Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchFavipiravirFavipiravir (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

SARS-CoV-2 Resistance to Small Molecule Inhibitors

Lopez et al., Current Clinical Microbiology Reports, doi:10.1007/s40588-024-00229-6
Jun 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Review of resistance mutations in SARS-CoV-2 3CLpro and nsp12 that could reduce efficacy of antiviral therapies including nirmatrelvir, ensitrelvir, remdesivir, and favipiravir. Authors identify 39 single mutations across 17 critical residues and 19 combined mutants in 3CLpro that confer resistance to nirmatrelvir and/or ensitrelvir, with mutations T21I, L50F, S144A, E166A/V, L167F, ∆P168, A173V, P252L, and T304I showing notably high levels of resistance. For nsp12, mutations E802A/D, V791I, and C799F may reduce remdesivir susceptibility, while S861A/G/P mutations can affect its chain termination mechanism. Computational studies predict mutations at H439, C622, D623, and T680 could potentially confer favipiravir resistance.
Potential risks of favipiravir include the creation of dangerous variants, and mutagenicity, carcinogenicity, teratogenicity, and embryotoxicity1-5.
Reviews covering favipiravir for COVID-19 include1-3,6,7.
Review covers remdesivir, ensitrelvir, paxlovid, and favipiravir.
Lopez et al., 24 Jun 2024, peer-reviewed, 4 authors. Contact: sislam@desu.edu.
This PaperFavipiravirAll
SARS-CoV-2 Resistance to Small Molecule Inhibitors
Uxua Modrego Lopez, Md. Mehedi Hasan, Brandon Havranek, Shahidul M Islam
Current Clinical Microbiology Reports, doi:10.1007/s40588-024-00229-6
Purpose of the Review SARS-CoV-2 undergoes genetic mutations like many other viruses. Some mutations lead to the emergence of new Variants of Concern (VOCs), affecting transmissibility, illness severity, and the effectiveness of antiviral drugs. Continuous monitoring and research are crucial to comprehend variant behavior and develop effective response strategies, including identifying mutations that may affect current drug therapies. Recent Findings Antiviral therapies such as Nirmatrelvir and Ensitrelvir focus on inhibiting 3CLpro, whereas Remdesivir, Favipiravir, and Molnupiravir target nsp12, thereby reducing the viral load. However, the emergence of resistant mutations in 3CLpro and nsp12 could impact the efficiency of these small molecule drug therapeutics. Summary This manuscript summarizes mutations in 3CLpro and nsp12, which could potentially reduce the efficacy of drugs. Additionally, it encapsulates recent advancements in small molecule antivirals targeting SARS-CoV-2 viral proteins, including their potential for developing resistance against emerging variants.
Author contributions Uxua Modrego Lopez wrote the main manuscript text, Md. Mehedi Hasan edited the main manuscript text, Uxua Modrego Lopez prepared Tables 1 and 2 , Md. Mehedi Hasan prepared Figure 1 , Shahidul M. Islam wrote, edited and supervised the work, All authors reviewed the manuscript. Funding Shahidul is supported by the National Institutes of Health through RCMI (U54MD015959), COBRE (P20GM145765) and DE-INBRE (P20GM103446), and the National Science Foundation through PREM (2122158). We express our gratitude to Zymir Robinson for his initial assistance and helpful suggestions. Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
Agostini, Andres, Sims, Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease, mBio, doi:10.1128/mBio.00221-18
Aleem, Samad, Slenker, Emerging Variants of SARS-CoV-2 and Novel Therapeutics Against Coronavirus (COVID-19) -StatPearls -NCBI Bookshelf
Ashour, Elkhatib, Rahman, Elshabrawy, Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks, Pathogens
Aykul, Martinez-Hackert, Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis, Anal Biochem, doi:10.1016/j.ab.2016.06.025
Baranovich, Wong, Armstrong, Marjuki, Webby et al., T-705 (Favipuravir) Induces Lethal Mutagenesis in Influenza A H1N1 Viruses In Vitro, J Virol, doi:10.1128/jvi.02346-12
Beigel, Tomashek, Dodd, Remdesivir for the Treatment of Covid-19 -Final Report, N Eng J Med
Butler, Hobbs, Gbinigie, Mulnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANO-RAMIC): an open-label, platform-adaptive randomised controlled trial, The Lancet, doi:10.1016/S0140-6736(22)02597-1
Cao, Goreshnik, Coventry, De novo design of picomolar SARS-CoV-2 miniprotein inhibitors, Science, doi:10.1126/science.abd9909
Chatterjee, Ponnapati, Kramme, Plesa, Church et al., Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions, Commun Biol
Curreli, Victor, Ahmed, Drelich, Tong et al., Stapled Peptides Based on Human Angiotensin-Converting Enzyme 2 (ACE2) Potently Inhibit SARS-CoV-2 Infection In Vitro, mBio
Delang, Guerrero, Tas, Mutations in the chikungunya virus non-structural proteins cause resistance to Favipuravir (T-705), a broad-spectrum antiviral, J Antimicrob Chemother, doi:10.1093/jac/dku209
Fischer, Eron, Holman, A phase 2a clinical trial of Mulnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious virus, Sci Transl Med, doi:10.1126/scitranslmed.abl7430
Furuta, Gowen, Takahashi, Shiraki, Smee et al., Favipuravir (T-705), a novel viral RNA polymerase inhibitor, Antiviral Res, doi:10.1016/j.antiviral.2013.09.015
Gandhi, Klein, Robertson, De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: a case report, Nat Commun, doi:10.1038/s41467-022-29104-y
Goldhill, Velthuis, Fletcher, Langat, Zambon et al., The mechanism of resistance to Favipuravir in influenza, Proc Natl Acad Sci, doi:10.1073/pnas.1811345115
Gordon, Tchesnokov, Schinazi, Götte, Mulnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template, J Biol Chem, doi:10.1016/j.jbc.2021.100770
Gordon, Tchesnokov, Woolner, Perry, Feng et al., Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency, J Biol Chem
Gordon, Tchesnokov, Woolner, Perry, Feng et al., Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency, J Biol Chem, doi:10.1074/jbc.RA120.013679
Gottlieb, Vaca, Paredes, Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients, N Engl J Med
Grobler, Strizki, Murgolo, Mulnupiravir Maintains Antiviral Activity Against SARS-CoV-2 Variants In Vitro and in Early Clinical Studies, Open Forum Infect Dis, doi:10.1093/ofid/ofab466.742
Hammond, Leister-Tebbe, Gardner, Oral Nirmaltrelvir for High-Risk, Nonhospitalized Adults with Covid-19, N Engl J Med
Han, Yang, Hu, Covalently Engineered Protein Minibinders with Enhanced Neutralization Efficacy against Escaping SARS-CoV-2 Variants, J Am Chem Soc
Havranek, Demissie, Lee, Lan, Zhang et al., Discovery of Nirmaltrelvir Resistance Mutations in SARS-CoV-2 3CLpro: A Computational-Experimental Approach, J Chem Inf Model, doi:10.1021/acs.jcim.3c01269
Havranek, Lindsey, Higuchi, Itoh, Suzuki et al., A computationally designed ACE2 decoy has broad efficacy against SARS-CoV-2 omicron variants and related viruses in vitro and in vivo, Commun Biol, doi:10.1038/s42003-023-04860-9
Hedskog, Rodriguez, Roychoudhury, Viral Resistance Analyses From the Remdesivir Phase 3 Adaptive COVID-19 Treatment Trial-1 (ACTT-1), J Infect Dis, doi:10.1093/infdis/jiad270
Hegyi, Ziebuhr, Conservation of substrate specificities among coronavirus main proteases, Journal of General Virology
Heyer, Günther, Robitaille, Remdesivir-induced emergence of SARS-CoV2 variants in patients with prolonged infection, Cell Rep Med
Hu, Lewandowski, Tan, Naturally Occurring Mutations of SARS-CoV-2 Main Protease Confer Drug Resistance to Nirmaltrelvir, ACS Cent Sci, doi:10.1021/acscentsci.3c00538
Hu, Xiong, Zhu, Zhang, Zhang et al., The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19, MedComm (Beijing), doi:10.1002/MCO2.151
Iketani, Mohri, Culbertson, Multiple pathways for SARS-CoV-2 resistance to Nirmaltrelvir, Nature, doi:10.1038/s41586-022-05514-2
Jiang, Yin, Xu, RNA-dependent RNA polymerase: Structure, mechanism, and drug discovery for COVID-19, Biochem Biophys Res Commun, doi:10.1016/j.bbrc.2020.08.116
Jin, Du, Xu, Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors, Nature
Jin, Smith, Rajwanshi, Kim, Deval, The Ambiguous Base-Pairing and High Substrate Efficiency of T-705 (Favipuravir) Ribofuranosyl 5′-Triphosphate towards Influenza A Virus Polymerase, PLoS One, doi:10.1371/journal.pone.0068347
Jin, Wang, Duan, Yang, The main protease and RNAdependent RNA polymerase are two prime targets for SARS-CoV-2, Biochem Biophys Res Commun
Jochmans, Liu, Donckers, The Substitutions L50F, E166A, and L167F in SARS-CoV-2 3CLpro Are Selected by a Protease Inhibitor In Vitro and Confer Resistance To Nirmaltrelvir, mBio, doi:10.1128/mbio.02815-22
Joshi, Parkar, Ansari, Vora, Talwar et al., Role of Favipuravir in the treatment of COVID-19, Int J Infect Dis, doi:10.1016/j.ijid.2020.10.069
Kabinger, Stiller, Schmitzová, Dienemann, Kokic et al., Mechanism of Mulnupiravir-induced SARS-CoV-2 mutagenesis, Nat Struct Mol Biol
Karoyan, Vieillard, Gómez-Morales, Odile, Guihot et al., Human ACE2 peptidemimics block SARS-CoV-2 pulmonary cells infection, Commun Biol
Khare, Gurry, Freitas, Lucas, Schultz et al., s Role in Pandemic Response, doi:10.46234/ccdcw2021.255
Kiso, Yamayoshi, Iida, Furusawa, Hirata et al., In vitro and in vivo characterization of SARS-CoV-2 resistance to Entreselvir, Nat Commun, doi:10.1038/s41467-023-40018-1
Kokic, Hillen, Tegunov, Dienemann, Seitz et al., Mechanism of SARS-CoV-2 polymerase stalling by remdesivir, Nat Commun, doi:10.1038/s41467-020-20542-0
Kokic, Hillen, Tegunov, Mechanism of SARS-CoV-2 polymerase inhibition by remdesivir, bioRxiv
Li, Hilgenfeld, Whitley, Clercq, Therapeutic strategies for COVID-19: progress and lessons learned, Nat Rev Drug Discov
Lin, Zeng, Duan, Yang, Ma et al., Molecular mechanism of Entreselvir inhibiting SARS-CoV-2 main protease and its variants, Commun Biol, doi:10.1038/s42003-023-05071-y
Lou, Rao, The Life of SARS-CoV-2 Inside Cells: Replication-Transcription Complex Assembly and Function, Annu Rev Biochem
Marra, Jones, Astell, The Genome sequence of the SARS-associated coronavirus, Science
Martinot, Jary, Fafi-Kremer, Remdesivir failure with SARS-CoV-2 RNA-dependent RNA-polymerase mutation in a B-cell immunodeficient patient with protracted Covid-19, Clin Infect Dis An Off Publ Infect Dis Soc Am, doi:10.1093/CID/CIAA1474
Mccarthy, Rennick, Nambulli, Mccarthy, Bain et al., Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape, Science
Min, Sun, Antibodies and Vaccines Target RBD of SARS-CoV-2, Front Mol Biosci
Moghadasi, Biswas, Harki, Harris, Rapid resistance profiling of SARS-CoV-2 protease inhibitors, doi:10.1101/2023.02.25.530000
Moghadasi, Heilmann, Khalil, Transmissible SARS-CoV-2 variants with resistance to clinical protease inhibitors, Sci Adv, doi:10.1126/sciadv.ade8778
Mukae, Yotsuyanagi, Ohmagari, A Randomized Phase 2/3 Study of Entreselvir, a Novel Oral SARS-CoV-2 3C-Like Protease Inhibitor, in Japanese Patients with Mildto-Moderate COVID-19 or Asymptomatic SARS-CoV-2 Infection: Results of the Phase 2a Part, Antimicrob Agents Chemother, doi:10.1128/aac.00697-22
Naqvi, Mohammad, Fatima, Singh, Singh et al., Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach, Biochim Biophys Acta Mol Basis Dis, doi:10.1016/j.bbadis.2020.165878
Naydenova, Muir, Wu, Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of Favipuravir-RTP, Proc Natl Acad Sci, doi:10.1073/PNAS.2021946118
Naydenova, Muir, Wu, Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of Favipuravir-RTP, Proc Natl Acad Sci, doi:10.1073/pnas.2021946118
Owen, Allerton, Anderson, An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19, Science
Padhi, Dandapat, Saudagar, Uversky, Tripathi, Interface-based design of the Favipuravir-binding site in SARS-CoV-2 RNA-dependent RNA polymerase reveals mutations conferring resistance to chain termination, FEBS Lett, doi:10.1002/1873-3468.14182
Pillaiyar, Manickam, Namasivayam, Hayashi, Jung, An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy, J Med Chem
Pitts, Li, Perry, Remdesivir and GS-441524 Retain Antiviral Activity against Delta, Omicron, and Other Emergent SARS-CoV-2 Variants, Antimicrob Agents Chemother, doi:10.1128/aac.00222-22
Raskin, Genetics of COVID-19, J Pediatr
Saito, Tamura, Zahradnik, Virological characteristics of the SARS-CoV-2 Omicron BA.2.75 variant, Cell Host Microbe, doi:10.1016/j.chom.2022.10.003
Sangawa, Komeno, Nishikawa, Yoshida, Takahashi et al., Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase, Antimicrob Agents Chemother, doi:10.1128/AAC.00649-13
Sasi, Ullrich, Ton, Fry, Johansen-Leete et al., Predicting Antiviral Resistance Mutations in SARS-CoV-2 Main Protease with Computational and Experimental Screening, Biochemistry, doi:10.1021/acs.biochem.2c00489
Shannon, Selisko, Le, Rapid incorporation of Favipuravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis, Nat Commun, doi:10.1038/s41467-020-18463-z
Singh, Raju, Mrad, Reddell, Münch, The reciprocal EC50 value as a convenient measure of the potency of a compound in bioactivity-guided purification of natural products, Fitoterapia, doi:10.1016/j.fitote.2020.104598
Slanina, Madhugiri, Bylapudi, Schultheiß, Karl et al., Coronavirus replication-transcription complex: Vital and selective NMPylation of a conserved site in nsp9 by the NiRAN-RdRp subunit, Proc Natl Acad Sci, doi:10.1073/PNAS.2022310118/-/DCSUPPLEMENTAL
Standing, Buggiotti, Guerra-Assuncao, Randomized controlled trial of Mulnupiravir SARS-CoV-2 viral and antibody response in at-risk adult outpatients, Nat Commun, doi:10.1038/s41467-024-45641-0
Stevens, Pruijssers, Lee, Mutations in the SARS-CoV-2 RNA-dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms, Sci Transl Med, doi:10.1126/SCITRANSLMED.ABO0718
Tanaka, Nelson, Olson, An ACE2 Triple Decoy that neutralizes SARS-CoV-2 shows enhanced affinity for virus variants, Sci Rep
Tchesnokov, Gordon, Woolner, Kocinkova, Perry et al., Template-dependent inhibition of coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action, J Biol Chem, doi:10.1074/jbc.AC120.015720
Turab Naqvi, Mohammad, Fatima, Singh, Singh et al., Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach, doi:10.1016/j.bbadis.2020.165878
Unoh, Uehara, Nakahara, Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19, Cite This: J Med Chem
Van Dorp, Acman, Richard, Emergence of genomic diversity and recurrent mutations in SARS-CoV-2, Infect Genet Evol, doi:10.1016/j.meegid.2020.104351
Walker, Fan, Keown, Knight, Grimes et al., The SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme, Nucleic Acids Res
Wang, Li, Solanki, Li, Ma et al., Viral polymerase binding and broad-spectrum antiviral activity of Mulnupiravir against human seasonal coronaviruses, Virology, doi:10.1016/j.virol.2021.09.009
Wang, Li, Yuan, Gao, Lan et al., In vitro assessment of combinations of enterovirus inhibitors against enterovirus 71, Antimicrob Agents Chemother, doi:10.1128/AAC.01073-16
Wang, Wu, Wang, Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase, Cell, doi:10.1016/j.cell.2020.05.034
Wu, Zhao, Yu, A new coronavirus associated with human respiratory disease in China, Nature, doi:10.1038/s41586-020-2008-3
Yan, Ge, Zheng, Cryo-EM Structure of an Extended SARS-CoV-2 Replication and Transcription Complex Reveals an Intermediate State in Cap Synthesis, Cell
Yao, Cai, Li, Zhou, Qin et al., A high-affinity RBD-targeting nanobody improves fusion partner's potency against SARS-CoV-2, PLoS Pathog
Zhang, Lin, Kusov, α-Ketoamides as Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure-Based Design, Synthesis, and Activity Assessment, J Med Chem
Zhang, Lin, Sun, Curth, Drosten et al., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors, Science
Zhao, Fang, Zhang, Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332, Protein Cell, doi:10.1007/s13238-021-00883-2
Zhong, Zhao, Peng, Zou, Yang, Recent advances in small-molecular therapeutics for COVID-19, Precis Clin Med, doi:10.1093/PCMEDI/PBAC024
{ 'indexed': {'date-parts': [[2024, 8, 14]], 'date-time': '2024-08-14T00:23:22Z', 'timestamp': 1723595002148}, 'reference-count': 88, 'publisher': 'Springer Science and Business Media LLC', 'issue': '3', 'license': [ { 'start': { 'date-parts': [[2024, 6, 24]], 'date-time': '2024-06-24T00:00:00Z', 'timestamp': 1719187200000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}, { 'start': { 'date-parts': [[2024, 6, 24]], 'date-time': '2024-06-24T00:00:00Z', 'timestamp': 1719187200000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}], 'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False}, 'abstract': '<jats:title>Abstract</jats:title><jats:sec>\n' ' <jats:title>Purpose of the Review</jats:title>\n' ' <jats:p>SARS-CoV-2 undergoes genetic mutations like many other viruses. Some ' 'mutations lead to the emergence of new Variants of Concern (VOCs), affecting ' 'transmissibility, illness severity, and the effectiveness of antiviral drugs. Continuous ' 'monitoring and research are crucial to comprehend variant behavior and develop effective ' 'response strategies, including identifying mutations that may affect current drug ' 'therapies.</jats:p>\n' ' </jats:sec><jats:sec>\n' ' <jats:title>Recent Findings</jats:title>\n' ' <jats:p>Antiviral therapies such as Nirmatrelvir and Ensitrelvir focus on ' 'inhibiting 3CLpro, whereas Remdesivir, Favipiravir, and Molnupiravir target nsp12, thereby ' 'reducing the viral load. However, the emergence of resistant mutations in 3CLpro and nsp12 ' 'could impact the efficiency of these small molecule drug therapeutics.</jats:p>\n' ' </jats:sec><jats:sec>\n' ' <jats:title>Summary</jats:title>\n' ' <jats:p>This manuscript summarizes mutations in 3CLpro and nsp12, which could ' 'potentially reduce the efficacy of drugs. Additionally, it encapsulates recent advancements ' 'in small molecule antivirals targeting SARS-CoV-2 viral proteins, including their potential ' 'for developing resistance against emerging variants.</jats:p>\n' ' </jats:sec>', 'DOI': '10.1007/s40588-024-00229-6', 'type': 'journal-article', 'created': {'date-parts': [[2024, 6, 24]], 'date-time': '2024-06-24T04:01:38Z', 'timestamp': 1719201698000}, 'page': '127-139', 'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'SARS-CoV-2 Resistance to Small Molecule Inhibitors', 'prefix': '10.1007', 'volume': '11', 'author': [ {'given': 'Uxua Modrego', 'family': 'Lopez', 'sequence': 'first', 'affiliation': []}, {'given': 'Md. Mehedi', 'family': 'Hasan', 'sequence': 'additional', 'affiliation': []}, {'given': 'Brandon', 'family': 'Havranek', 'sequence': 'additional', 'affiliation': []}, {'given': 'Shahidul M.', 'family': 'Islam', 'sequence': 'additional', 'affiliation': []}], 'member': '297', 'published-online': {'date-parts': [[2024, 6, 24]]}, 'reference': [ { 'key': '229_CR1', 'doi-asserted-by': 'publisher', 'unstructured': 'Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human ' 'respiratory disease in China. Nature. 2020; ' 'https://doi.org/10.1038/s41586-020-2008-3.', 'DOI': '10.1038/s41586-020-2008-3'}, { 'key': '229_CR2', 'unstructured': 'COVID-19 deaths | WHO COVID-19 dashboard. ' 'https://data.who.int/dashboards/covid19/deaths?n=c. Accessed 4 May 2024'}, { 'key': '229_CR3', 'doi-asserted-by': 'publisher', 'first-page': '378', 'DOI': '10.1016/j.jped.2020.09.002', 'volume': '97', 'author': 'S Raskin', 'year': '2021', 'unstructured': 'Raskin S. Genetics of COVID-19. J Pediatr (Rio J). 2021;97:378–86.', 'journal-title': 'J Pediatr (Rio J).'}, { 'key': '229_CR4', 'doi-asserted-by': 'publisher', 'unstructured': 'Abu Turab Naqvi A, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, ' 'Muhammad Atif S, Hariprasad G, Mustafa Hasan G, Imtaiyaz Hassan M (2020) ' 'Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and ' 'therapies: Structural genomics approach. ' 'https://doi.org/10.1016/j.bbadis.2020.165878', 'DOI': '10.1016/j.bbadis.2020.165878'}, { 'key': '229_CR5', 'doi-asserted-by': 'publisher', 'first-page': '1399', 'DOI': '10.1126/science.1085953', 'volume': '300', 'author': 'MA Marra', 'year': '2003', 'unstructured': 'Marra MA, Jones SJM, Astell CR, et al. The Genome sequence of the ' 'SARS-associated coronavirus. Science. 2003;300:1399–404.', 'journal-title': 'Science.'}, { 'key': '229_CR6', 'doi-asserted-by': 'publisher', 'first-page': '381', 'DOI': '10.1146/annurev-biochem-052521-115653', 'volume': '91', 'author': 'Z Lou', 'year': '2022', 'unstructured': 'Lou Z, Rao Z. The Life of SARS-CoV-2 Inside Cells: ' 'Replication-Transcription Complex Assembly and Function. Annu Rev ' 'Biochem. 2022;91:381–401.', 'journal-title': 'Annu Rev Biochem.'}, { 'key': '229_CR7', 'doi-asserted-by': 'publisher', 'first-page': '186', 'DOI': '10.3390/pathogens9030186', 'volume': '9', 'author': 'HM Ashour', 'year': '2020', 'unstructured': 'Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA. Insights into the ' 'Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human ' 'Coronavirus Outbreaks. Pathogens. 2020;9:186.', 'journal-title': 'Pathogens.'}, { 'key': '229_CR8', 'doi-asserted-by': 'publisher', 'unstructured': 'Cao L, Goreshnik I, Coventry B, et al. De novo design of picomolar ' 'SARS-CoV-2 miniprotein inhibitors. Science. 1979;2020 ' 'https://doi.org/10.1126/science.abd9909.', 'DOI': '10.1126/science.abd9909'}, { 'key': '229_CR9', 'doi-asserted-by': 'publisher', 'first-page': '5702', 'DOI': '10.1021/jacs.1c11554', 'volume': '144', 'author': 'Y Han', 'year': '2022', 'unstructured': 'Han Y, Yang Z, Hu H, et al. Covalently Engineered Protein Minibinders ' 'with Enhanced Neutralization Efficacy against Escaping SARS-CoV-2 ' 'Variants. J Am Chem Soc. 2022;144:5702–7.', 'journal-title': 'J Am Chem Soc.'}, { 'key': '229_CR10', 'doi-asserted-by': 'publisher', 'first-page': '715', 'DOI': '10.1038/s42003-020-01470-7', 'volume': '3', 'author': 'P Chatterjee', 'year': '2020', 'unstructured': 'Chatterjee P, Ponnapati M, Kramme C, Plesa AM, Church GM, Jacobson JM. ' 'Targeted intracellular degradation of SARS-CoV-2 via computationally ' 'optimized peptide fusions. Commun Biol. 2020;3:715.', 'journal-title': 'Commun Biol.'}, { 'key': '229_CR11', 'doi-asserted-by': 'publisher', 'first-page': 'e02451', 'DOI': '10.1128/mBio.02451-20', 'volume': '11', 'author': 'F Curreli', 'year': '2020', 'unstructured': 'Curreli F, Victor SMB, Ahmed S, Drelich A, Tong X, Tseng C-TK, Hillyer ' 'CD, Debnath AK. Stapled Peptides Based on Human Angiotensin-Converting ' 'Enzyme 2 (ACE2) Potently Inhibit SARS-CoV-2 Infection In Vitro. mBio. ' '2020;11:e02451–20.', 'journal-title': 'mBio.'}, { 'key': '229_CR12', 'doi-asserted-by': 'publisher', 'first-page': '197', 'DOI': '10.1038/s42003-021-01736-8', 'volume': '4', 'author': 'P Karoyan', 'year': '2021', 'unstructured': 'Karoyan P, Vieillard V, Gómez-Morales L, Odile E, Guihot A, Luyt C-E, ' 'Denis A, Grondin P, Lequin O. Human ACE2 peptide-mimics block SARS-CoV-2 ' 'pulmonary cells infection. Commun Biol. 2021;4:197.', 'journal-title': 'Commun Biol.'}, { 'key': '229_CR13', 'doi-asserted-by': 'publisher', 'first-page': '671633', 'DOI': '10.3389/fmolb.2021.671633', 'volume': '8', 'author': 'L Min', 'year': '2021', 'unstructured': 'Min L, Sun Q. Antibodies and Vaccines Target RBD of SARS-CoV-2. Front ' 'Mol Biosci. 2021;8:671633.', 'journal-title': 'Front Mol Biosci.'}, { 'key': '229_CR14', 'doi-asserted-by': 'publisher', 'first-page': 'e1009328', 'DOI': '10.1371/journal.ppat.1009328', 'volume': '17', 'author': 'H Yao', 'year': '2021', 'unstructured': 'Yao H, Cai H, Li T, Zhou B, Qin W, Lavillette D, Li D. A high-affinity ' 'RBD-targeting nanobody improves fusion partner’s potency against ' 'SARS-CoV-2. PLoS Pathog. 2021;17:e1009328.', 'journal-title': 'PLoS Pathog.'}, { 'key': '229_CR15', 'doi-asserted-by': 'publisher', 'unstructured': 'Havranek B, Lindsey GW, Higuchi Y, Itoh Y, Suzuki T, Okamoto T, Hoshino ' 'A, Procko E, Islam SM. A computationally designed ACE2 decoy has broad ' 'efficacy against SARS-CoV-2 omicron variants and related viruses in ' 'vitro and in vivo. Commun Biol. 6(1):513. ' 'https://doi.org/10.1038/s42003-023-04860-9.', 'DOI': '10.1038/s42003-023-04860-9'}, { 'key': '229_CR16', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1038/s41598-020-79139-8', 'volume': '11', 'author': 'S Tanaka', 'year': '2021', 'unstructured': 'Tanaka S, Nelson G, Olson CA, et al. An ACE2 Triple Decoy that ' 'neutralizes SARS-CoV-2 shows enhanced affinity for virus variants. Sci ' 'Rep. 2021;11:1–12.', 'journal-title': 'Sci Rep'}, { 'key': '229_CR17', 'first-page': '1586', 'volume': '374', 'author': 'DR Owen', 'year': '2021', 'unstructured': 'Owen DR, Allerton CMN, Anderson AS, et al. An oral SARS-CoV-2 Mpro ' 'inhibitor clinical candidate for the treatment of COVID-19. Science ' '(1979). 2021;374:1586–93.', 'journal-title': 'Science (1979).'}, { 'key': '229_CR18', 'doi-asserted-by': 'publisher', 'first-page': '1813', 'DOI': '10.1056/NEJMoa2007764', 'volume': '383', 'author': 'JH Beigel', 'year': '2020', 'unstructured': 'Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of ' 'Covid-19 — Final Report. N Eng J Med. 2020;383:1813–26.', 'journal-title': 'N Eng J Med.'}, { 'key': '229_CR19', 'doi-asserted-by': 'publisher', 'first-page': '449', 'DOI': '10.1038/s41573-023-00672-y', 'volume': '22', 'author': 'G Li', 'year': '2023', 'unstructured': 'Li G, Hilgenfeld R, Whitley R, De Clercq E. Therapeutic strategies for ' 'COVID-19: progress and lessons learned. Nat Rev Drug Discov. ' '2023;22:449–75.', 'journal-title': 'Nat Rev Drug Discov.'}, { 'key': '229_CR20', 'doi-asserted-by': 'publisher', 'first-page': '63', 'DOI': '10.1016/j.bbrc.2020.10.091', 'volume': '538', 'author': 'Z Jin', 'year': '2021', 'unstructured': 'Jin Z, Wang H, Duan Y, Yang H. The main protease and RNA-dependent RNA ' 'polymerase are two prime targets for SARS-CoV-2. Biochem Biophys Res ' 'Commun. 2021;538:63.', 'journal-title': 'Biochem Biophys Res Commun.'}, { 'key': '229_CR21', 'doi-asserted-by': 'publisher', 'unstructured': 'Zhong L, Zhao Z, Peng X, Zou J, Yang S. Recent advances in ' 'small-molecular therapeutics for COVID-19. Precis Clin Med. 2022; ' 'https://doi.org/10.1093/PCMEDI/PBAC024.', 'DOI': '10.1093/PCMEDI/PBAC024'}, { 'key': '229_CR22', 'unstructured': 'COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) ' 'Treatment Guidelines. National Institutes of Health. Available at ' 'https://www.covid19treatmentguidelines.nih.gov/. Accessed 4 May 2024.'}, { 'key': '229_CR23', 'doi-asserted-by': 'publisher', 'first-page': '1397', 'DOI': '10.1056/NEJMoa2118542', 'volume': '386', 'author': 'J Hammond', 'year': '2022', 'unstructured': 'Hammond J, Leister-Tebbe H, Gardner A, et al. Oral Nirmaltrelvir for ' 'High-Risk, Nonhospitalized Adults with Covid-19. N Engl J Med. ' '2022;386:1397–408.', 'journal-title': 'N Engl J Med.'}, { 'key': '229_CR24', 'doi-asserted-by': 'publisher', 'first-page': '305', 'DOI': '10.1056/NEJMoa2116846', 'volume': '386', 'author': 'RL Gottlieb', 'year': '2022', 'unstructured': 'Gottlieb RL, Vaca CE, Paredes R, et al. Early Remdesivir to Prevent ' 'Progression to Severe Covid-19 in Outpatients. N Engl J Med. ' '2022;386:305–15.', 'journal-title': 'N Engl J Med.'}, { 'key': '229_CR25', 'doi-asserted-by': 'publisher', 'unstructured': 'van Dorp L, Acman M, Richard D, et al. Emergence of genomic diversity ' 'and recurrent mutations in SARS-CoV-2. Infect Genet Evol. 2020; ' 'https://doi.org/10.1016/j.meegid.2020.104351.', 'DOI': '10.1016/j.meegid.2020.104351'}, { 'volume-title': 'Emerging Variants of SARS-CoV-2 and Novel Therapeutics Against ' 'Coronavirus (COVID-19) - StatPearls - NCBI Bookshelf', 'year': '2023', 'author': 'A Aleem', 'key': '229_CR26', 'unstructured': 'Aleem A, Akbar Samad AB, Slenker AK. Emerging Variants of SARS-CoV-2 and ' 'Novel Therapeutics Against Coronavirus (COVID-19) - StatPearls - NCBI ' 'Bookshelf. StatPearls; 2023.'}, { 'key': '229_CR27', 'unstructured': 'SARS-CoV-2 variants of concern as of 26 April 2024. ' 'https://www.ecdc.europa.eu/en/covid-19/variants-concern. Accessed 5 May ' '2024'}, { 'key': '229_CR28', 'unstructured': 'COVID-19 Variant Update. ' 'https://www.idsociety.org/covid-19-real-time-learning-network/diagnostics/covid-19-variant-update/#/+/0/publishedDate_na_dt/desc/. ' 'Accessed 5 May 2024'}, { 'key': '229_CR29', 'doi-asserted-by': 'publisher', 'first-page': '289', 'DOI': '10.1038/s41586-020-2223-y', 'volume': '582', 'author': 'Z Jin', 'year': '2020', 'unstructured': 'Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and ' 'discovery of its inhibitors. Nature. 2020;582:289–93.', 'journal-title': 'Nature.'}, { 'issue': '3', 'key': '229_CR30', 'doi-asserted-by': 'publisher', 'first-page': 'e151', 'DOI': '10.1002/MCO2.151', 'volume': '3', 'author': 'Q Hu', 'year': '2022', 'unstructured': 'Hu Q, Xiong Y, Zhu GH, Zhang YN, Zhang YW, Huang P, Ge GB. The ' 'SARS-CoV-2 main protease (Mpro): Structure, function, and emerging ' 'therapies for COVID-19. MedComm (Beijing). 2022;3(3):e151. ' 'https://doi.org/10.1002/MCO2.151.', 'journal-title': 'MedComm (Beijing).'}, { 'key': '229_CR31', 'doi-asserted-by': 'publisher', 'first-page': '409', 'DOI': '10.1126/science.abb3405', 'volume': '368', 'author': 'L Zhang', 'year': '1979', 'unstructured': 'Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox ' 'K. Hilgenfeld R (2020) Crystal structure of SARS-CoV-2 main protease ' 'provides a basis for design of improved a-ketoamide inhibitors. Science. ' '1979;368:409–12.', 'journal-title': 'Science'}, { 'key': '229_CR32', 'doi-asserted-by': 'publisher', 'first-page': '595', 'DOI': '10.1099/0022-1317-83-3-595', 'volume': '83', 'author': 'A Hegyi', 'year': '2002', 'unstructured': 'Hegyi A, Ziebuhr J. Conservation of substrate specificities among ' 'coronavirus main proteases. Journal of General Virology. 2002;83:595–9.', 'journal-title': 'Journal of General Virology'}, { 'key': '229_CR33', 'doi-asserted-by': 'publisher', 'first-page': '6595', 'DOI': '10.1021/acs.jmedchem.5b01461', 'volume': '59', 'author': 'T Pillaiyar', 'year': '2016', 'unstructured': 'Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung SH. An Overview ' 'of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL Protease ' 'Inhibitors: Peptidomimetics and Small Molecule Chemotherapy. J Med Chem. ' '2016;59:6595–628.', 'journal-title': 'J Med Chem.'}, { 'key': '229_CR34', 'doi-asserted-by': 'publisher', 'first-page': '4562', 'DOI': '10.1021/acs.jmedchem.9b01828', 'volume': '63', 'author': 'L Zhang', 'year': '2020', 'unstructured': 'Zhang L, Lin D, Kusov Y, et al. α-Ketoamides as Broad-Spectrum ' 'Inhibitors of Coronavirus and Enterovirus Replication: Structure-Based ' 'Design, Synthesis, and Activity Assessment. J Med Chem. 2020;63:4562–78.', 'journal-title': 'J Med Chem.'}, { 'key': '229_CR35', 'doi-asserted-by': 'publisher', 'unstructured': 'Mukae H, Yotsuyanagi H, Ohmagari N, et al. A Randomized Phase 2/3 Study ' 'of Entreselvir, a Novel Oral SARS-CoV-2 3C-Like Protease Inhibitor, in ' 'Japanese Patients with Mild-to-Moderate COVID-19 or Asymptomatic ' 'SARS-CoV-2 Infection: Results of the Phase 2a Part. Antimicrob Agents ' 'Chemother. 2022; https://doi.org/10.1128/aac.00697-22.', 'DOI': '10.1128/aac.00697-22'}, { 'key': '229_CR36', 'doi-asserted-by': 'publisher', 'unstructured': 'Havranek B, Demissie R, Lee H, Lan S, Zhang H, Sarafianos S, Ayitou AJL, ' 'Islam SM. Discovery of Nirmaltrelvir Resistance Mutations in SARS-CoV-2 ' '3CLpro: A Computational-Experimental Approach. J Chem Inf Model. 2023; ' 'https://doi.org/10.1021/acs.jcim.3c01269. This study uses computational ' 'and in-vitro methods to identify potential mutations in 3CLpro resistant ' 'to Nirmaltrelvir.', 'DOI': '10.1021/acs.jcim.3c01269'}, { 'key': '229_CR37', 'doi-asserted-by': 'publisher', 'unstructured': 'Hu Y, Lewandowski EM, Tan H, et al. Naturally Occurring Mutations of ' 'SARS-CoV-2 Main Protease Confer Drug Resistance to Nirmaltrelvir. ACS ' 'Cent Sci. 2023; https://doi.org/10.1021/acscentsci.3c00538. This study ' 'identified 20 naturally occurring mutants in 3CLpro that confer ' 'resistance to Nirmaltrelvir while maintaining 3CLpro enzymatic activity.', 'DOI': '10.1021/acscentsci.3c00538'}, { 'key': '229_CR38', 'doi-asserted-by': 'publisher', 'unstructured': 'Sasi VM, Ullrich S, Ton J, Fry SE, Johansen-Leete J, Payne RJ, Nitsche ' 'C, Jackson CJ. Predicting Antiviral Resistance Mutations in SARS-CoV-2 ' 'Main Protease with Computational and Experimental Screening. ' 'Biochemistry. 2022; https://doi.org/10.1021/acs.biochem.2c00489. This ' 'study carried out in silico and in-vitro experiments to reveal 5 ' 'mutations in 3CLpro resistant to Nirmaltrelvir.', 'DOI': '10.1021/acs.biochem.2c00489'}, { 'key': '229_CR39', 'doi-asserted-by': 'publisher', 'unstructured': 'Jochmans D, Liu C, Donckers K, et al. The Substitutions L50F, E166A, and ' 'L167F in SARS-CoV-2 3CLpro Are Selected by a Protease Inhibitor In Vitro ' 'and Confer Resistance To Nirmaltrelvir. mBio. 2023; ' 'https://doi.org/10.1128/mbio.02815-22.', 'DOI': '10.1128/mbio.02815-22'}, { 'key': '229_CR40', 'doi-asserted-by': 'publisher', 'unstructured': 'Moghadasi SA, Biswas RG, Harki DA, Harris RS. Rapid resistance profiling ' 'of SARS-CoV-2 protease inhibitors. ' 'https://doi.org/10.1101/2023.02.25.530000. This study determinated ' 'mutations in 3CLpro resistant to Nirmaltrelvir and Entreselvir ' 'treatment.', 'DOI': '10.1101/2023.02.25.530000'}, { 'key': '229_CR41', 'doi-asserted-by': 'publisher', 'unstructured': 'Moghadasi SA, Heilmann E, Khalil AM, et al. Transmissible SARS-CoV-2 ' 'variants with resistance to clinical protease inhibitors. Sci Adv. 2023; ' 'https://doi.org/10.1126/sciadv.ade8778. This study identifies naturally ' 'occurring 3CLpro variants associated with resistance to 3CLpro ' 'inhibitors, Nirmaltrelvir and Entreselvir.', 'DOI': '10.1126/sciadv.ade8778'}, { 'key': '229_CR42', 'doi-asserted-by': 'publisher', 'unstructured': 'Iketani S, Mohri H, Culbertson B, et al. Multiple pathways for ' 'SARS-CoV-2 resistance to Nirmaltrelvir. Nature. 2023; ' 'https://doi.org/10.1038/s41586-022-05514-2. This study identified ' 'Nirmaltrelvir and Entreselvir resistant mutations in 3CLpro in different ' 'independent viral lineages.', 'DOI': '10.1038/s41586-022-05514-2'}, { 'key': '229_CR43', 'doi-asserted-by': 'publisher', 'unstructured': 'Kiso M, Yamayoshi S, Iida S, Furusawa Y, Hirata Y, Uraki R, Imai M, ' 'Suzuki T, Kawaoka Y. In vitro and in vivo characterization of SARS-CoV-2 ' 'resistance to Entreselvir. Nat Commun. 2023; ' 'https://doi.org/10.1038/s41467-023-40018-1. This study identified double ' 'mutant M49L/E166A is resistant to Entreselvir treatment in-vitro and in ' 'vivo.', 'DOI': '10.1038/s41467-023-40018-1'}, { 'key': '229_CR44', 'doi-asserted-by': 'publisher', 'unstructured': 'Aykul S, Martinez-Hackert E. Determination of half-maximal inhibitory ' 'concentration using biosensor-based protein interaction analysis. Anal ' 'Biochem. 2016; https://doi.org/10.1016/j.ab.2016.06.025.', 'DOI': '10.1016/j.ab.2016.06.025'}, { 'key': '229_CR45', 'doi-asserted-by': 'publisher', 'unstructured': 'Zhao Y, Fang C, Zhang Q, et al. Crystal structure of SARS-CoV-2 main ' 'protease in complex with protease inhibitor PF-07321332. Protein Cell. ' '2022; https://doi.org/10.1007/s13238-021-00883-2.', 'DOI': '10.1007/s13238-021-00883-2'}, { 'key': '229_CR46', 'doi-asserted-by': 'publisher', 'unstructured': 'Khare S, Gurry C, Freitas ; Lucas, Schultz MB, Bach ; Gunter, Diallo ; ' 'Amadou, Akite N, Ho J, Lee RT, Yeo W GISAID’s Role in Pandemic Response. ' 'https://doi.org/10.46234/ccdcw2021.255', 'DOI': '10.46234/ccdcw2021.255'}, { 'key': '229_CR47', 'first-page': '6499', 'volume': '2022', 'author': 'Y Unoh', 'year': '2022', 'unstructured': 'Unoh Y, Uehara S, Nakahara K, et al. Discovery of S-217622, a ' 'Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate ' 'for Treating COVID-19. Cite This: J Med Chem. 2022;2022:6499–512.', 'journal-title': 'Cite This: J Med Chem.'}, { 'key': '229_CR48', 'doi-asserted-by': 'publisher', 'unstructured': 'Lin M, Zeng X, Duan Y, Yang Z, Ma Y, Yang H, Yang X, Liu X. Molecular ' 'mechanism of Entreselvir inhibiting SARS-CoV-2 main protease and its ' 'variants. Commun Biol. 2023; https://doi.org/10.1038/s42003-023-05071-y.', 'DOI': '10.1038/s42003-023-05071-y'}, { 'key': '229_CR49', 'doi-asserted-by': 'publisher', 'unstructured': 'Jiang Y, Yin W, Xu HE. RNA-dependent RNA polymerase: Structure, ' 'mechanism, and drug discovery for COVID-19. Biochem Biophys Res Commun. ' '2021; https://doi.org/10.1016/j.bbrc.2020.08.116.', 'DOI': '10.1016/j.bbrc.2020.08.116'}, { 'key': '229_CR50', 'doi-asserted-by': 'publisher', 'unstructured': 'Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, Atif SM, ' 'Hariprasad G, Hasan GM, Hassan MI. Insights into SARS-CoV-2 genome, ' 'structure, evolution, pathogenesis and therapies: Structural genomics ' 'approach. Biochim Biophys Acta Mol Basis Dis. 2020; ' 'https://doi.org/10.1016/j.bbadis.2020.165878.', 'DOI': '10.1016/j.bbadis.2020.165878'}, { 'key': '229_CR51', 'doi-asserted-by': 'publisher', 'first-page': '184', 'DOI': '10.1016/j.cell.2020.11.016', 'volume': '184', 'author': 'L Yan', 'year': '2021', 'unstructured': 'Yan L, Ge J, Zheng L, et al. Cryo-EM Structure of an Extended SARS-CoV-2 ' 'Replication and Transcription Complex Reveals an Intermediate State in ' 'Cap Synthesis. Cell. 2021;184:184–193.e10.', 'journal-title': 'Cell.'}, { 'key': '229_CR52', 'doi-asserted-by': 'publisher', 'unstructured': 'Slanina H, Madhugiri R, Bylapudi G, Schultheiß K, Karl N, Gulyaeva A, ' 'Gorbalenya AE, Linne U, Ziebuhr J. Coronavirus replication-transcription ' 'complex: Vital and selective NMPylation of a conserved site in nsp9 by ' 'the NiRAN-RdRp subunit. Proc Natl Acad Sci USA. 2021; ' 'https://doi.org/10.1073/PNAS.2022310118/-/DCSUPPLEMENTAL.', 'DOI': '10.1073/PNAS.2022310118/-/DCSUPPLEMENTAL'}, { 'key': '229_CR53', 'doi-asserted-by': 'publisher', 'first-page': '13019', 'DOI': '10.1093/nar/gkab1160', 'volume': '49', 'author': 'AP Walker', 'year': '2021', 'unstructured': 'Walker AP, Fan H, Keown JR, Knight ML, Grimes JM, Fodor E. The ' 'SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme. Nucleic Acids ' 'Res. 2021;49:13019–30.', 'journal-title': 'Nucleic Acids Res.'}, { 'key': '229_CR54', 'doi-asserted-by': 'publisher', 'first-page': '6785', 'DOI': '10.1074/jbc.RA120.013679', 'volume': '295', 'author': 'CJ Gordon', 'year': '2020', 'unstructured': 'Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY, Porter DP, Götte ' 'M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent ' 'RNA polymerase from severe acute respiratory syndrome coronavirus 2 with ' 'high potency. J Biol Chem. 2020;295:6785–97.', 'journal-title': 'J Biol Chem.'}, { 'key': '229_CR55', 'doi-asserted-by': 'publisher', 'first-page': '740', 'DOI': '10.1038/s41594-021-00651-0', 'volume': '28', 'author': 'F Kabinger', 'year': '2021', 'unstructured': 'Kabinger F, Stiller C, Schmitzová J, Dienemann C, Kokic G, Hillen HS, ' 'Höbartner C, Cramer P. Mechanism of Mulnupiravir-induced SARS-CoV-2 ' 'mutagenesis. Nat Struct Mol Biol. 2021;28:740–6.', 'journal-title': 'Nat Struct Mol Biol.'}, { 'key': '229_CR56', 'doi-asserted-by': 'publisher', 'unstructured': 'Naydenova K, Muir KW, Wu LF, et al. Structure of the SARS-CoV-2 ' 'RNA-dependent RNA polymerase in the presence of Favipuravir-RTP. Proc ' 'Natl Acad Sci U S A. 2021; https://doi.org/10.1073/PNAS.2021946118.', 'DOI': '10.1073/PNAS.2021946118'}, { 'key': '229_CR57', 'doi-asserted-by': 'publisher', 'unstructured': 'Gandhi S, Klein J, Robertson AJ, et al. De novo emergence of a ' 'remdesivir resistance mutation during treatment of persistent SARS-CoV-2 ' 'infection in an immunocompromised patient: a case report. Nat Commun. ' '2022; https://doi.org/10.1038/s41467-022-29104-y. This study identified ' 'the emergence of a nsp12 resistant mutation in an immunocompromised ' 'patient under Remdesivir treatment.', 'DOI': '10.1038/s41467-022-29104-y'}, { 'key': '229_CR58', 'doi-asserted-by': 'publisher', 'unstructured': 'Hedskog C, Rodriguez L, Roychoudhury P, et al. Viral Resistance Analyses ' 'From the Remdesivir Phase 3 Adaptive COVID-19 Treatment Trial-1 ' '(ACTT-1). J Infect Dis. 2023; https://doi.org/10.1093/infdis/jiad270. ' 'This study identified resistance to Remdesivir by comparing the emerging ' 'of nsp12 resistant mutations in patients under placebo and Nirmaltrelvir ' 'treatment.', 'DOI': '10.1093/infdis/jiad270'}, { 'key': '229_CR59', 'doi-asserted-by': 'publisher', 'unstructured': 'Padhi AK, Dandapat J, Saudagar P, Uversky VN, Tripathi T. ' 'Interface-based design of the Favipuravir-binding site in SARS-CoV-2 ' 'RNA-dependent RNA polymerase reveals mutations conferring resistance to ' 'chain termination. FEBS Lett. 2021; ' 'https://doi.org/10.1002/1873-3468.14182. In silico study that identified ' 'potential resistant mutations in nsp12 to Favipuravir treatment.', 'DOI': '10.1002/1873-3468.14182'}, { 'key': '229_CR60', 'doi-asserted-by': 'publisher', 'unstructured': 'Wang Q, Wu J, Wang H, et al. Structural Basis for RNA Replication by the ' 'SARS-CoV-2 Polymerase. Cell. 2020; ' 'https://doi.org/10.1016/j.cell.2020.05.034.', 'DOI': '10.1016/j.cell.2020.05.034'}, { 'key': '229_CR61', 'doi-asserted-by': 'publisher', 'unstructured': 'Tchesnokov EP, Gordon CJ, Woolner E, Kocinkova D, Perry JK, Feng JY, ' 'Porter DP, Götte M. Template-dependent inhibition of coronavirus ' 'RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of ' 'action. J Biol Chem. 2020; https://doi.org/10.1074/jbc.AC120.015720.', 'DOI': '10.1074/jbc.AC120.015720'}, { 'key': '229_CR62', 'doi-asserted-by': 'publisher', 'unstructured': 'Singh A, Raju R, Mrad M, Reddell P, Münch G. The reciprocal EC50 value ' 'as a convenient measure of the potency of a compound in ' 'bioactivity-guided purification of natural products. Fitoterapia. 2020; ' 'https://doi.org/10.1016/j.fitote.2020.104598.', 'DOI': '10.1016/j.fitote.2020.104598'}, { 'key': '229_CR63', 'doi-asserted-by': 'publisher', 'unstructured': 'Kokic G, Hillen HS, Tegunov D, Dienemann C, Seitz F, Schmitzova J, ' 'Farnung L, Siewert A, Höbartner C, Cramer P. Mechanism of SARS-CoV-2 ' 'polymerase stalling by remdesivir. Nat Commun. 2021; ' 'https://doi.org/10.1038/s41467-020-20542-0.', 'DOI': '10.1038/s41467-020-20542-0'}, { 'key': '229_CR64', 'doi-asserted-by': 'publisher', 'unstructured': 'Agostini ML, Andres EL, Sims AC, et al. Coronavirus susceptibility to ' 'the antiviral remdesivir (GS-5734) is mediated by the viral polymerase ' 'and the proofreading exoribonuclease. mBio. 2018; ' 'https://doi.org/10.1128/mBio.00221-18.', 'DOI': '10.1128/mBio.00221-18'}, { 'key': '229_CR65', 'doi-asserted-by': 'publisher', 'unstructured': 'Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY, Porter DP, Götte ' 'M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent ' 'RNA polymerase from severe acute respiratory syndrome coronavirus 2 with ' 'high potency. J Biol Chem. 2020; ' 'https://doi.org/10.1074/jbc.RA120.013679.', 'DOI': '10.1074/jbc.RA120.013679'}, { 'key': '229_CR66', 'doi-asserted-by': 'crossref', 'unstructured': 'Kokic G, Hillen HS, Tegunov D, et al. Mechanism of SARS-CoV-2 polymerase ' 'inhibition by remdesivir. bioRxiv. 2020;', 'DOI': '10.1101/2020.10.28.358481'}, { 'key': '229_CR67', 'doi-asserted-by': 'publisher', 'unstructured': 'Pitts J, Li J, Perry JK, et al. Remdesivir and GS-441524 Retain ' 'Antiviral Activity against Delta, Omicron, and Other Emergent SARS-CoV-2 ' 'Variants. Antimicrob Agents Chemother. 2022; ' 'https://doi.org/10.1128/aac.00222-22.', 'DOI': '10.1128/aac.00222-22'}, { 'issue': '7', 'key': '229_CR68', 'doi-asserted-by': 'publisher', 'first-page': 'E1762', 'DOI': '10.1093/CID/CIAA1474', 'volume': '73', 'author': 'M Martinot', 'year': '2021', 'unstructured': 'Martinot M, Jary A, Fafi-Kremer S, et al. Remdesivir failure with ' 'SARS-CoV-2 RNA-dependent RNA-polymerase mutation in a B-cell ' 'immunodeficient patient with protracted Covid-19. Clin Infect Dis An Off ' 'Publ Infect Dis Soc Am. 2021;73(7):E1762–5. ' 'https://doi.org/10.1093/CID/CIAA1474.', 'journal-title': 'Clin Infect Dis An Off Publ Infect Dis Soc Am'}, { 'key': '229_CR69', 'doi-asserted-by': 'publisher', 'unstructured': 'Stevens LJ, Pruijssers AJ, Lee HW, et al. Mutations in the SARS-CoV-2 ' 'RNA-dependent RNA polymerase confer resistance to remdesivir by distinct ' 'mechanisms. Sci Transl Med. 2022; ' 'https://doi.org/10.1126/SCITRANSLMED.ABO0718.', 'DOI': '10.1126/SCITRANSLMED.ABO0718'}, { 'key': '229_CR70', 'doi-asserted-by': 'publisher', 'unstructured': 'Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL. ' 'Favipuravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral ' 'Res. 2013; https://doi.org/10.1016/j.antiviral.2013.09.015.', 'DOI': '10.1016/j.antiviral.2013.09.015'}, { 'key': '229_CR71', 'doi-asserted-by': 'publisher', 'unstructured': 'Baranovich T, Wong S-S, Armstrong J, Marjuki H, Webby RJ, Webster RG, ' 'Govorkova EA. T-705 (Favipuravir) Induces Lethal Mutagenesis in ' 'Influenza A H1N1 Viruses In Vitro. J Virol. 2013; ' 'https://doi.org/10.1128/jvi.02346-12.', 'DOI': '10.1128/jvi.02346-12'}, { 'key': '229_CR72', 'doi-asserted-by': 'publisher', 'unstructured': 'Joshi S, Parkar J, Ansari A, Vora A, Talwar D, Tiwaskar M, Patil S, ' 'Barkate H. Role of Favipuravir in the treatment of COVID-19. Int J ' 'Infect Dis. 2021; https://doi.org/10.1016/j.ijid.2020.10.069.', 'DOI': '10.1016/j.ijid.2020.10.069'}, { 'key': '229_CR73', 'doi-asserted-by': 'publisher', 'unstructured': 'Sangawa H, Komeno T, Nishikawa H, Yoshida A, Takahashi K, Nomura N, ' 'Furuta Y. Mechanism of action of T-705 ribosyl triphosphate against ' 'influenza virus RNA polymerase. Antimicrob Agents Chemother. 2013; ' 'https://doi.org/10.1128/AAC.00649-13.', 'DOI': '10.1128/AAC.00649-13'}, { 'key': '229_CR74', 'doi-asserted-by': 'publisher', 'unstructured': 'Jin Z, Smith LK, Rajwanshi VK, Kim B, Deval J. The Ambiguous ' 'Base-Pairing and High Substrate Efficiency of T-705 (Favipuravir) ' 'Ribofuranosyl 5′-Triphosphate towards Influenza A Virus Polymerase. PLoS ' 'One. 2013; https://doi.org/10.1371/journal.pone.0068347.', 'DOI': '10.1371/journal.pone.0068347'}, { 'key': '229_CR75', 'doi-asserted-by': 'publisher', 'unstructured': 'Shannon A, Selisko B, Le NTT, et al. Rapid incorporation of Favipuravir ' 'by the fast and permissive viral RNA polymerase complex results in ' 'SARS-CoV-2 lethal mutagenesis. Nat Commun. 2020; ' 'https://doi.org/10.1038/s41467-020-18463-z.', 'DOI': '10.1038/s41467-020-18463-z'}, { 'key': '229_CR76', 'doi-asserted-by': 'publisher', 'unstructured': 'Naydenova K, Muir KW, Wu LF, et al. Structure of the SARS-CoV-2 ' 'RNA-dependent RNA polymerase in the presence of Favipuravir-RTP. Proc ' 'Natl Acad Sci U S A. 2021; https://doi.org/10.1073/pnas.2021946118.', 'DOI': '10.1073/pnas.2021946118'}, { 'key': '229_CR77', 'doi-asserted-by': 'publisher', 'unstructured': 'Delang L, Guerrero NS, Tas A, et al. Mutations in the chikungunya virus ' 'non-structural proteins cause resistance to Favipuravir (T-705), a ' 'broad-spectrum antiviral. J Antimicrob Chemother. 2014; ' 'https://doi.org/10.1093/jac/dku209.', 'DOI': '10.1093/jac/dku209'}, { 'key': '229_CR78', 'doi-asserted-by': 'publisher', 'unstructured': 'Wang Y, Li G, Yuan S, Gao Q, Lan K, Altmeyer R, Zou G. In vitro ' 'assessment of combinations of enterovirus inhibitors against enterovirus ' '71. Antimicrob Agents Chemother. 2016; ' 'https://doi.org/10.1128/AAC.01073-16.', 'DOI': '10.1128/AAC.01073-16'}, { 'key': '229_CR79', 'doi-asserted-by': 'publisher', 'unstructured': 'Goldhill DH, Te Velthuis AJW, Fletcher RA, Langat P, Zambon M, Lackenby ' 'A, Barclay WS. The mechanism of resistance to Favipuravir in influenza. ' 'Proc Natl Acad Sci U S A. 2018; https://doi.org/10.1073/pnas.1811345115.', 'DOI': '10.1073/pnas.1811345115'}, { 'key': '229_CR80', 'doi-asserted-by': 'publisher', 'unstructured': 'Saito A, Tamura T, Zahradnik J, et al. Virological characteristics of ' 'the SARS-CoV-2 Omicron BA.2.75 variant. Cell Host Microbe. 2022; ' 'https://doi.org/10.1016/j.chom.2022.10.003.', 'DOI': '10.1016/j.chom.2022.10.003'}, { 'key': '229_CR81', 'doi-asserted-by': 'publisher', 'unstructured': 'Grobler J, Strizki J, Murgolo N, et al. 543. Mulnupiravir Maintains ' 'Antiviral Activity Against SARS-CoV-2 Variants In Vitro and in Early ' 'Clinical Studies. Open Forum Infect Dis. 2021; ' 'https://doi.org/10.1093/ofid/ofab466.742.', 'DOI': '10.1093/ofid/ofab466.742'}, { 'key': '229_CR82', 'doi-asserted-by': 'publisher', 'unstructured': 'Fischer WA, Eron JJ, Holman W, et al. A phase 2a clinical trial of ' 'Mulnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA ' 'clearance and elimination of infectious virus. Sci Transl Med. 2022; ' 'https://doi.org/10.1126/scitranslmed.abl7430.', 'DOI': '10.1126/scitranslmed.abl7430'}, { 'key': '229_CR83', 'doi-asserted-by': 'publisher', 'unstructured': 'Butler CC, Hobbs FDR, Gbinigie OA, et al. Mulnupiravir plus usual care ' 'versus usual care alone as early treatment for adults with COVID-19 at ' 'increased risk of adverse outcomes (PANORAMIC): an open-label, ' 'platform-adaptive randomised controlled trial. The Lancet. 2023; ' 'https://doi.org/10.1016/S0140-6736(22)02597-1.', 'DOI': '10.1016/S0140-6736(22)02597-1'}, { 'key': '229_CR84', 'doi-asserted-by': 'publisher', 'unstructured': 'Gordon CJ, Tchesnokov EP, Schinazi RF, Götte M. Mulnupiravir promotes ' 'SARS-CoV-2 mutagenesis via the RNA template. J Biol Chem. 2021; ' 'https://doi.org/10.1016/j.jbc.2021.100770.', 'DOI': '10.1016/j.jbc.2021.100770'}, { 'key': '229_CR85', 'doi-asserted-by': 'publisher', 'unstructured': 'Wang Y, Li P, Solanki K, Li Y, Ma Z, Peppelenbosch MP, Baig MS, Pan Q. ' 'Viral polymerase binding and broad-spectrum antiviral activity of ' 'Mulnupiravir against human seasonal coronaviruses. Virology. 2021; ' 'https://doi.org/10.1016/j.virol.2021.09.009.', 'DOI': '10.1016/j.virol.2021.09.009'}, { 'key': '229_CR86', 'doi-asserted-by': 'publisher', 'unstructured': 'Standing JF, Buggiotti L, Guerra-Assuncao JA, et al. Randomized ' 'controlled trial of Mulnupiravir SARS-CoV-2 viral and antibody response ' 'in at-risk adult outpatients. Nat Commun. 2024; ' 'https://doi.org/10.1038/s41467-024-45641-0. This study revealed ' 'mutations in SARS-CoV-2 related with Mulnupiravir treatment.', 'DOI': '10.1038/s41467-024-45641-0'}, { 'key': '229_CR87', 'doi-asserted-by': 'publisher', 'first-page': '100735', 'DOI': '10.1016/j.xcrm.2022.100735', 'volume': '3', 'author': 'A Heyer', 'year': '2022', 'unstructured': 'Heyer A, Günther T, Robitaille A, et al. Remdesivir-induced emergence of ' 'SARS-CoV2 variants in patients with prolonged infection. Cell Rep Med. ' '2022;3:100735.', 'journal-title': 'Cell Rep Med.'}, { 'key': '229_CR88', 'doi-asserted-by': 'publisher', 'first-page': '1139', 'DOI': '10.1126/science.abf6950', 'volume': '371', 'author': 'KR McCarthy', 'year': '2021', 'unstructured': 'McCarthy KR, Rennick LJ, Nambulli S, Robinson-McCarthy LR, Bain WG, ' 'Haidar G, Paul Duprex W. Recurrent deletions in the SARS-CoV-2 spike ' 'glycoprotein drive antibody escape. Science. 2021;371:1139–42.', 'journal-title': 'Science.'}], 'container-title': 'Current Clinical Microbiology Reports', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://link.springer.com/content/pdf/10.1007/s40588-024-00229-6.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/article/10.1007/s40588-024-00229-6/fulltext.html', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/content/pdf/10.1007/s40588-024-00229-6.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 8, 13]], 'date-time': '2024-08-13T09:27:41Z', 'timestamp': 1723541261000}, 'score': 1, 'resource': {'primary': {'URL': 'https://link.springer.com/10.1007/s40588-024-00229-6'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 6, 24]]}, 'references-count': 88, 'journal-issue': {'issue': '3', 'published-online': {'date-parts': [[2024, 9]]}}, 'alternative-id': ['229'], 'URL': 'http://dx.doi.org/10.1007/s40588-024-00229-6', 'relation': {}, 'ISSN': ['2196-5471'], 'subject': [], 'container-title-short': 'Curr Clin Micro Rpt', 'published': {'date-parts': [[2024, 6, 24]]}, 'assertion': [ { 'value': '5 June 2024', 'order': 1, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '24 June 2024', 'order': 2, 'name': 'first_online', 'label': 'First Online', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'order': 1, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Compliance with Ethical Standards'}}, { 'value': 'The authors declare no competing interests.', 'order': 2, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Conflict of Interest'}}, { 'value': 'All reported studies/experiments with human or animal subjects performed by the ' 'authors have been previously published and complied with all applicable ethical ' 'standards (including the Helsinki declaration and its amendments, ' 'institutional/national research committee standards, and ' 'international/national/institutional guidelines).', 'order': 3, 'name': 'Ethics', 'group': { 'name': 'EthicsHeading', 'label': 'Human and Animal Rights and Informed Consent'}}]}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit