Antiviral efficacy against and replicative fitness of an XBB.1.9.1 clinical isolate
et al., iScience, doi:10.1016/j.isci.2023.108147, Nov 2023
In vitro and animal study showing that the SARS-CoV-2 omicron subvariant XBB.1.9.1 has similar antigenicity, antiviral susceptibility, and replicative ability compared to XBB.1.5. Casirivimab, imdevimab, tixagevimab, cilgavimab, sotrovimab, and bebtelovimab were not effective against XBB, XBB.1.5, and XBB.1.9.1. XBB.1.9.1 and XBB.1.5 remained susceptible to remdesivir, molnupiravir, nirmatrelvir, and ensitrelvir. In hamsters infected with a mixture of the two variants, XBB.1.9.1 and XBB.1.5 showed similar replicative fitness in nasal turbinates and lungs.
Potential risks of molnupiravir include the creation of dangerous variants, and mutagenicity, carcinogenicity, teratogenicity, and embryotoxicity1-15. Multiple analyses have identified variants potentially created by molnupiravir16-20.
Study covers casirivimab/imdevimab, tixagevimab/cilgavimab, sotrovimab, bebtelovimab, ensitrelvir, paxlovid, molnupiravir, and remdesivir.
1.
Swanstrom et al., Lethal mutagenesis as an antiviral strategy, Science, doi:10.1126/science.abn0048.
2.
Hadj Hassine et al., Lethal Mutagenesis of RNA Viruses and Approved Drugs with Antiviral Mutagenic Activity, Viruses, doi:10.3390/v14040841.
3.
Shum, C., An investigational study into the drug-associated mutational signature in SARS-CoV-2 viruses, The University of Hong Kong, PhD Thesis, hub.hku.hk/handle/10722/344396.
4.
Waters et al., Human genetic risk of treatment with antiviral nucleoside analog drugs that induce lethal mutagenesis: the special case of molnupiravir, Environmental and Molecular Mutagenesis, doi:10.1002/em.22471.
5.
Huntsman, M., An assessment of the reproductive toxicity of the anti-COVID-19 drug molnupiravir using stem cell-based embryo models, Master's Thesis, scholarspace.manoa.hawaii.edu/items/cd11342c-b4dc-44c0-8b44-ce6e3369c40b.
6.
Huntsman (B) et al., Detection of developmental toxicity of the anti-COVID-19 drug molnupiravir using gastruloid-based in vitro assays, Toxicological Sciences, doi:10.1093/toxsci/kfaf093.
7.
Zibat et al., N4-hydroxycytidine, the active compound of Molnupiravir, promotes SARS-CoV-2 mutagenesis and escape from a neutralizing nanobody, iScience, doi:10.1016/j.isci.2023.107786.
8.
Shiraki et al., Convenient screening of the reproductive toxicity of favipiravir and antiviral drugs in Caenorhabditis elegans, Heliyon, doi:10.1016/j.heliyon.2024.e35331.
9.
Gruber et al., Molnupiravir increases SARS‐CoV‐2 genome diversity and complexity: A case‐control cohort study, Journal of Medical Virology, doi:10.1002/jmv.29642.
10.
Marikawa et al., An active metabolite of the anti-COVID-19 drug molnupiravir impairs mouse preimplantation embryos at clinically relevant concentrations, Reproductive Toxicology, doi:10.1016/j.reprotox.2023.108475.
11.
Rahman, M., Elucidation of the DNA repair mechanisms involved in the repair of DNA damage caused by the Arabinosides and Anti-COVID-19 drugs, tokyo-metro-u.repo.nii.ac.jp/records/2000972.
12.
Zhou et al., β-D-N4-hydroxycytidine Inhibits SARS-CoV-2 Through Lethal Mutagenesis But Is Also Mutagenic To Mammalian Cells, The Journal of Infectious Diseases, doi:10.1093/infdis/jiab247.
13.
Chamod et al., Molnupiravir Metabolite--N4-hydroxycytidine Causes Cytotoxicity and DNA Damage in Mammalian Cells in vitro: N4-hydroxycytidine Induced Cytotoxicity DNA Damage, Asian Medical Journal and Alternative Medicine, 23:3, asianmedjam.com/index.php/amjam/article/view/1448.
14.
Standing et al., Randomized controlled trial of molnupiravir SARS-CoV-2 viral and antibody response in at-risk adult outpatients, Nature Communications, doi:10.1038/s41467-024-45641-0.
15.
Mori et al., Reactive oxygen species-mediated cytotoxic and DNA-damaging mechanism of N4-hydroxycytidine, a metabolite of the COVID-19 therapeutic drug molnupiravir, Free Radical Research, doi:10.1080/10715762.2025.2469738.
16.
Focosi et al., The fitness of molnupiravir-signed SARS-CoV-2 variants: imputation analysis based on prescription counts and GISAID analyses by country, Intervirology, doi:10.1159/000540282.
17.
Sanderson et al., A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes, Nature, doi:10.1038/s41586-023-06649-6.
18.
Fountain-Jones et al., Effect of molnupiravir on SARS-CoV-2 evolution in immunocompromised patients: a retrospective observational study, The Lancet Microbe, doi:10.1016/S2666-5247(23)00393-2.
Uraki et al., 30 Nov 2023, peer-reviewed, 20 authors.
Contact: yoshihiro.kawaoka@wisc.edu (corresponding author), yoshihiro.kawaoka@wisc.edu (corresponding author).
In vitro studies are an important part of preclinical research, however results may be very different in vivo.
Antiviral efficacy against and replicative fitness of an XBB.1.9.1 clinical isolate
iScience, doi:10.1016/j.isci.2023.108147
Highlights The antigenicity of XBB.1.9.1 is similar to that of XBB.1.5 XBB.1.9.1 remains susceptible to antiviral drugs The replicative ability of XBB.1.9.1 is comparable to that of XBB.1.5
SUPPLEMENTAL INFORMATION Supplemental information can be found online at https://doi.org/10.1016/j.isci.2023.108147 .
AUTHOR CONTRIBUTIONS R.U.: conceptualization, formal analysis, validation, visualization, and writing of the first draft. M. Ito, M. Kiso: data curation, formal analysis, and methodology. S. Yamayoshi: conceptualization, data curation, formal analysis, and methodology. K.I-H.: resources and validation. Y.S-T., M.
Data and code availability All data used in this paper are available in the main text, in the supplemental information, or the sources have been clearly stated. This paper does not report original code. Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS Animal studies were carried out in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocols were approved by the Animal Experiment Committee of the Institute of Medical Science, the University of Tokyo (approval number PA19-75). Virus inoculations were performed under isoflurane, and all efforts were made to minimize animal suffering. To collect and use clinical specimens, the research protocol was approved by the Research Ethics Review Committee of the Institute of Medical Science of the University of Tokyo (approval numbers: 2019-71-0201 and 2020-740226). After informed consent was..
References
Chen, Li, Peng, Tian, Ji et al., Neutralization against XBB.1 and XBB.1.5 after omicron subvariants breakthrough infection or reinfection, Lancet Reg. Health. West. Pac, doi:10.1016/j.lanwpc.2023.100759
Imai, Halfmann, Yamayoshi, Iwatsuki-Horimoto, Chiba et al., Characterization of a new SARS-CoV-2 variant that emerged in Brazil, Proc. Natl. Acad. Sci, doi:10.1073/pnas.2106535118
Imai, Ito, Kiso, Yamayoshi, Uraki et al., Efficacy of Antiviral Agents against Omicron Subvariants BQ.1.1 and XBB, N. Engl. J. Med, doi:10.1056/NEJMc2214302
Imai, None
Imai, were propagated in the presence of 1 mg/ml geneticin (G418; Invivogen) and 5 mg/ml plasmocin prophylactic (Invivogen) in DMEM containing 10% FCS. Vero E6-TMPRSS2-T2A-ACE2 and VeroE6/TMPRSS2 cells were maintained at 37 C with 5% CO 2 . Chinese hamster ovary (CHO) cells were maintained in DMEM containing 10% FCS and antibiotics at 37 C with 5% CO 2 . Expi293F cells
Matsuyama, Nao, Shirato, Kawase, Saito et al., Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells, Proc. Natl. Acad. Sci, doi:10.1073/pnas.2002589117
Matsuyama, None
Matsuyama, None
Matsuyama, None
Muramoto, Takahashi, Halfmann, Gotoh, Noda et al., Replicative capacity of SARS-CoV-2 omicron variants BA.5 and BQ.1.1 at elevated temperatures, Lancet. Microbe, doi:10.1016/S2666-5247(23)00100-3
Qu, Faraone, Evans, Zheng, Carlin et al., Enhanced evasion of neutralizing antibody response by Omicron XBB.1.5, CH.1.1, and CA.3.1 variants, Cell Rep, doi:10.1016/j.celrep.2023.112443
Takashita, Kinoshita, Yamayoshi, Sakai-Tagawa, Fujisaki et al., Efficacy of Antibodies and Antiviral Drugs against Covid-19 Omicron Variant, N. Engl. J. Med, doi:10.1056/NEJMc2119407
Takashita, Morita, Ogawa, Nakamura, Fujisaki et al., Susceptibility of Influenza Viruses to the Novel Cap-Dependent Endonuclease Inhibitor Baloxavir Marboxil, Front. Microbiol, doi:10.3389/fmicb.2018.03026
Takashita, Yamayoshi, Simon, Van Bakel, Sordillo et al., Efficacy of Antibodies and Antiviral Drugs against Omicron BA.2.12.1, BA.4, BA.5 Subvariants. N. Engl. J. Med, doi:10.1056/NEJMc2207519
Uraki, Ito, Kiso, Yamayoshi, Iwatsuki-Horimoto et al., Antiviral and bivalent vaccine efficacy against an omicron XBB.1.5 isolate, Lancet Infect. Dis, doi:10.1016/S1473-3099(23)00070-1
Uraki, Ito, Kiso, Yamayoshi, Iwatsuki-Horimoto et al., Efficacy of antivirals and mRNA vaccination against an XBF clinical isolate, Lancet Reg. Health. West. Pac, doi:10.1016/j.lanwpc.2023.100777
Uriu, Ito, Zahradnik, Fujita, Kosugi et al., Enhanced transmissibility, infectivity, and immune resistance of the SARS-CoV-2 omicron XBB.1.5 variant, Lancet Infect. Dis, doi:10.1016/S1473-3099(23)00051-8
Vanderheiden, Edara, Floyd, Kauffman, Mantus et al., Development of a Rapid Focus Reduction Neutralization Test Assay for Measuring SARS-CoV-2 Neutralizing Antibodies, Curr. Protoc. Immunol, doi:10.1002/cpim.116
Yue, Song, Wang, Jian, Chen et al., ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5, Lancet Infect. Dis, doi:10.1016/S1473-3099(23)00010-5
DOI record:
{
"DOI": "10.1016/j.isci.2023.108147",
"ISSN": [
"2589-0042"
],
"URL": "http://dx.doi.org/10.1016/j.isci.2023.108147",
"alternative-id": [
"S2589004223022241"
],
"article-number": "108147",
"assertion": [
{
"label": "This article is maintained by",
"name": "publisher",
"value": "Elsevier"
},
{
"label": "Article Title",
"name": "articletitle",
"value": "Antiviral efficacy against and replicative fitness of an XBB.1.9.1 clinical isolate"
},
{
"label": "Journal Title",
"name": "journaltitle",
"value": "iScience"
},
{
"label": "CrossRef DOI link to publisher maintained version",
"name": "articlelink",
"value": "https://doi.org/10.1016/j.isci.2023.108147"
},
{
"label": "Content Type",
"name": "content_type",
"value": "article"
},
{
"label": "Copyright",
"name": "copyright",
"value": "© 2023 The Author(s)."
}
],
"author": [
{
"affiliation": [],
"family": "Uraki",
"given": "Ryuta",
"sequence": "first"
},
{
"affiliation": [],
"family": "Ito",
"given": "Mutsumi",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Kiso",
"given": "Maki",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Yamayoshi",
"given": "Seiya",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Iwatsuki-Horimoto",
"given": "Kiyoko",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Sakai-Tagawa",
"given": "Yuko",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Imai",
"given": "Masaki",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Koga",
"given": "Michiko",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Yamamoto",
"given": "Shinya",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Adachi",
"given": "Eisuke",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Saito",
"given": "Makoto",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Tsutsumi",
"given": "Takeya",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Otani",
"given": "Amato",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Fukushi",
"given": "Shuetsu",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Watanabe",
"given": "Shinji",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Suzuki",
"given": "Tadaki",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Kikuchi",
"given": "Tetsuhiro",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Yotsuyanagi",
"given": "Hiroshi",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Maeda",
"given": "Ken",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0001-5061-8296",
"affiliation": [],
"authenticated-orcid": false,
"family": "Kawaoka",
"given": "Yoshihiro",
"sequence": "additional"
}
],
"container-title": "iScience",
"container-title-short": "iScience",
"content-domain": {
"crossmark-restriction": true,
"domain": [
"cell.com",
"elsevier.com",
"sciencedirect.com"
]
},
"created": {
"date-parts": [
[
2023,
10,
4
]
],
"date-time": "2023-10-04T08:42:34Z",
"timestamp": 1696408954000
},
"deposited": {
"date-parts": [
[
2024,
8,
5
]
],
"date-time": "2024-08-05T06:56:12Z",
"timestamp": 1722840972000
},
"indexed": {
"date-parts": [
[
2024,
10,
6
]
],
"date-time": "2024-10-06T01:16:09Z",
"timestamp": 1728177369351
},
"is-referenced-by-count": 5,
"issue": "11",
"issued": {
"date-parts": [
[
2023,
11
]
]
},
"journal-issue": {
"issue": "11",
"published-print": {
"date-parts": [
[
2023,
11
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://www.elsevier.com/tdm/userlicense/1.0/",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2023,
11,
1
]
],
"date-time": "2023-11-01T00:00:00Z",
"timestamp": 1698796800000
}
},
{
"URL": "https://www.elsevier.com/legal/tdmrep-license",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2023,
11,
1
]
],
"date-time": "2023-11-01T00:00:00Z",
"timestamp": 1698796800000
}
},
{
"URL": "http://creativecommons.org/licenses/by-nc-nd/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2023,
10,
2
]
],
"date-time": "2023-10-02T00:00:00Z",
"timestamp": 1696204800000
}
}
],
"link": [
{
"URL": "https://api.elsevier.com/content/article/PII:S2589004223022241?httpAccept=text/xml",
"content-type": "text/xml",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://api.elsevier.com/content/article/PII:S2589004223022241?httpAccept=text/plain",
"content-type": "text/plain",
"content-version": "vor",
"intended-application": "text-mining"
}
],
"member": "78",
"original-title": [],
"page": "108147",
"prefix": "10.1016",
"published": {
"date-parts": [
[
2023,
11
]
]
},
"published-print": {
"date-parts": [
[
2023,
11
]
]
},
"publisher": "Elsevier BV",
"reference": [
{
"article-title": "Neutralization against XBB.1 and XBB.1.5 after omicron subvariants breakthrough infection or reinfection",
"author": "Chen",
"first-page": "100759",
"journal-title": "Lancet Reg. Health. West. Pac.",
"key": "10.1016/j.isci.2023.108147_bib1",
"volume": "33",
"year": "2023"
},
{
"DOI": "10.1016/j.celrep.2023.112443",
"article-title": "Enhanced evasion of neutralizing antibody response by Omicron XBB.1.5, CH.1.1, and CA.3.1 variants",
"author": "Qu",
"doi-asserted-by": "crossref",
"first-page": "112443",
"journal-title": "Cell Rep.",
"key": "10.1016/j.isci.2023.108147_bib2",
"volume": "42",
"year": "2023"
},
{
"DOI": "10.1016/S1473-3099(23)00070-1",
"article-title": "Antiviral and bivalent vaccine efficacy against an omicron XBB.1.5 isolate",
"author": "Uraki",
"doi-asserted-by": "crossref",
"first-page": "402",
"journal-title": "Lancet Infect. Dis.",
"key": "10.1016/j.isci.2023.108147_bib3",
"volume": "23",
"year": "2023"
},
{
"DOI": "10.1016/S1473-3099(23)00051-8",
"article-title": "Enhanced transmissibility, infectivity, and immune resistance of the SARS-CoV-2 omicron XBB.1.5 variant",
"author": "Uriu",
"doi-asserted-by": "crossref",
"first-page": "280",
"journal-title": "Lancet Infect. Dis.",
"key": "10.1016/j.isci.2023.108147_bib4",
"volume": "23",
"year": "2023"
},
{
"DOI": "10.1016/S1473-3099(23)00010-5",
"article-title": "ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5",
"author": "Yue",
"doi-asserted-by": "crossref",
"first-page": "278",
"journal-title": "Lancet Infect. Dis.",
"key": "10.1016/j.isci.2023.108147_bib5",
"volume": "23",
"year": "2023"
},
{
"DOI": "10.1016/S2666-5247(23)00100-3",
"article-title": "Replicative capacity of SARS-CoV-2 omicron variants BA.5 and BQ.1.1 at elevated temperatures",
"author": "Muramoto",
"doi-asserted-by": "crossref",
"first-page": "e486",
"journal-title": "Lancet. Microbe",
"key": "10.1016/j.isci.2023.108147_bib6",
"volume": "4",
"year": "2023"
},
{
"DOI": "10.1056/NEJMc2119407",
"article-title": "Efficacy of Antibodies and Antiviral Drugs against Covid-19 Omicron Variant",
"author": "Takashita",
"doi-asserted-by": "crossref",
"first-page": "995",
"journal-title": "N. Engl. J. Med.",
"key": "10.1016/j.isci.2023.108147_bib7",
"volume": "386",
"year": "2022"
},
{
"DOI": "10.1056/NEJMc2207519",
"article-title": "Efficacy of Antibodies and Antiviral Drugs against Omicron BA.2.12.1, BA.4, and BA.5 Subvariants",
"author": "Takashita",
"doi-asserted-by": "crossref",
"first-page": "468",
"journal-title": "N. Engl. J. Med.",
"key": "10.1016/j.isci.2023.108147_bib8",
"volume": "387",
"year": "2022"
},
{
"DOI": "10.1056/NEJMc2214302",
"article-title": "Efficacy of Antiviral Agents against Omicron Subvariants BQ.1.1 and XBB",
"author": "Imai",
"doi-asserted-by": "crossref",
"first-page": "89",
"journal-title": "N. Engl. J. Med.",
"key": "10.1016/j.isci.2023.108147_bib9",
"volume": "388",
"year": "2023"
},
{
"article-title": "Efficacy of antivirals and mRNA vaccination against an XBF clinical isolate",
"author": "Uraki",
"first-page": "100777",
"journal-title": "Lancet Reg. Health. West. Pac.",
"key": "10.1016/j.isci.2023.108147_bib10",
"volume": "34",
"year": "2023"
},
{
"DOI": "10.1073/pnas.2002589117",
"article-title": "Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells",
"author": "Matsuyama",
"doi-asserted-by": "crossref",
"first-page": "7001",
"journal-title": "Proc. Natl. Acad. Sci. USA",
"key": "10.1016/j.isci.2023.108147_bib11",
"volume": "117",
"year": "2020"
},
{
"DOI": "10.1073/pnas.2106535118",
"article-title": "Characterization of a new SARS-CoV-2 variant that emerged in Brazil",
"author": "Imai",
"doi-asserted-by": "crossref",
"journal-title": "Proc. Natl. Acad. Sci. USA",
"key": "10.1016/j.isci.2023.108147_bib12",
"volume": "118",
"year": "2021"
},
{
"DOI": "10.1002/cpim.116",
"article-title": "Development of a Rapid Focus Reduction Neutralization Test Assay for Measuring SARS-CoV-2 Neutralizing Antibodies",
"author": "Vanderheiden",
"doi-asserted-by": "crossref",
"first-page": "e116",
"journal-title": "Curr. Protoc. Immunol.",
"key": "10.1016/j.isci.2023.108147_bib13",
"volume": "131",
"year": "2020"
},
{
"DOI": "10.3389/fmicb.2018.03026",
"article-title": "Susceptibility of Influenza Viruses to the Novel Cap-Dependent Endonuclease Inhibitor Baloxavir Marboxil",
"author": "Takashita",
"doi-asserted-by": "crossref",
"first-page": "3026",
"journal-title": "Front. Microbiol.",
"key": "10.1016/j.isci.2023.108147_bib14",
"volume": "9",
"year": "2018"
}
],
"reference-count": 14,
"references-count": 14,
"relation": {},
"resource": {
"primary": {
"URL": "https://linkinghub.elsevier.com/retrieve/pii/S2589004223022241"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Antiviral efficacy against and replicative fitness of an XBB.1.9.1 clinical isolate",
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1016/elsevier_cm_policy",
"volume": "26"
}
uraki