Molecular Docking and In-Silico Analysis of Natural Biomolecules against Dengue, Ebola, Zika, SARS-CoV-2 Variants of Concern and Monkeypox Virus
Mackingsley Kushan Dassanayake, Teng-Jin Khoo, Chien Hwa Chong, Patrick Di Martino
International Journal of Molecular Sciences, doi:10.3390/ijms231911131
The emergence and rapid evolution of human pathogenic viruses, combined with the difficulties in developing effective vaccines, underline the need to develop innovative broad-spectrum antiviral therapeutic agents. The present study aims to determine the in silico antiviral potential of six bacterial antimicrobial peptides (AMPs), two phytochemicals (silvestrol, andrographolide), and two bacterial secondary metabolites (lyngbyabellin A, hapalindole H) against dengue virus, Zika virus, Ebola virus, the major variants of SARS-CoV-2 and monkeypox virus. The comparison of docking scores obtained with natural biomolecules was performed with specific neutralizing antibodies (positive controls for ClusPro) and antiviral drugs (negative controls for Autodock Vina). Glycocin F was the only natural biomolecule tested to show high binding energies to all viral surface proteins and the corresponding viral cell receptors. Lactococcin G and plantaricin ASM1 also achieved high docking scores with all viral surface proteins and most corresponding cell surface receptors. Silvestrol, andrographolide, hapalindole H, and lyngbyabellin A showed variable docking scores depending on the viral surface proteins and cell receptors tested. Three glycocin F mutants with amino acid modifications showed an increase in their docking energy to the spike proteins of SARS-CoV-2 B.1.617.2 Indian variant, and of the SARS-CoV-2 P.1 Japan/Brazil variant, and the dengue DENV envelope protein. All mutant AMPs indicated a frequent occurrence of valine and proline amino acid rotamers. AMPs and glycocin F in particular are the most promising biomolecules for the development of broad-spectrum antiviral treatments targeting the attachment and entry of viruses into their target cell.
References
Adiguna, Panggabean, Atikana, Untari, Izzati et al., Antiviral and Immunostimulant Activities of Andrographis paniculata, HAYATI J. Biosci,
doi:10.4308/hjb.22.2.67
Al-Tawfiq, Barry, Memish, International outbreaks of Monkeypox virus infection with no established travel: A public health concern with significant knowledge gap, Travel Med. Infect. Dis,
doi:10.1016/j.tmaid.2022.102364
Aminu, Ibrahim, Sallau, Interaction of SARS-CoV-2 spike protein with angiotensin converting enzyme inhibitors and selected compounds from the chemical entities of biological interest, Beni-Suef Univ. J. Basic Appl. Sci,
doi:10.1186/s43088-021-00138-3
Ansah, Matchar, Shao, Low, Pourghaderi et al., The effectiveness of public health interventions against COVID-19: Lessons from the Singapore experience, PLoS ONE,
doi:10.1371/journal.pone.0248742
Artese, Svicher, Costa, Salpini, Di Maio et al., Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses, Drug Resist,
doi:10.1016/j.drup.2020.100721
Balmeh, Mahmoundi, Fard, Manipulated bio antimicrobial peptides from probiotic bacteria as proposed drugs for COVID-19 disease, Inform. Med. Unlocked,
doi:10.1016/j.imu.2021.100515
Bansal, Mohagaonkar, Sen, Khanam, Rathi, In-silico study of peptide-protein interaction of antimicrobial peptides potentially targeting SARS and SARS-CoV-2 nucleocapsid protein, Silico Pharmacol,
doi:10.1007/s40203-021-00103-z
Biedenkopf, Lange-Grünweller, Schulte, Weißer, Müller et al., The natural compound silvestrol is a potent inhibitor of Ebola virus replication, Antivir. Res,
doi:10.1016/j.antiviral.2016.11.011
Comeau, Gatchell, Vajda, Camacho, Cluspro, A fully automated algorithm for protein-protein docking, Nucleic Acids Res,
doi:10.1093/nar/gkh354
Dhama, Khan, Tiwari, Sircar, Bhat et al., Coronavirus Disease 2019-COVID-19, Clin. Microbiol. Rev,
doi:10.1128/CMR.00028-20
El-Baz, El-Senousy, El-Sayed, Kamel, In vitro antiviral and antimicrobial activities of Spirulina platensis extract, J. Appl. Pharm. Sci,
doi:10.7324/JAPS.2013.31209
Elgner, Sabino, Basic, Ploen, Grünweller et al., Inhibition of Zika Virus Replication by Silvestrol, Viruses,
doi:10.3390/v10040149
Enmozhi, Raja, Sebastine, Joseph, Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach, J. Biomol. Struct. Dyn,
doi:10.1080/07391102.2020.1760136
Geraghty, Aliota, Bonnac, Broad-Spectrum Antiviral Strategies and Nucleoside Analogues, Viruses,
doi:10.3390/v13040667
Grubaugh, Ladner, Lemey, Pybus, Rambaut et al., Tracking virus outbreaks in the twenty-first century, Nat. Microbiol,
doi:10.1038/s41564-018-0296-2
Henss, Scholz, Grünweller, Schnierle, Silvestrol Inhibits Chikungunya Virus Replication, Viruses,
doi:10.3390/v10110592
Hickman, Saunders, Bigger, Kane, Iversen, The development of broad-spectrum antiviral medical countermeasures to treat viral hemorrhagic fevers caused by natural or weaponized virus infections, PLoS Negl. Trop. Dis,
doi:10.1371/journal.pntd.0010220
Hiremath, Kumar, Nandan, Mantesh, Shankarappa et al., In silico docking analysis revealed the potential of phytochemicals present in Phyllanthus amarus and Andrographis paniculata, used in Ayurveda medicine in inhibiting SARS-CoV-2, Biotech,
doi:10.1007/s13205-020-02578-7
Hoffmann, Guha, Wu, Ghimire, Wang et al., Broad-Spectrum Antiviral Entry Inhibition by Interfacially Active Peptides, J. Virol,
doi:10.1128/JVI.01682-20
Kozakov, Beglov, Bohnuud, Mottarella, Xia et al., How good is automated protein docking?, Proteins Struct. Funct. Bioinform,
doi:10.1002/prot.24403
Kozakov, Hall, Xia, Porter, Padhorny et al., The ClusPro web server for proteinprotein docking, Nat. Protoc,
doi:10.1038/nprot.2016.169
Li, Khanom, Sun, Paemanee, Roytrakul et al., Andrographolide and Its 14-Aryloxy Analogues Inhibit Zika and Dengue Virus Infection, Molecules,
doi:10.3390/molecules25215037
Lim, Chan, Tan, Teh, Mohd et al., Ex Nees, Andrographolide, and Andrographolide Analogues as SARS-CoV-2 Antivirals? A Rapid Review, Nat. Prod. Commun,
doi:10.1177/1934578X211016610
Longet, Mellors, Carroll, Tipton, Ebolavirus, Comparison of Survivor Immunology and Animal Models in the Search for a Correlate of Protection, Front. Immunol,
doi:10.3389/fimmu.2020.599568
Małaczewska, Kaczorek-Łukowska, Wójcik, Siwicki, Antiviral effects of nisin, lysozyme, lactoferrin and their mixtures against bovine viral diarrhoea virus, BMC Vet Res,
doi:10.1186/s12917-019-2067-6
Mirashrafi, Moravejolahkami, Balouch, Hojjati, Bahreini-Esfahani et al., The efficacy of probiotics on virus titres and antibody production in virus diseases: A systematic review on recent evidence for COVID-19 treatment, Clin. Nutr. ESPEN,
doi:10.1016/j.clnesp.2021.10.016
Mulder, Lima, Miranda, Dias, Franco, Current scenario of peptide-based drugs: The key roles of cationic antitumor and antiviral peptides, Front. Microbiol,
doi:10.3389/fmicb.2013.00321
Murad, Atta-Ur-Rahman, Infectious, Diseases, None
Musarra-Pizzo, Pennisi, Ben-Amor, Mandalari, Sciortino, Antiviral Activity Exerted by Natural Products against Human Viruses, Viruses,
doi:10.3390/v13050828
Müller, Obermann, Karl, Wendel, Taroncher-Oldenburg et al., The rocaglate CR-31-B (-) inhibits SARS-CoV-2 replication at non-cytotoxic, low nanomolar concentrations in vitro and ex vivo, Antivir. Res,
doi:10.1016/j.antiviral.2021.105012
Müller, Schulte, Lange-Grünweller, Obermann, Madhugiri et al., Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona-and picornaviruses, Antivir. Res,
doi:10.1016/j.antiviral.2017.12.010
Pagarete, Ramos, Puntervoll, Allen, Verdelho, Antiviral Potential of Algal Metabolites-A Comprehensive Review, Mar. Drugs,
doi:10.3390/md19020094
Rohr, Barrett, Civitello, Craft, Delius et al., Emerging human infectious diseases and the links to global food production, Nat. Sustain,
doi:10.1038/s41893-019-0293-3
Sa-Ngiamsuntorn, Suksatu, Pewkliang, Thongsri, Kanjanasirirat et al., Anti-SARS-CoV-2 Activity of Andrographis paniculata Extract and Its Major Component Andrographolide in Human Lung Epithelial Cells and Cytotoxicity Evaluation in Major Organ Cell Representatives, J. Nat. Prod,
doi:10.1021/acs.jnatprod.0c01324
Saunders-Hastings, Krewski, Reviewing the History of Pandemic Influenza: Understanding Patterns of Emergence and Transmission, Pathogens,
doi:10.3390/pathogens5040066
Schrödinger, De Lano, Incentive PyMOL Software Package
Seubsasana, Pientong, Ekalaksananan, Thongchai, Aromdee, A Potential Andrographolide Analogue against the Replication of Herpes Simplex Virus Type 1 in Vero Cells, Med. Chem,
doi:10.2174/157340611795564268
Shao, Li, Goraya, Wang, Chen et al., Evolution of Influenza A Virus by Mutation and Re-Assortment, Int. J. Mol. Sci,
doi:10.3390/ijms18081650
Sheahan, Sims, Graham, Menachery, Gralinski et al., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses, Sci. Transl. Med,
doi:10.1126/scitranslmed.aal3653
Shityakov, Sohajda, Puskás, Roewer, Förster et al., Ionization states, cellular toxicity and molecular modeling studies of midazolam complexed with trimethyl-β-cyclodextrin, Molecules,
doi:10.3390/molecules191016861
Singh, Singh, Kumar, Kabir, Kamal et al., Multi-Omics Approach in the Identification of Potential Therapeutic Biomolecule for COVID-19, Front. Pharmacol,
doi:10.3389/fphar.2021.652335
Singh, Tiwari, Rai, Mohapatra, Cyanobacteria: An emerging source for drug discovery, J. Antibiot,
doi:10.1038/ja.2011.21
Tang, Zhu, Chen, Jiang, New technologies in computer-aided drug design: Toward target identification and new chemical entity discovery, Drug Discov. Today Technol,
doi:10.1016/j.ddtec.2006.09.004
Todt, Moeller, Praditya, Kinast, Friesland et al., The natural compound silvestrol inhibits hepatitis E virus (HEV) replication in vitro and in vivo, Antivir. Res,
doi:10.1016/j.antiviral.2018.07.010
Trott, Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem,
doi:10.1002/jcc.21334
Vajda, Yueh, Beglov, Bohnuud, Mottarella et al., New additions to the ClusPro server motivated by CAPRI, Proteins Struct. Funct. Bioinform,
doi:10.1002/prot.25219
Vallianou, Tsilingiris, Christodoulatos, Karampela, Dalamaga, Anti-viral treatment for SARS-CoV-2 infection: A race against time amidst the ongoing pandemic, Metab. Open,
doi:10.1016/j.metop.2021.100096
Van De Sandt, Li, Goraya, Wang, Chen, Invasion of Influenza A Viruses from Innate and Adaptive Immune Responses, Viruses,
doi:10.3390/v4091438
Wang, Wang, Lu, Qiu, Song et al., The efficacy of probiotics in patients with severe COVID-19, Ann. Palliat. Med,
doi:10.21037/apm-21-3373
Wilder-Smith, COVID-19 in comparison with other emerging viral diseases: Risk of geographic spread via travel, Trop. Dis. Travel Med. Vaccines,
doi:10.1186/s40794-020-00129-9
Wintachai, Kaur, Lee, Ramphan, Kuadkitkan et al., Activity of andrographolide against chikungunya virus infection, Sci. Rep,
doi:10.1038/srep14179
Yuan, Zhang, Wang, Li, Wang et al., Surfactin Inhibits Membrane Fusion during Invasion of Epithelial Cells by Enveloped Viruses, J. Virol,
doi:10.1128/JVI.00809-18
Zarbafian, Moghadasi, Roshandelpoor, Nan, Li et al., Protein docking refinement by convex underestimation in the low-dimensional subspace of encounter complexes, Sci. Rep,
doi:10.1038/s41598-018-23982-3
Zelikin, Stellacci, Broad-Spectrum Antiviral Agents Based on Multivalent Inhibitors of Viral Infectivity, Adv. Healthc. Mater,
doi:10.1002/adhm.202001433
{ 'indexed': { 'date-parts': [[2023, 12, 27]],
'date-time': '2023-12-27T22:36:14Z',
'timestamp': 1703716574084},
'reference-count': 70,
'publisher': 'MDPI AG',
'issue': '19',
'license': [ { 'start': { 'date-parts': [[2022, 9, 22]],
'date-time': '2022-09-22T00:00:00Z',
'timestamp': 1663804800000},
'content-version': 'vor',
'delay-in-days': 0,
'URL': 'https://creativecommons.org/licenses/by/4.0/'}],
'content-domain': {'domain': [], 'crossmark-restriction': False},
'abstract': '<jats:p>The emergence and rapid evolution of human pathogenic viruses, combined with the '
'difficulties in developing effective vaccines, underline the need to develop innovative '
'broad-spectrum antiviral therapeutic agents. The present study aims to determine the in '
'silico antiviral potential of six bacterial antimicrobial peptides (AMPs), two phytochemicals '
'(silvestrol, andrographolide), and two bacterial secondary metabolites (lyngbyabellin A, '
'hapalindole H) against dengue virus, Zika virus, Ebola virus, the major variants of '
'SARS-CoV-2 and monkeypox virus. The comparison of docking scores obtained with natural '
'biomolecules was performed with specific neutralizing antibodies (positive controls for '
'ClusPro) and antiviral drugs (negative controls for Autodock Vina). Glycocin F was the only '
'natural biomolecule tested to show high binding energies to all viral surface proteins and '
'the corresponding viral cell receptors. Lactococcin G and plantaricin ASM1 also achieved high '
'docking scores with all viral surface proteins and most corresponding cell surface receptors. '
'Silvestrol, andrographolide, hapalindole H, and lyngbyabellin A showed variable docking '
'scores depending on the viral surface proteins and cell receptors tested. Three glycocin F '
'mutants with amino acid modifications showed an increase in their docking energy to the spike '
'proteins of SARS-CoV-2 B.1.617.2 Indian variant, and of the SARS-CoV-2 P.1 Japan/Brazil '
'variant, and the dengue DENV envelope protein. All mutant AMPs indicated a frequent '
'occurrence of valine and proline amino acid rotamers. AMPs and glycocin F in particular are '
'the most promising biomolecules for the development of broad-spectrum antiviral treatments '
'targeting the attachment and entry of viruses into their target cell.</jats:p>',
'DOI': '10.3390/ijms231911131',
'type': 'journal-article',
'created': {'date-parts': [[2022, 9, 22]], 'date-time': '2022-09-22T09:33:14Z', 'timestamp': 1663839194000},
'page': '11131',
'source': 'Crossref',
'is-referenced-by-count': 5,
'title': 'Molecular Docking and In-Silico Analysis of Natural Biomolecules against Dengue, Ebola, Zika, '
'SARS-CoV-2 Variants of Concern and Monkeypox Virus',
'prefix': '10.3390',
'volume': '23',
'author': [ { 'ORCID': 'http://orcid.org/0000-0002-3068-4349',
'authenticated-orcid': False,
'given': 'Mackingsley Kushan',
'family': 'Dassanayake',
'sequence': 'first',
'affiliation': []},
{'given': 'Teng-Jin', 'family': 'Khoo', 'sequence': 'additional', 'affiliation': []},
{ 'ORCID': 'http://orcid.org/0000-0003-0877-1515',
'authenticated-orcid': False,
'given': 'Chien Hwa',
'family': 'Chong',
'sequence': 'additional',
'affiliation': []},
{ 'ORCID': 'http://orcid.org/0000-0001-5450-2733',
'authenticated-orcid': False,
'given': 'Patrick',
'family': 'Di Martino',
'sequence': 'additional',
'affiliation': []}],
'member': '1968',
'published-online': {'date-parts': [[2022, 9, 22]]},
'reference': [ {'key': 'ref1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41893-019-0293-3'},
{'key': 'ref2', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmicb.2020.631736'},
{'key': 'ref3', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41564-018-0296-2'},
{'key': 'ref4', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.vaccine.2017.04.082'},
{'key': 'ref5', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.tmaid.2022.102364'},
{'key': 'ref6', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/ijms18081650'},
{'key': 'ref7', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v4091438'},
{'key': 'ref8', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/s40794-020-00129-9'},
{'key': 'ref9', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/B978-0-12-375156-0.00013-8'},
{'key': 'ref10', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0248742'},
{'key': 'ref11', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/s12992-021-00677-5'},
{'key': 'ref12', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/14787210.2019.1635009'},
{'key': 'ref13', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.01682-20'},
{'key': 'ref14', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/adhm.202001433'},
{'key': 'ref15', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v13040667'},
{'key': 'ref16', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.drup.2020.100721'},
{'key': 'ref17', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmicb.2013.00321'},
{'key': 'ref18', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/978-981-15-1761-7_12'},
{'key': 'ref19', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.imu.2021.100515'},
{'key': 'ref20', 'series-title': 'Infectious Diseases', 'author': 'Murad', 'year': '2021'},
{'key': 'ref21', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/pathogens5040066'},
{'key': 'ref22', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41577-020-00480-0'},
{'key': 'ref23', 'doi-asserted-by': 'publisher', 'DOI': '10.53022/oarjbp.2021.2.1.0037'},
{'key': 'ref24', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/prot.24403'},
{'key': 'ref25', 'unstructured': 'Incentive PyMOL Software Package\nhttps://pymol.org/2/'},
{'key': 'ref26', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s13205-020-02578-7'},
{'key': 'ref27', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/molecules191016861'},
{'key': 'ref28', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nprot.2016.169'},
{'key': 'ref29', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.metop.2021.100096'},
{'key': 'ref30', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fimmu.2020.599568'},
{'key': 'ref31', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pntd.0010220'},
{'key': 'ref32', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/scitranslmed.aal3653'},
{'key': 'ref33', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/CMR.00028-20'},
{'key': 'ref34', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmicb.2015.00517'},
{'key': 'ref35', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acs.jmedchem.0c00606'},
{ 'key': 'ref36',
'doi-asserted-by': 'publisher',
'DOI': '10.1146/annurev-immunol-042617-053142'},
{'key': 'ref37', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v13050828'},
{'key': 'ref38', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2016.11.011'},
{'key': 'ref39', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v10040149'},
{'key': 'ref40', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2018.07.010'},
{'key': 'ref41', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2017.12.010'},
{'key': 'ref42', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fphar.2021.652335'},
{'key': 'ref43', 'doi-asserted-by': 'publisher', 'DOI': '10.2174/1389201022666210322124348'},
{'key': 'ref44', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v10110592'},
{'key': 'ref45', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2021.105012'},
{'key': 'ref46', 'doi-asserted-by': 'publisher', 'DOI': '10.1177/1934578X211016610'},
{'key': 'ref47', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2016.12.014'},
{'key': 'ref48', 'doi-asserted-by': 'publisher', 'DOI': '10.4308/hjb.22.2.67'},
{'key': 'ref49', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/srep14179'},
{'key': 'ref50', 'doi-asserted-by': 'publisher', 'DOI': '10.2174/157340611795564268'},
{'key': 'ref51', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/molecules25215037'},
{'key': 'ref52', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acs.jnatprod.0c01324'},
{'key': 'ref53', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/07391102.2020.1760136'},
{ 'key': 'ref54',
'doi-asserted-by': 'publisher',
'DOI': '10.1111/j.1541-4337.2003.tb00016.x'},
{'key': 'ref55', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/s12917-019-2067-6'},
{'key': 'ref56', 'doi-asserted-by': 'publisher', 'DOI': '10.7324/JAPS.2013.31209'},
{'key': 'ref57', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/s43088-021-00138-3'},
{'key': 'ref58', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ddtec.2006.09.004'},
{'key': 'ref59', 'doi-asserted-by': 'publisher', 'DOI': '10.1124/pr.112.007336'},
{'key': 'ref60', 'doi-asserted-by': 'publisher', 'DOI': '10.21037/apm-21-3373'},
{'key': 'ref61', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.clnesp.2021.10.016'},
{'key': 'ref62', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.00809-18'},
{'key': 'ref63', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/ja.2011.21'},
{'key': 'ref64', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/md19020094'},
{'key': 'ref65', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/jcc.21334'},
{'key': 'ref66', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.str.2020.06.006'},
{'key': 'ref67', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/prot.25219'},
{'key': 'ref68', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s40203-021-00103-z'},
{'key': 'ref69', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkh354'},
{'key': 'ref70', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41598-018-23982-3'}],
'container-title': 'International Journal of Molecular Sciences',
'original-title': [],
'language': 'en',
'link': [ { 'URL': 'https://www.mdpi.com/1422-0067/23/19/11131/pdf',
'content-type': 'unspecified',
'content-version': 'vor',
'intended-application': 'similarity-checking'}],
'deposited': { 'date-parts': [[2022, 9, 26]],
'date-time': '2022-09-26T04:15:57Z',
'timestamp': 1664165757000},
'score': 1,
'resource': {'primary': {'URL': 'https://www.mdpi.com/1422-0067/23/19/11131'}},
'subtitle': [],
'short-title': [],
'issued': {'date-parts': [[2022, 9, 22]]},
'references-count': 70,
'journal-issue': {'issue': '19', 'published-online': {'date-parts': [[2022, 10]]}},
'alternative-id': ['ijms231911131'],
'URL': 'http://dx.doi.org/10.3390/ijms231911131',
'relation': {},
'ISSN': ['1422-0067'],
'subject': [ 'Inorganic Chemistry', 'Organic Chemistry', 'Physical and Theoretical Chemistry',
'Computer Science Applications', 'Spectroscopy', 'Molecular Biology', 'General Medicine',
'Catalysis'],
'container-title-short': 'IJMS',
'published': {'date-parts': [[2022, 9, 22]]}}