLC', 'issue': '1', 'license': [ { 'start': { 'date-parts': [[2024, 2, 23]], 'date-time': '2024-02-23T00:00:00Z', 'timestamp': 1708646400000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}, { 'start': { 'date-parts': [[2024, 2, 23]], 'date-time': '2024-02-23T00:00:00Z', 'timestamp': 1708646400000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}], 'funder': [ { 'DOI': '10.13039/501100000272', 'name': 'DH | National Institute for Health Research', 'doi-asserted-by': 'publisher', 'award': ['NIHR135366']}, { 'DOI': '10.13039/501100000265', 'name': 'RCUK | Medical Research Council', 'doi-asserted-by': 'publisher', 'award': ['MR/X004724/1']}], 'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False}, 'abstract': '<jats:title>Abstract</jats:title><jats:p>Viral clearance, antibody response and the mutagenic ' 'effect of molnupiravir has not been elucidated in at-risk populations. Non-hospitalised ' 'participants within 5 days of SARS-CoV-2 symptoms randomised to receive molnupiravir (n\u2009' '=\u2009253) or Usual Care (n\u2009=\u2009324) were recruited to study viral and antibody ' 'dynamics and the effect of molnupiravir on viral whole genome sequence from 1437 viral ' 'genomes. Molnupiravir accelerates viral load decline, but virus is detectable by Day 5 in ' 'most cases. At Day 14 (9 days post-treatment), molnupiravir is associated with significantly ' 'higher viral persistence and significantly lower anti-SARS-CoV-2 spike antibody titres ' 'compared to Usual Care. Serial sequencing reveals increased mutagenesis with molnupiravir ' 'treatment. Persistence of detectable viral RNA at Day 14 in the molnupiravir group is ' 'associated with higher transition mutations following treatment cessation. Viral viability at ' 'Day 14 is similar in both groups with post-molnupiravir treated samples cultured up to 9 days ' 'post cessation of treatment. The current 5-day molnupiravir course is too short. Longer ' 'courses should be tested to reduce the risk of potentially transmissible molnupiravir-mutated ' 'variants being generated. Trial registration: ISRCTN30448031</jats:p>', 'DOI': '10.1038/s41467-024-45641-0', 'type': 'journal-article', 'created': {'date-parts': [[2024, 2, 23]], 'date-time': '2024-02-23T09:02:33Z', 'timestamp': 1708678953000}, 'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Randomized controlled trial of molnupiravir SARS-CoV-2 viral and antibody response in at-risk ' 'adult outpatients', 'prefix': '10.1038', 'volume': '15', 'author': [ { 'ORCID': 'http://orcid.org/0000-0002-4561-7173', 'authenticated-orcid': False, 'given': 'Joseph F.', 'family': 'Standing', 'sequence': 'first', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-7404-7800', 'authenticated-orcid': False, 'given': 'Laura', 'family': 'Buggiotti', 'sequence': 'additional', 'affiliation': []}, { 'given': 'Jose Afonso', 'family': 'Guerra-Assuncao', 'sequence': 'additional', 'affiliation': []}, {'given': 'Maximillian', 'family': 'Woodall', 'sequence': 'additional', 'affiliation': []}, {'given': 'Samuel', 'family': 'Ellis', 'sequence': 'additional', 'affiliation': []}, {'given': 'Akosua A.', 'family': 'Agyeman', 'sequence': 'additional', 'affiliation': []}, {'given': 'Charles', 'family': 'Miller', 'sequence': 'additional', 'affiliation': []}, {'given': 'Mercy', 'family': 'Okechukwu', 'sequence': 'additional', 'affiliation': []}, {'given': 'Emily', 'family': 'Kirkpatrick', 'sequence': 'additional', 'affiliation': []}, {'given': 'Amy I.', 'family': 'Jacobs', 'sequence': 'additional', 'affiliation': []}, {'given': 'Charlotte A.', 'family': 'Williams', 'sequence': 'additional', 'affiliation': []}, {'given': 'Sunando', 'family': 'Roy', 'sequence': 'additional', 'affiliation': []}, {'given': 'Luz M.', 'family': 'Martin-Bernal', 'sequence': 'additional', 'affiliation': []}, {'given': 'Rachel', 'family': 'Williams', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-8913-0009', 'authenticated-orcid': False, 'given': 'Claire M.', 'family': 'Smith', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-4177-2851', 'authenticated-orcid': False, 'given': 'Theo', 'family': 'Sanderson', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-2946-3864', 'authenticated-orcid': False, 'given': 'Fiona B.', 'family': 'Ashford', 'sequence': 'additional', 'affiliation': []}, {'given': 'Beena', 'family': 'Emmanuel', 'sequence': 'additional', 'affiliation': []}, {'given': 'Zaheer M.', 'family': 'Afzal', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-5345-2156', 'authenticated-orcid': False, 'given': 'Adrian', 'family': 'Shields', 'sequence': 'additional', 'affiliation': []}, {'given': 'Alex G.', 'family': 'Richter', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-6072-1430', 'authenticated-orcid': False, 'given': 'Jienchi', 'family': 'Dorward', 'sequence': 'additional', 'affiliation': []}, {'given': 'Oghenekome', 'family': 'Gbinigie', 'sequence': 'additional', 'affiliation': []}, {'given': 'Oliver', 'family': 'Van Hecke', 'sequence': 'additional', 'affiliation': []}, {'given': 'Mark', 'family': 'Lown', 'sequence': 'additional', 'affiliation': []}, {'given': 'Nick', 'family': 'Francis', 'sequence': 'additional', 'affiliation': []}, {'given': 'Bhautesh', 'family': 'Jani', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-8093-7084', 'authenticated-orcid': False, 'given': 'Duncan B.', 'family': 'Richards', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-1195-1680', 'authenticated-orcid': False, 'given': 'Najib M.', 'family': 'Rahman', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-0331-7364', 'authenticated-orcid': False, 'given': 'Ly-Mee', 'family': 'Yu', 'sequence': 'additional', 'affiliation': []}, {'given': 'Nicholas P. B.', 'family': 'Thomas', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-8168-1746', 'authenticated-orcid': False, 'given': 'Nigel D.', 'family': 'Hart', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-5277-3545', 'authenticated-orcid': False, 'given': 'Philip', 'family': 'Evans', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-0619-1074', 'authenticated-orcid': False, 'given': 'Monique', 'family': 'Andersson', 'sequence': 'additional', 'affiliation': []}, {'given': 'Gail', 'family': 'Hayward', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-5268-8631', 'authenticated-orcid': False, 'given': 'Kerenza', 'family': 'Hood', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-2579-4655', 'authenticated-orcid': False, 'given': 'Jonathan S.', 'family': 'Nguyen-Van-Tam', 'sequence': 'additional', 'affiliation': []}, {'given': 'Paul', 'family': 'Little', 'sequence': 'additional', 'affiliation': []}, {'given': 'F. D. Richard', 'family': 'Hobbs', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-2769-0967', 'authenticated-orcid': False, 'given': 'Saye', 'family': 'Khoo', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-0102-3453', 'authenticated-orcid': False, 'given': 'Christopher', 'family': 'Butler', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-6102-2375', 'authenticated-orcid': False, 'given': 'David M.', 'family': 'Lowe', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-8246-0534', 'authenticated-orcid': False, 'given': 'Judith', 'family': 'Breuer', 'sequence': 'additional', 'affiliation': []}, {'given': 'Julie', 'family': 'Allen', 'sequence': 'additional', 'affiliation': []}, {'given': 'Nadua', 'family': 'Bayzid', 'sequence': 'additional', 'affiliation': []}, {'given': 'Julianne', 'family': 'Brown', 'sequence': 'additional', 'affiliation': []}, {'given': 'Doug', 'family': 'Burns', 'sequence': 'additional', 'affiliation': []}, {'given': 'Elizabeth', 'family': 'Hadley', 'sequence': 'additional', 'affiliation': []}, {'given': 'Jim', 'family': 'Hatcher', 'sequence': 'additional', 'affiliation': []}, {'given': 'Tim', 'family': 'McHugh', 'sequence': 'additional', 'affiliation': []}, {'given': 'Chris', 'family': 'Thalasselis', 'sequence': 'additional', 'affiliation': []}, {'given': 'Mia', 'family': 'Tomlinson', 'sequence': 'additional', 'affiliation': []}, {'given': 'Francis', 'family': 'Yongblah', 'sequence': 'additional', 'affiliation': []}, {'name': 'PANORAMIC Virology Group', 'sequence': 'additional', 'affiliation': []}], 'member': '297', 'published-online': {'date-parts': [[2024, 2, 23]]}, 'reference': [ { 'key': '45641_CR1', 'doi-asserted-by': 'publisher', 'first-page': '509', 'DOI': '10.1056/NEJMoa2116044', 'volume': '386', 'author': 'A Jayk Bernal', 'year': '2022', 'unstructured': 'Jayk Bernal, A. et al. Molnupiravir for oral treatment of Covid-19 in ' 'nonhospitalized patients. N. Engl. J. Med. 386, 509–520 (2022).', 'journal-title': 'N. Engl. J. Med.'}, { 'key': '45641_CR2', 'doi-asserted-by': 'publisher', 'first-page': 'eabl7430', 'DOI': '10.1126/scitranslmed.abl7430', 'volume': '14', 'author': 'WA Fischer', 'year': '2022', 'unstructured': 'Fischer, W. A. et al. A phase 2a clinical trial of molnupiravir in ' 'patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and ' 'elimination of infectious virus. Sci. Transl. Med 14, eabl7430 (2022).', 'journal-title': 'Sci. Transl. Med'}, { 'key': '45641_CR3', 'doi-asserted-by': 'publisher', 'first-page': '100770', 'DOI': '10.1016/j.jbc.2021.100770', 'volume': '297', 'author': 'CJ Gordon', 'year': '2021', 'unstructured': 'Gordon, C. J., Tchesnokov, E. P., Schinazi, R. F. & Götte, M. ' 'Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA. template J. ' 'Biol. Chem. 297, 100770 (2021).', 'journal-title': 'template J. Biol. Chem.'}, { 'key': '45641_CR4', 'doi-asserted-by': 'publisher', 'first-page': '740', 'DOI': '10.1038/s41594-021-00651-0', 'volume': '28', 'author': 'F Kabinger', 'year': '2021', 'unstructured': 'Kabinger, F. et al. Mechanism of molnupiravir-induced SARS-CoV-2 ' 'mutagenesis. Nat. Struct. Mol. Biol. 28, 740–746 (2021).', 'journal-title': 'Nat. Struct. Mol. Biol.'}, { 'key': '45641_CR5', 'doi-asserted-by': 'publisher', 'unstructured': 'Illingworth, C. J. R. et al. Genetic consequences of effective and ' 'suboptimal dosing with mutagenic drugs in a hamster model of SARS-CoV-2 ' 'infection. Virus Evol. veae001. https://doi.org/10.1093/ve/veae001 ' '(2024).', 'DOI': '10.1093/ve/veae001'}, { 'key': '45641_CR6', 'unstructured': 'November 30, 2021: Antimicrobial Drugs Advisory Committee Meeting ' 'Announcement—11/30/2021. FDA ' 'https://www.fda.gov/advisory-committees/advisory-committee-calendar/november-30-2021-antimicrobial-drugs-advisory-committee-meeting-announcement-11302021 ' '(2022).'}, { 'key': '45641_CR7', 'doi-asserted-by': 'publisher', 'first-page': '361', 'DOI': '10.1038/s41579-023-00878-2', 'volume': '21', 'author': 'PV Markov', 'year': '2023', 'unstructured': 'Markov, P. V. et al. The evolution of SARS-CoV-2. Nat. Rev. Microbiol. ' '21, 361–379 (2023).', 'journal-title': 'Nat. Rev. Microbiol.'}, { 'key': '45641_CR8', 'doi-asserted-by': 'publisher', 'first-page': '281', 'DOI': '10.1016/S0140-6736(22)02597-1', 'volume': '401', 'author': 'CC Butler', 'year': '2023', 'unstructured': 'Butler, C. C. et al. Molnupiravir plus usual care versus usual care ' 'alone as early treatment for adults with COVID-19 at increased risk of ' 'adverse outcomes (PANORAMIC): an open-label, platform-adaptive ' 'randomised controlled trial. Lancet 401, 281–293 (2023).', 'journal-title': 'Lancet'}, { 'key': '45641_CR9', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-022-34839-9', 'volume': '13', 'author': 'I Donovan-Banfield', 'year': '2022', 'unstructured': 'Donovan-Banfield, I. et al. Characterisation of SARS-CoV-2 genomic ' 'variation in response to molnupiravir treatment in the AGILE Phase IIa ' 'clinical trial. Nat. Commun. 13, 7284 (2022).', 'journal-title': 'Nat. Commun.'}, {'key': '45641_CR10', 'unstructured': 'Pokay. https://github.com/nodrogluap/pokay (2023).'}, { 'key': '45641_CR11', 'unstructured': 'SARS2-ResistanceDB. ' 'https://github.com/ucl-pathgenomics/SARS2-ResistanceDB (2023).'}, { 'key': '45641_CR12', 'unstructured': 'Sanderson, T. Systematic Errors Associated with Some Implementations of ' 'ARTIC V4 and a Fast Workflow to Prescreen Samples for New Problematic ' 'Sites. ' 'https://virological.org/t/issues-with-sars-cov-2-sequencing-data/473/16 ' '(2021).'}, { 'key': '45641_CR13', 'doi-asserted-by': 'publisher', 'unstructured': 'Johnson, M. G. et al. Molnupiravir for the treatment of COVID-19 in ' 'immunocompromised participants: efficacy, safety, and virology results ' 'from the phase 3 randomized, placebo-controlled MOVe-OUT trial. ' 'Infection (2023) https://doi.org/10.1007/s15010-022-01959-9.', 'DOI': '10.1007/s15010-022-01959-9'}, { 'key': '45641_CR14', 'doi-asserted-by': 'publisher', 'first-page': 'e1004120', 'DOI': '10.1371/journal.pmed.1004120', 'volume': '19', 'author': 'DM Lowe', 'year': '2022', 'unstructured': 'Lowe, D. M. et al. Favipiravir, lopinavir-ritonavir, or combination ' 'therapy (FLARE): A randomised, double-blind, 2 × 2 factorial ' 'placebo-controlled trial of early antiviral therapy in COVID-19. PLoS ' 'Med. 19, e1004120 (2022).', 'journal-title': 'PLoS Med.'}, { 'key': '45641_CR15', 'doi-asserted-by': 'publisher', 'first-page': 'e409', 'DOI': '10.1016/S2666-5247(23)00005-8', 'volume': '4', 'author': 'S Galmiche', 'year': '2023', 'unstructured': 'Galmiche, S. et al. SARS-CoV-2 incubation period across variants of ' 'concern, individual factors, and circumstances of infection in France: a ' 'case series analysis from the ComCor study. Lancet Microbe 4, e409–e417 ' '(2023).', 'journal-title': 'Lancet Microbe'}, { 'key': '45641_CR16', 'doi-asserted-by': 'publisher', 'first-page': '509', 'DOI': '10.1002/psp4.12543', 'volume': '9', 'author': 'A Gonçalves', 'year': '2020', 'unstructured': 'Gonçalves, A. et al. Timing of antiviral treatment initiation is ' 'critical to reduce SARS-CoV-2 viral load. CPT Pharmacomet. Syst. ' 'Pharmacol. 9, 509–514 (2020).', 'journal-title': 'CPT Pharmacomet. Syst. Pharmacol.'}, { 'key': '45641_CR17', 'doi-asserted-by': 'publisher', 'first-page': '321', 'DOI': '10.1002/cpt.2223', 'volume': '110', 'author': 'S Gastine', 'year': '2021', 'unstructured': 'Gastine, S. et al. Systematic review and patient-level meta-analysis of ' 'SARS-CoV-2 viral dynamics to model response to antiviral therapies. ' 'Clin. Pharmacol. Ther. 110, 321–333 (2021).', 'journal-title': 'Clin. Pharmacol. Ther.'}, { 'key': '45641_CR18', 'doi-asserted-by': 'publisher', 'first-page': 'e223261', 'DOI': '10.1001/jamapediatrics.2022.3261', 'volume': '176', 'author': 'PS Walsh', 'year': '2022', 'unstructured': 'Walsh, P. S. et al. Association of early oseltamivir with improved ' 'outcomes in hospitalized children with influenza, 2007–2020. JAMA ' 'Pediatr. 176, e223261 (2022).', 'journal-title': 'JAMA Pediatr.'}, { 'key': '45641_CR19', 'doi-asserted-by': 'publisher', 'first-page': 'e274', 'DOI': '10.1016/S2666-5247(21)00305-0', 'volume': '3', 'author': 'B Barin', 'year': '2022', 'unstructured': 'Barin, B., Kasap, U., Selçuk, F., Volkan, E. & Uluçkan, Ö. Comparison of ' 'SARS-CoV-2 anti-spike receptor binding domain IgG antibody responses ' 'after CoronaVac, BNT162b2, ChAdOx1 COVID-19 vaccines, and a single ' 'booster dose: a prospective, longitudinal population-based study. Lancet ' 'Microbe 3, e274–e283 (2022).', 'journal-title': 'Lancet Microbe'}, { 'key': '45641_CR20', 'doi-asserted-by': 'publisher', 'first-page': 'ofac618', 'DOI': '10.1093/ofid/ofac618', 'volume': '9', 'author': 'C Moser', 'year': '2022', 'unstructured': 'Moser, C. et al. Predictors of SARS-CoV-2 RNA from nasopharyngeal swabs ' 'and concordance with other compartments in nonhospitalized adults with ' 'mild to moderate COVID-19. Open Forum Infect. Dis. 9, ofac618 (2022).', 'journal-title': 'Open Forum Infect. Dis.'}, { 'key': '45641_CR21', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-021-26479-2', 'volume': '12', 'author': 'J Wei', 'year': '2021', 'unstructured': 'Wei, J. et al. Anti-spike antibody response to natural SARS-CoV-2 ' 'infection in the general population. Nat. Commun. 12, 6250 (2021).', 'journal-title': 'Nat. Commun.'}, { 'key': '45641_CR22', 'doi-asserted-by': 'publisher', 'unstructured': 'Barnes, E. et al. SARS-CoV-2-specific immune responses and clinical ' 'outcomes after COVID-19 vaccination in patients with immune-suppressive ' 'disease. Nat. Med. https://doi.org/10.1038/s41591-023-02414-4 (2023).', 'DOI': '10.1038/s41591-023-02414-4'}, { 'key': '45641_CR23', 'doi-asserted-by': 'publisher', 'first-page': 'ofad154', 'DOI': '10.1093/ofid/ofad154', 'volume': '10', 'author': 'AF Carlin', 'year': '2023', 'unstructured': 'Carlin, A. F. et al. Neutralizing antibody responses after severe acute ' 'respiratory syndrome coronavirus 2 BA.2 and BA.2.12.1 infection do not ' 'neutralize BA.4 and BA.5 and can be blunted by nirmatrelvir/ritonavir ' 'treatment. Open Forum Infect. Dis. 10, ofad154 (2023).', 'journal-title': 'Open Forum Infect. Dis.'}, { 'key': '45641_CR24', 'doi-asserted-by': 'publisher', 'first-page': '183', 'DOI': '10.1016/S1473-3099(22)00644-2', 'volume': '23', 'author': 'SH Khoo', 'year': '2023', 'unstructured': 'Khoo, S. H. et al. Molnupiravir versus placebo in unvaccinated and ' 'vaccinated patients with early SARS-CoV-2 infection in the UK (AGILE ' 'CST-2): a randomised, placebo-controlled, double-blind, phase 2 trial. ' 'Lancet Infect. Dis. 23, 183–195 (2023).', 'journal-title': 'Lancet Infect. Dis.'}, { 'key': '45641_CR25', 'doi-asserted-by': 'publisher', 'unstructured': 'Sanderson, T. et al. A molnupiravir-associated mutational signature in ' 'global SARS-CoV-2 genomes. Nature ' 'https://doi.org/10.1038/s41586-023-06649-6 (2023).', 'DOI': '10.1038/s41586-023-06649-6'}, { 'key': '45641_CR26', 'doi-asserted-by': 'publisher', 'first-page': '1338', 'DOI': '10.1093/molbev/msq024', 'volume': '27', 'author': 'JE Barrick', 'year': '2010', 'unstructured': 'Barrick, J. E., Kauth, M. R., Strelioff, C. C. & Lenski, R. E. ' 'Escherichia coli rpoB mutants have increased evolvability in proportion ' 'to their fitness defects. Mol. Biol. Evol. 27, 1338–1347 (2010).', 'journal-title': 'Mol. Biol. Evol.'}, { 'key': '45641_CR27', 'doi-asserted-by': 'publisher', 'first-page': '44', 'DOI': '10.1016/j.chom.2020.11.007', 'volume': '29', 'author': 'AJ Greaney', 'year': '2021', 'unstructured': 'Greaney, A. J. et al. Complete mapping of mutations to the SARS-CoV-2 ' 'spike receptor-binding domain that escape antibody recognition. Cell ' 'Host Microbe 29, 44–57.e9 (2021).', 'journal-title': 'Cell Host Microbe'}, { 'key': '45641_CR28', 'doi-asserted-by': 'crossref', 'unstructured': 'Starr, T. N., Greaney, A. J., Dingens, A. S. & Bloom, J. D. Complete map ' 'of SARS-CoV-2 RBD mutations that escape the monoclonal antibody ' 'LY-CoV555 and its cocktail with LY-CoV016. Cell Rep. Med. 2 (2021).', 'DOI': '10.1101/2021.02.17.431683'}, { 'key': '45641_CR29', 'doi-asserted-by': 'publisher', 'first-page': '1188', 'DOI': '10.1038/s41564-021-00954-4', 'volume': '6', 'author': 'J Zahradník', 'year': '2021', 'unstructured': 'Zahradník, J. et al. SARS-CoV-2 variant prediction and antiviral drug ' 'design are enabled by RBD in vitro evolution. Nat. Microbiol. 6, ' '1188–1198 (2021).', 'journal-title': 'Nat. Microbiol.'}, { 'key': '45641_CR30', 'doi-asserted-by': 'publisher', 'unstructured': 'Sun, Z. et al. Neutralization of European, South African, and United ' 'States SARS-CoV-2 mutants by a human antibody and antibody domains. ' 'Preprint at https://doi.org/10.1101/2021.03.22.436481 (2021).', 'DOI': '10.1101/2021.03.22.436481'}, { 'key': '45641_CR31', 'doi-asserted-by': 'publisher', 'first-page': '107786', 'DOI': '10.1016/j.isci.2023.107786', 'volume': '26', 'author': 'A Zibat', 'year': '2023', 'unstructured': 'Zibat, A. et al. N4-hydroxycytidine, the active compound of ' 'Molnupiravir, promotes SARS-CoV-2 mutagenesis and escape from a ' 'neutralizing nanobody. iScience 26, 107786 (2023).', 'journal-title': 'iScience'}, { 'key': '45641_CR32', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-019-13940-6', 'volume': '11', 'author': 'TP Sheahan', 'year': '2020', 'unstructured': 'Sheahan, T. P. et al. Comparative therapeutic efficacy of remdesivir and ' 'combination lopinavir, ritonavir, and interferon beta against MERS-CoV. ' 'Nat. Commun. 11, 222 (2020).', 'journal-title': 'Nat. Commun.'}, { 'key': '45641_CR33', 'doi-asserted-by': 'publisher', 'first-page': '161', 'DOI': '10.1002/jmv.27285', 'volume': '94', 'author': 'FAT Boshier', 'year': '2022', 'unstructured': 'Boshier, F. A. T. et al. Evolution of viral variants in ' 'remdesivir-treated and untreated SARS-CoV-2-infected pediatrics ' 'patients. J. Med. Virol. 94, 161–172 (2022).', 'journal-title': 'J. Med. Virol.'}, { 'key': '45641_CR34', 'doi-asserted-by': 'publisher', 'first-page': 'e191', 'DOI': '10.1093/cid/ciaa023', 'volume': '71', 'author': 'CK Lumby', 'year': '2020', 'unstructured': 'Lumby, C. K. et al. Favipiravir and Zanamivir Cleared Infection with ' 'Influenza B in a Severely Immunocompromised Child. Clin. Infect. Dis. ' '71, e191–e194 (2020).', 'journal-title': 'Clin. Infect. Dis.'}, { 'key': '45641_CR35', 'doi-asserted-by': 'publisher', 'first-page': '100144', 'DOI': '10.1016/j.xcrm.2020.100144', 'volume': '1', 'author': 'AA Mueller', 'year': '2020', 'unstructured': 'Mueller, A. A. et al. Inflammatory biomarker trends predict respiratory ' 'decline in COVID-19 patients. Cell Rep. Med. 1, 100144 (2020).', 'journal-title': 'Cell Rep. Med.'}, { 'key': '45641_CR36', 'doi-asserted-by': 'publisher', 'first-page': '1126', 'DOI': '10.7326/M22-0729', 'volume': '175', 'author': 'MG Johnson', 'year': '2022', 'unstructured': 'Johnson, M. G. et al. Effect of molnupiravir on biomarkers, respiratory ' 'interventions, and medical services in COVID-19: a randomized, ' 'placebo-controlled trial. Ann. Intern. Med. 175, 1126–1134 (2022).', 'journal-title': 'Ann. Intern. Med.'}, { 'key': '45641_CR37', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/s13073-021-00839-5', 'volume': '13', 'author': 'DJ Baker', 'year': '2021', 'unstructured': 'Baker, D. J. et al. CoronaHiT: high-throughput sequencing of SARS-CoV-2 ' 'genomes. Genome Med 13, 21 (2021).', 'journal-title': 'Genome Med'}, { 'key': '45641_CR38', 'doi-asserted-by': 'publisher', 'first-page': '2970', 'DOI': '10.3201/eid2612.203309', 'volume': '26', 'author': 'GL Morley', 'year': '2020', 'unstructured': 'Morley, G. L. et al. Sensitive detection of SARS-CoV-2-specific ' 'antibodies in dried blood spot samples. Emerg. Infect. Dis. 26, ' '2970–2973 (2020).', 'journal-title': 'Emerg. Infect. Dis.'}, { 'key': '45641_CR39', 'doi-asserted-by': 'publisher', 'first-page': '5428', 'DOI': '10.1111/bcp.15518', 'volume': '88', 'author': 'AA Agyeman', 'year': '2022', 'unstructured': 'Agyeman, A. A. et al. Comparative assessment of viral dynamic models for ' 'SARS-CoV-2 for pharmacodynamic assessment in early treatment trials. Br. ' 'J. Clin. Pharmacol. 88, 5428–5433 (2022).', 'journal-title': 'Br. J. Clin. Pharmacol.'}, { 'key': '45641_CR40', 'doi-asserted-by': 'publisher', 'first-page': '481', 'DOI': '10.1023/A:1012299115260', 'volume': '28', 'author': 'SL Beal', 'year': '2001', 'unstructured': 'Beal, S. L. Ways to fit a PK model with some data below the ' 'quantification limit. J. Pharmacokinet. Pharmacodyn. 28, 481–504 (2001).', 'journal-title': 'J. Pharmacokinet. Pharmacodyn.'}, { 'key': '45641_CR41', 'doi-asserted-by': 'publisher', 'unstructured': 'Patel, H. et al. nf-core/viralrecon: nf-core/viralrecon v2.6.0 - Rhodium ' 'Raccoon (2023). https://doi.org/10.5281/zenodo.7764938.', 'DOI': '10.5281/zenodo.7764938'}, { 'key': '45641_CR42', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/s13059-018-1618-7', 'volume': '20', 'author': 'ND Grubaugh', 'year': '2019', 'unstructured': 'Grubaugh, N. D. et al. An amplicon-based sequencing framework for ' 'accurately measuring intrahost virus diversity using PrimalSeq and iVar. ' 'Genome Biol. 20, 8 (2019).', 'journal-title': 'Genome Biol.'}, { 'key': '45641_CR43', 'doi-asserted-by': 'publisher', 'first-page': '4375', 'DOI': '10.1128/JVI.03181-13', 'volume': '88', 'author': 'I Monne', 'year': '2014', 'unstructured': 'Monne, I. et al. Emergence of a highly pathogenic avian influenza virus ' 'from a low-pathogenic progenitor. J. Virol. 88, 4375–4388 (2014).', 'journal-title': 'J. Virol.'}, { 'key': '45641_CR44', 'doi-asserted-by': 'publisher', 'first-page': '772', 'DOI': '10.1093/molbev/mst010', 'volume': '30', 'author': 'K Katoh', 'year': '2013', 'unstructured': 'Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software ' 'version 7: improvements in performance and usability. Mol. Biol. Evol. ' '30, 772–780 (2013).', 'journal-title': 'Mol. Biol. Evol.'}, { 'key': '45641_CR45', 'doi-asserted-by': 'publisher', 'first-page': '268', 'DOI': '10.1093/molbev/msu300', 'volume': '32', 'author': 'L-T Nguyen', 'year': '2015', 'unstructured': 'Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a ' 'fast and effective stochastic algorithm for estimating ' 'maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).', 'journal-title': 'Mol. Biol. Evol.'}, { 'key': '45641_CR46', 'doi-asserted-by': 'publisher', 'first-page': '809', 'DOI': '10.1038/s41588-021-00862-7', 'volume': '53', 'author': 'Y Turakhia', 'year': '2021', 'unstructured': 'Turakhia, Y. et al. Ultrafast sample placement on existing tRees (UShER) ' 'enables real-time phylogenetics for the SARS-CoV-2 pandemic. Nat. Genet. ' '53, 809–816 (2021).', 'journal-title': 'Nat. Genet.'}], 'container-title': 'Nature Communications', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.nature.com/articles/s41467-024-45641-0.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://www.nature.com/articles/s41467-024-45641-0', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://www.nature.com/articles/s41467-024-45641-0.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 2, 23]], 'date-time': '2024-02-23T09:03:09Z', 'timestamp': 1708678989000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.nature.com/articles/s41467-024-45641-0'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 2, 23]]}, 'references-count': 46, 'journal-issue': {'issue': '1', 'published-online': {'date-parts': [[2024, 12]]}}, 'alternative-id': ['45641'], 'URL': 'http://dx.doi.org/10.1038/s41467-024-45641-0', 'relation': {}, 'ISSN': ['2041-1723'], 'subject': [ 'General Physics and Astronomy', 'General Biochemistry, Genetics and Molecular Biology', 'General Chemistry', 'Multidisciplinary'], 'container-title-short': 'Nat Commun', 'published': {'date-parts': [[2024, 2, 23]]}, 'assertion': [ { 'value': '4 August 2023', 'order': 1, 'name': 'received', 'label': 'Received', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '26 January 2024', 'order': 2, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '23 February 2024', 'order': 3, 'name': 'first_online', 'label': 'First Online', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': 'J.F.S. has participated on a data safety monitoring board for GlaxoSmithKline ' '(Sotrovimab) with fees paid to his institution. JSN-V-T was seconded to the ' 'Department of Health and Social Care, England (DHSC) from October 2017–March ' '2022. The views and opinions expressed in this paper are not necessarily those ' 'of DHSC or any of its arms-length bodies. JSN-V-T performed one-off paid ' 'consultancy for Merck Sharp and Dohme in June 2023, unrelated to the subject of ' 'the manuscript. K.H. was a member of the Health Technology Assessment General ' 'Committee and Funding Strategy Group until November 2022, and Research ' 'Professors Funding Committee at the UK National Institute for Health and Care ' 'Research (NIHR), received a grant from AstraZeneca (paid to their institution) ' 'to support a trial of Evusheld for the prevention of COVID-19 in high-risk ' 'individuals (RAPID-Protection), and was an independent member of the ' 'independent data monitoring committee for the OCTAVE-DUO trial of vaccines in ' 'individuals at high risk of COVID-19. D.M.L. has received grants or contracts ' 'from LifeArc, the UK Medical Research Council, Bristol Myers Squibb, ' 'GlaxoSmithKline, the British Society for Antimicrobial Chemotherapy, and Blood ' 'Cancer UK, personal fees or honoraria from Biotest UK, Gilead, and Merck, ' 'consulting fees from GlaxoSmithKline (paid to their institution), and ' 'conference support from Octapharma. DBR has received consulting fees from OMASS ' 'Therapeutics, GSK, and Sosei-Heptares and has a leadership and fiduciary role ' 'in the Heal-COVID trial TMG. M.L. is a member of the data monitoring and ethics ' 'committee of RAPIS-TEST (NIHR efficacy and mechanism evaluation). S.K. reports ' 'grants from GlaxoSmithKline, ViiV, Ridgeback Biotherapeutics, Vir, Merck, the ' 'UK Medical Research Council, and the Wellcome Trust (all paid to his ' 'institution), speaker’s honoraria from ViiV, and donations of drugs for ' 'clinical studies from ViiV Healthcare, Toyama, and GlaxoSmithKline. M.A. has ' 'received grants from the Blood and Transplant Research Unit, Janssen, Pfizer, ' 'Prenetics, Dunhill Medical Trust, the BMA Trust (Kathleen Harper Fund), and ' 'Antibiotic Research UK (all of which were paid to their institution), and ' 'consultancy fees from Prenetics and OxDx. M.A. reports a planned patent for ' 'Ramanomics, has participated on data safety monitoring boards or advisory ' 'boards for Prenetics, and has an unpaid leadership or fiduciary role in the E3 ' 'Initiative. NPBT has received payment for participation on an advisory board ' 'from MSD (before any knowledge or planning of this trial). O.v.H. has received ' 'consulting fees from MindGap (fees paid to Oxford University lnnovation), has ' 'participated on data safety monitoring boards or advisory boards for the CHICO ' 'trial, and has an unpaid leadership or fiduciary role in the British Society of ' 'Antimicrobial Chemotherapy. J.B. has received consulting fees from ' 'GlaxoSmithKline (paid to her institution). All other authors declare no ' 'competing interests.', 'order': 1, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Competing interests'}}], 'article-number': '1652'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit