Polysaccharides and Lectins: A Natural Complementary Approach against the SARS-CoV-2 Pandemic
Radu Lefter, Prairna Balyan, Ioana-Miruna Balmus, Abdellah Ech-Chahad, Ahmad Ali, Alin Ciobica, Antoneta Dacia Petroaie, Gabriela Halitchi, Bogdan Novac, Catalina Ionescu, Fatima Zahra Kamal
Microbiology Research, doi:10.3390/microbiolres15020035
Infection with the novel coronavirus SARS-CoV-2, the cause of coronavirus disease , has emerged as a global pandemic, with a high toll on casualties, economic impact, and human lifestyle. Despite the recent approval of various vaccines against the virus, challenges remain, including the limited availability of these vaccines, the prevalent rejection of vaccination by a large proportion of the population, and the recurrent appearance of new variants of the virus due to mutations. This context raises the alarm for scientists and clinicians to seek alternative and complementary therapies. In this context, natural products and their derivatives serve as reservoirs for potential therapeutic compounds that can be exploited in the research and production of antiviral drugs against COVID-19. Among these substances, lectin and polysaccharides isolated from fauna and flora emerge as complementary strategies for treating coronavirus infection. The review objective is to cover and analyze the specific role of polysaccharides and lectins and their synergy in the fight against this deadly SARS-CoV-2 virus. For this purpose, a primary literature search was conducted on Google Scholar, PubMed, and Web of Sciences using relevant keywords like "SARS-CoV-2 Variants"; "Antiviral Strategies"; "Antiviral Polysaccharides"; "Antiviral Lectins"; and "Synergistic effect". The results demonstrate that lectins and polysaccharides exhibit antiviral activities against SARS-CoV-2 via mechanisms related to binding and steric blocking, the binding of glycan-based decoys, chemical reactions, virus particle disruption strategies, and steric blocking for competitive inhibition to block SARS-CoV-2 and its variants' entry. In addition, this review analyzes the rationale behind combining polysaccharides and lectins, emphasizing complementary mechanisms of action. By simultaneously targeting multiple stages of the viral life cycle, this dual strategy aims to comprehensively inhibit viral propagation and enhance the durability of antiviral strategies over time.
References
Abidine, Liu, Wallén, Trybala, Olofsson et al., Cellular Chondroitin Sulfate and the Mucin-like Domain of Viral Glycoprotein C Promote Diffusion of Herpes Simplex Virus 1 While Heparan Sulfate Restricts Mobility, Viruses,
doi:10.3390/v14081836
Aboul-Fotouh, Mahmoud, Elnahas, Habib, Abdelraouf, What Are the Current Anti-COVID-19 Drugs? From Traditional to Smart Molecular Mechanisms, Virol. J,
doi:10.1186/s12985-023-02210-z
Ahan, Hanifehnezhad, Kehribar, Oguzoglu, Földes et al., A Highly Potent SARS-CoV-2 Blocking Lectin Protein, ACS Infect. Dis,
doi:10.1021/acsinfecdis.2c00006
Ahmadi, Zorofchian Moghadamtousi, Abubakar, Zandi, Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review, BioMed Res. Int,
doi:10.1155/2015/825203
Ahmed, Abdelrheem, El-Mageed, Mohamed, Rahman et al., Destabilizing the Structural Integrity of COVID-19 by Caulerpin and Its Derivatives along with Some Antiviral Drugs: An In Silico Approaches for a Combination Therapy, Struct. Chem,
doi:10.1007/s11224-020-01586-w
Ahmed, Jahan, Nissapatorn, Wilairatana, Rahmatullah, Plant Lectins as Prospective Antiviral Biomolecules in the Search for COVID-19 Eradication Strategies, Biomed. Pharmacother,
doi:10.1016/j.biopha.2021.112507
Albtoush, Petrey, The Role of Hyaluronan Synthesis and Degradation in the Critical Respiratory Illness COVID-19, Am. J. Physiol.-Cell Physiol,
doi:10.1152/ajpcell.00071.2022
Alluwaimi, Alshubaith, Al-Ali, Abohelaika, The Coronaviruses of Animals and Birds: Their Zoonosis, Vaccines, and Models for SARS-CoV and SARS-CoV2, Front. Vet. Sci,
doi:10.3389/fvets.2020.582287
Alotaibi, Alomary, Mokni, COVID-19 Vaccine Rejection Causes Based on Twitter People's Opinions Analysis Using Deep Learning, Soc. Netw. Anal. Min,
doi:10.1007/s13278-023-01059-y
Alsaidi, Cornejal, Mahoney, Melo, Verma et al., Griffithsin and Carrageenan Combination Results in Antiviral Synergy against SARS-CoV-1 and 2 in a Pseudoviral Model, Mar. Drugs,
doi:10.3390/md19080418
Altamimi, Alabdulkarim, Alhumimidi, Albabtain, Temsah, Navigating Novel Uncertainties of COVID-19: The Rise of the JN.1 Variant, Cureus,
doi:10.7759/cureus.51497
Amit, Pepito, Sumpaico-Tanchanco, Dayrit, COVID-19 vaccine brand hesitancy and other challenges to vaccination in the Philippines, PLoS Glob. Public Health,
doi:10.1371/journal.pgph.0000165
Anderson, Evers, Rice, Structure and Function of Mammalian Carbohydrate-Lectin Interactions
Arunachalam, Sasidharan, Yang, A Concise Review of Mushrooms Antiviral and Immunomodulatory Properties That May Combat against COVID-19, Food Chem. Adv,
doi:10.1016/j.focha.2022.100023
Auth, Fröba, Große, Rauch, Ruetalo et al., Lectin from Triticum vulgaris (WGA) Inhibits Infection with SARS-CoV-2 and Its Variants of Concern Alpha and Beta, Int. J. Mol. Sci,
doi:10.3390/ijms221910205
Bah, Fang, Ng, Medicinal Applications of Plant Lectins
Bai, Tuvikene, Potential Antiviral Properties of Industrially Important Marine Algal Polysaccharides and Their Significance in Fighting a Future Viral Pandemic, Viruses,
doi:10.3390/v13091817
Bandyopadhyay, Navid, Ghosh, Schnitzler, Ray, Structural Features and In Vitro Antiviral Activities of Sulfated Polysaccharides from Sphacelaria Indica, Phytochemistry,
doi:10.1016/j.phytochem.2010.11.006
Bansal, Jonsson, Taylor, Figueroa, Dugour et al., Iota-Carrageenan and Xylitol Inhibit SARS-CoV-2 in Vero Cell Culture, PLoS ONE,
doi:10.1371/journal.pone.0259943
Barbosa, De Carvalho Junior, Polysaccharides Obtained from Natural Edible Sources and Their Role in Modulating the Immune System: Biologically Active Potential That Can Be Exploited against COVID-19, Trends Food Sci. Technol,
doi:10.1016/j.tifs.2020.12.026
Belouzard, Millet, Licitra, Whittaker, Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein, Viruses,
doi:10.3390/v4061011
Bemiller, Carbohydrate Chemistry for Food Scientists
Bemiller, Polysaccharides, Encyclopedia of Life Sciences
Berteau, Sulfated Fucans, Fresh Perspectives: Structures, Functions, and Biological Properties of Sulfated Fucans and an Overview of Enzymes Active toward This Class of Polysaccharide, Glycobiology,
doi:10.1093/glycob/cwg058
Bertini, Alekseeva, Elli, Pagani, Zanzoni et al., Pentosan polysulfate Inhibits Attachment and Infection by SARS-CoV-2 In Vitro: Insights into Structural Requirements for Binding, Thromb. Haemost,
doi:10.1055/a-1807-0168
Beyerstedt, Casaro, Rangel, COVID-19: Angiotensin-Converting Enzyme 2 (ACE2) Expression and Tissue Susceptibility to SARS-CoV-2 Infection, Eur. J. Clin. Microbiol. Infect. Dis,
doi:10.1007/s10096-020-04138-6
Bhattacharyya, Das, Aich, Sarkar, COVID-19: Morphology and Mechanism of the SARS-CoV-2, Global Outbreak, Medication, Vaccines and Future of the Virus, Front. Biosci,
doi:10.52586/E884
Bichiri, Rente, Jesus, Safety and Efficacy of a Iota-Carrageenan Nasal Spray in Treatment and Prevention of the Common Cold, Med. Pharm. Rep,
doi:10.15386/mpr-1817
Breuilh, Vanhoutte, Fontaine, Van Stijn, Tillie-Leblond et al., Galectin-3 Modulates Immune and Inflammatory Responses during Helminthic Infection: Impact of Galectin-3 Deficiency on the Functions of Dendritic Cells, Infect. Immun,
doi:10.1128/IAI.02006-06
Buijsers, Yanginlar, Maciej-Hulme, De Mast, Van Der Vlag, Beneficial Non-Anticoagulant Mechanisms Underlying Heparin Treatment of COVID-19 Patients, eBioMedicine,
doi:10.1016/j.ebiom.2020.102969
Cao, Wu, Wu, Deng, Zhang et al., The Important Role of Polysaccharides from a Traditional Chinese Medicine-Lung Cleansing and Detoxifying Decoction against the COVID-19 Pandemic, Carbohydr. Polym,
doi:10.1016/j.carbpol.2020.116346
Catanzaro, Calcabrini, Bishayee, Fimognari, Antitumor Potential of Marine and Freshwater Lectins, Mar. Drugs,
doi:10.3390/md18010011
Chaiklahan, Chirasuwan, Triratana, Loha, Tia et al., Polysaccharide Extraction from Spirulina Sp. and Its Antioxidant Capacity, Int. J. Biol. Macromol,
doi:10.1016/j.ijbiomac.2013.03.046
Chan, Kok, Zhu, Chu, To et al., Genomic Characterization of the 2019 Novel Human-Pathogenic Coronavirus Isolated from a Patient with Atypical Pneumonia after Visiting Wuhan, Emerg. Microbes Infect,
doi:10.1080/22221751.2020.1719902
Chan, Oh, Yuan, Chu, Yeung et al., A Molecularly Engineered, Broad-Spectrum Anti-Coronavirus Lectin Inhibits SARS-CoV-2 and MERS-CoV Infection In Vivo, Cell Rep. Med,
doi:10.1016/j.xcrm.2022.100774
Chattopadhyay, Ghosh, Pujol, Carlucci, Damonte et al., Polysaccharides from Gracilaria corticata: Sulfation, Chemical Characterization and Anti-HSV Activities, Int. J. Biol. Macromol,
doi:10.1016/j.ijbiomac.2008.07.009
Chen, Han, Wang, Zhao, Application Prospect of Polysaccharides in the Development of Anti-Novel Coronavirus Drugs and Vaccines, Int. J. Biol. Macromol,
doi:10.1016/j.ijbiomac.2020.07.106
Chen, Wang, Ha, Yoshitake, White Button Mushroom (Agaricus bisporus) Interrupts Tissue AR-TMPRSS2 Expression and Attenuates Pro-Inflammatory Cytokines in C57BL/6 Mice: Implication for COVID-19 Dietary Intervention, Review
Cheudjeu, The SARS-CoV-2 Entry Inhibition Mechanisms of Serine Protease Inhibitors, OM-85, Heparin and Soluble HS Might Be Linked to HS Attachment Sites, Molecules,
doi:10.3390/molecules27061947
Chiodo, Bruijns, Rodriguez, Li, Molinaro et al., Novel ACE2-Independent Carbohydrate-Binding of SARS-CoV-2 Spike Protein to Host Lectins and Lung Microbiota, bioRxiv,
doi:10.1101/2020.05.13.092478
Climov, Leavitt, Molnár, Orgill, Natural Biomaterials for Skin Tissue Engineering
Coutard, Valle, De Lamballerie, Canard, Seidah et al., The Spike Glycoprotein of the New Coronavirus 2019-NCoV Contains a Furin-like Cleavage Site Absent in CoV of the Same Clade, Antivir. Res,
doi:10.1016/j.antiviral.2020.104742
Daghlas, Mohiuddin, Biochemistry, Glycogen
De Bolle, David, Rees, Vanderleyden, Cammue et al., Cloning and Characterization of a CDNA Encoding an Antimicrobial Chitin-Binding Protein from Amaranth, Amaranthus caudatus, Plant Mol. Biol,
doi:10.1007/BF00028991
Douma, Boualy, Manaut, Hammal, Byadi et al., Sulphated polysaccharides from seaweeds as potential entry inhibitors and vaccine adjuvants against SARS-CoV-2 RBD spike protein: A computational approach, J. Taibah Univ. Sci
Duarte, Cauduro, Noseda, Noseda, Gonçalves et al., The Structure of the Agaran Sulfate from Acanthophora spicifera (Rhodomelaceae, Ceramiales) and Its Antiviral Activity. Relation between Structure and Antiviral Activity in Agarans, Carbohydr. Res,
doi:10.1016/j.carres.2003.09.028
Duarte, Noseda, Noseda, Tulio, Pujol et al., Inhibitory Effect of Sulfated Galactans from the Marine Alga Bostrychia Montagnei on Herpes Simplex Virus Replication In Vitro, Phytomedicine,
doi:10.1078/0944-7113-00007
Dwivedi, Samanta, Sharma, Zhang, Mishra et al., Structural and Kinetic Analyses of Holothurian Sulfated Glycans Suggest Potential Treatment for SARS-CoV-2 Infection, J. Biol. Chem,
doi:10.1016/j.jbc.2021.101207
Dwivedi, Sharma, Farrag, Kim, Fassero et al., Inhibition of SARS-CoV-2 Wild-Type (Wuhan-Hu-1) and Delta (B.1.617.2) Strains by Marine Sulfated Glycans, Glycobiology,
doi:10.1093/glycob/cwac042
Eccles, Meier, Jawad, Weinmüllner, Grassauer et al., Efficacy and Safety of an Antiviral Iota-Carrageenan Nasal Spray: A Randomized, Double-Blind, Placebo-Controlled Exploratory Study in Volunteers with Early Symptoms of the Common Cold, Respir. Res,
doi:10.1186/1465-9921-11-108
Eccles, Winther, Johnston, Robinson, Trampisch et al., Efficacy and Safety of Iota-Carrageenan Nasal Spray versus Placebo in Early Treatment of the Common Cold in Adults: The ICICC Trial, Respir. Res,
doi:10.1186/s12931-015-0281-8
Eo, Kim, Lee, Han, Possible Mode of Antiviral Activity of Acidic Protein Bound Polysaccharide Isolated from Ganoderma lucidum on Herpes Simplex Viruses, J. Ethnopharmacol,
doi:10.1016/S0378-8741(00)00266-X
Fabra, Falcó, Randazzo, Sánchez, López-Rubio, Antiviral and Antioxidant Properties of Active Alginate Edible Films Containing Phenolic Extracts, Food Hydrocoll,
doi:10.1016/j.foodhyd.2018.02.026
Farfour, Lebourgeois, Chenane, Charpentier, Pascreau et al., SARS-CoV-2 Viability and Viral RNA Persistence on Microbiological Agar Plates, J. Hosp. Infect,
doi:10.1016/j.jhin.2022.11.014
Farhana, Khan, Biochemistry, Lipopolysaccharide
Fröba, Große, Setz, Rauch, Auth et al., Iota-Carrageenan Inhibits Replication of SARS-CoV-2 and the Respective Variants of Concern Alpha, Beta, Gamma and Delta, Int. J. Mol. Sci,
doi:10.3390/ijms222413202
Garcia-Ruiz, Villalobos-Sánchez, Alam-Escamilla, Elizondo-Quiroga, In Vitro Inhibition of SARS-CoV-2 Infection by Dry Algae Powders, Sci. Rep,
doi:10.1038/s41598-022-22148-6
García-Castro, Román-Gutiérrez, Castañeda-Ovando, Cariño-Cortés, Acevedo-Sandoval et al., Cereals as a Source of Bioactive Compounds with Anti-Hypertensive Activity and Their Intake in Times of COVID-19, Foods,
doi:10.3390/foods11203231
Ghoneum, Abdulmalek, Fadel, Biobran/MGN-3, an Arabinoxylan Rice Bran, Protects against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An In Vitro and In Silico Study, Nutrients,
doi:10.3390/nu15020453
Graf, Bernkop-Schnürch, Egyed, Koller, Prieschl-Grassauer et al., Development of a Nasal Spray Containing Xylometazoline Hydrochloride and Iota-Carrageenan for the Symptomatic Relief of Nasal Congestion Caused by Rhinitis and Sinusitis, Int. J. Gen. Med,
doi:10.2147/IJGM.S167123
Guimond, Mycroft-West, Gandhi, Tree, Le et al., Synthetic Heparan Sulfate Mimetic Pixatimod (PG545) Potently Inhibits SARS-CoV-2 by Disrupting the Spike-ACE2 Interaction, ACS Cent. Sci,
doi:10.1021/acscentsci.1c01293
Guo, Chen, Gong, Classification, Structure and Mechanism of Antiviral Polysaccharides Derived from Edible and Medicinal Fungus, Int. J. Biol. Macromol,
doi:10.1016/j.ijbiomac.2021.05.139
Gupta, Gupta, Status of Mannose-Binding Lectin (MBL) and Complement System in COVID-19 Patients and Therapeutic Applications of Antiviral Plant MBLs, Mol. Cell Biochem,
doi:10.1007/s11010-021-04107-3
Hassan, Donia, Sial, Zhang, Bokhari, Glycoprotein-and Lectin-Based Approaches for Detection of Pathogens, Pathogens,
doi:10.3390/pathogens9090694
Hayashi, Hayashi, Kojima, A Natural Sulfated Polysaccharide, Calcium Spirulan, Isolated from Spirulina platensis: In Vitro and Ex Vivo Evaluation of Anti-Herpes Simplex Virus and Anti-Human Immunodeficiency Virus Activities, AIDS Res. Hum. Retroviruses,
doi:10.1089/aid.1996.12.1463
Hayashi, Hayashi, Maeda, Kojima, Calcium Spirulan, an Inhibitor of Enveloped Virus Replication, from a Blue-Green Alga Spirulina platensis, J. Nat. Prod,
doi:10.1021/np960017o
Hayashi, Nakano, Hashimoto, Kanekiyo, Hayashi, Defensive Effects of a Fucoidan from Brown Alga Undaria Pinnatifida against Herpes Simplex Virus Infection, Int. Immunopharmacol,
doi:10.1016/j.intimp.2007.10.017
Hemilä, Chalker, Carrageenan Nasal Spray May Double the Rate of Recovery from Coronavirus and Influenza Virus Infections: Re-analysis of Randomized Trial Data, Pharmacol. Res. Perspec,
doi:10.1002/prp2.810
Henrotin, Mathy, Sanchez, Lambert, Chondroitin Sulfate in the Treatment of Osteoarthritis: From In Vitro Studies to Clinical Recommendations, Ther. Adv. Musculoskelet,
doi:10.1177/1759720X10383076
Hippensteel, Lariviere, Colbert, Langouët-Astrié, Schmidt, Heparin as a Therapy for COVID-19: Current Evidence and Future Possibilities, Am. J. Physiol.-Lung Cell. Mol. Physiol,
doi:10.1152/ajplung.00199.2020
Honein, Christie, Rose, Brooks, Meaney-Delman et al., Summary of Guidance for Public Health Strategies to Address High Levels of Community Transmission of SARS-CoV-2 and Related Deaths, December 2020, Morb. Mortal. Wkly. Rep,
doi:10.15585/mmwr.mm6949e2
Hu, Liu, Zhang, Su, Liang, The Application of Biomaterials for the Vaccine, Treatment, and Detection of SARS-CoV-2, ACS Omega,
doi:10.1021/acsomega.3c08326
Islam, A Review of SARS-CoV-2 Variants and Vaccines: Viral Properties, Mutations, Vaccine Efficacy, and Safety, Infect. Med,
doi:10.1016/j.imj.2023.08.005
Jang, Shin, Lee, Kwon, Shin et al., Antiviral Activity of Lambda-Carrageenan against Influenza Viruses and Severe Acute Respiratory Syndrome Coronavirus 2, Sci. Rep,
doi:10.1038/s41598-020-80896-9
Jin, Wang, Ren, Song, Zhang, Structural Analysis of a Heteropolysaccharide from Saccharina Japonica by Electrospray Mass Spectrometry in Tandem with Collision-Induced Dissociation Tandem Mass Spectrometry (ESI-CID-MS/MS), Mar. Drugs,
doi:10.3390/md10102138
Kadam, Álvarez, Tiwari, O'donnell, Extraction of Biomolecules from Seaweeds
Kalasariya, Patel, Gacem, Alsufyani, Reece et al., Marine Alga Ulva fasciata-Derived Molecules for the Potential Treatment of SARS-CoV-2: An In Silico Approach, Mar. Drugs,
doi:10.3390/md20090586
Keyaerts, Vijgen, Pannecouque, Van Damme, Peumans et al., Plant Lectins Are Potent Inhibitors of Coronaviruses by Interfering with Two Targets in the Viral Replication Cycle, Antivir. Res,
doi:10.1016/j.antiviral.2007.03.003
Kim, Jin, Sood, Montgomery, Grant et al., Characterization of Heparin and Severe Acute Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2) Spike Glycoprotein Binding Interactions, Antivir. Res,
doi:10.1016/j.antiviral.2020.104873
Kiselevskiy, Anisimova, Bilan, Usov, Ustyuzhanina et al., Prospects for the Use of Marine Sulfated Fucose-Rich Polysaccharides in Treatment and Prevention of COVID-19 and Post-COVID-19 Syndrome
Koenighofer, Lion, Bodenteich, Prieschl-Grassauer, Grassauer et al., Carrageenan Nasal Spray in Virus Confirmed Common Cold: Individual Patient Data Analysis of Two Randomized Controlled Trials, Multidiscip. Respir. Med,
doi:10.1186/2049-6958-9-57
Krupodorova, Rybalko, Barshteyn, Antiviral Activity of Basidiomycete Mycelia against Influenza Type A (Serotype H1N1) and Herpes Simplex Virus Type 2 in Cell Culture, Virol. Sin,
doi:10.1007/s12250-014-3486-y
Kumar, Nyodu, Maurya, Saxena, Morphology, Genome Organization, Replication, and Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Coronavirus Disease
Lan, Ge, Yu, Shan, Zhou et al., Structure of the SARS-CoV-2 Spike Receptor-Binding Domain Bound to the ACE2 Receptor, Nature,
doi:10.1038/s41586-020-2180-5
Lee, Lee, Cho, Kim, Hong, Study on immunostimulating activity of macrophage treated with purified polysaccharides from liquid culture and fruiting body of Lentinus edodes, J.Microbiol.Biotechnol,
doi:10.4014/jmb.0901.013
Li, Li, Tang, Lin, Xie et al., Fucoidan from Fucus Vesiculosus Suppresses Hepatitis B Virus Replication by Enhancing Extracellular Signal-Regulated Kinase Activation, Virol. J,
doi:10.1186/s12985-017-0848-8
Li, Zhang, Yang, Li, Wang et al., A Novel PTP1B Inhibitor-Phosphate of Polymannuronic Acid Ameliorates Insulin Resistance by Regulating IRS-1/Akt Signaling, Int. J. Mol. Sci,
doi:10.3390/ijms222312693
Liu, Shahed-Al-Mahmud, Chen, Chen, Liao et al., A Carbohydrate-Binding Protein from the Edible Lablab Beans Effectively Blocks the Infections of Influenza Viruses and SARS-CoV-2, Cell Rep,
doi:10.1016/j.celrep.2020.108016
Lu, Yang, Chen, Wang, Zhang, Recent Advances in Antiviral Activities and Potential Mechanisms of Sulfated Polysaccharides, Carbohydr. Polym,
doi:10.1016/j.carbpol.2021.118526
Macneill, Mehrpouyan, Minow, Patterson, Tetlow et al., Starch as a Source, Starch as a Sink: The Bifunctional Role of Starch in Carbon Allocation, J. Exp. Bot,
doi:10.1093/jxb/erx291
Mallakpour, Azadi, Hussain, Chitosan, Alginate, Hyaluronic Acid, Gums, and β-Glucan as Potent Adjuvants and Vaccine Delivery Systems for Viral Threats Including SARS-CoV-2: A Review, Int. J. Biol. Macromol,
doi:10.1016/j.ijbiomac.2021.05.155
Martínez-Alarcón, Blanco-Labra, García-Gasca, Expression of Lectins in Heterologous Systems, Int. J. Mol. Sci,
doi:10.3390/ijms19020616
Mazalovska, Kouokam, Lectins as Promising Therapeutics for the Prevention and Treatment of HIV and Other Potential Coinfections, BioMed Res. Int,
doi:10.1155/2018/3750646
Mazumder, Ghosal, Pujol, Carlucci, Damonte et al., Isolation, Chemical Investigation and Antiviral Activity of Polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta), Int. J. Biol. Macromol,
doi:10.1016/S0141-8130(02)00070-3
Meiers, Dastbaz, Adam, Rasheed, Kirsch et al., Pineapple Lectin AcmJRL Binds SARS-CoV-2 Spike Protein in a Carbohydrate-Dependent Fashion, ChemBioChem,
doi:10.1002/cbic.202200463
Mikhailov, Young, Linhardt, Mayo, Heparin Dodecasaccharide Binding to Platelet Factor-4 and Growth-Related Protein-α, J. Biol. Chem,
doi:10.1074/jbc.274.36.25317
Milewska, Nowak, Owczarek, Szczepanski, Zarebski et al., Entry of Human Coronavirus NL63 into the Cell, J. Virol,
doi:10.1128/JVI.01933-17
Millet, Séron, Labitt, Danneels, Palmer et al., Middle East Respiratory Syndrome Coronavirus Infection Is Inhibited by Griffithsin, Antivir. Res,
doi:10.1016/j.antiviral.2016.07.011
Miro Ńczuk-Chodakowska, Kujawowicz, Witkowska, Beta-Glucans from Fungi: Biological and Health-Promoting Potential in the COVID-19 Pandemic Era, Nutrients,
doi:10.3390/nu13113960
Mizumoto, Kwok, Whitelock, Li, Perris, Editorial: Roles of Chondroitin Sulfate and Dermatan Sulfate as Regulators for Cell and Tissue Development, Front. Cell Dev. Biol,
doi:10.3389/fcell.2022.941178
Mohammed, Naveed, Jost, Polysaccharides, Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities), J. Polym. Environ,
doi:10.1007/s10924-021-02052-2
Morin-Crini, Lichtfouse, Torri, Crini, Applications of Chitosan in Food, Pharmaceuticals, Medicine, Cosmetics, Agriculture, Textiles, Pulp and Paper, Biotechnology, and Environmental Chemistry, Environ. Chem. Lett,
doi:10.1007/s10311-019-00904-x
Morokutti-Kurz, Fröba, Graf, Große, Grassauer et al., Iota-Carrageenan Neutralizes SARS-CoV-2 and Inhibits Viral Replication In Vitro, PLoS ONE,
doi:10.1371/journal.pone.0237480
Mukherjee, Efferth, Das, Kar, Ghosh et al., Role of Medicinal Plants in Inhibiting SARS-CoV-2 and in the Management of Post-COVID-19 Complications, Phytomedicine,
doi:10.1016/j.phymed.2022.153930
Murphy, Fehrenbach, Abidin, Buckley, Montgomery et al., Polysaccharides-Naturally Occurring Immune Modulators, Polymers,
doi:10.3390/polym15102373
Murphy, Masterson, Rezoagli, O'toole, Major et al., β-Glucan Extracts from the Same Edible Shiitake Mushroom Lentinus edodes Produce Differential In-Vitro Immunomodulatory and Pulmonary Cytoprotective Effects-Implications for Coronavirus Disease (COVID-19) Immunotherapies, Sci. Total Environ,
doi:10.1016/j.scitotenv.2020.139330
Mycroft-West, Su, Pagani, Rudd, Elli et al., Heparin Inhibits Cellular Invasion by SARS-CoV-2: Structural Dependence of the Interaction of the Spike S1 Receptor-Binding Domain with Heparin, Thromb. Haemost,
doi:10.1055/s-0040-1721319
Möller, Theiß, Deinert, Golat, Heinze et al., High-Sulfated Glycosaminoglycans Prevent Coronavirus Replication, Viruses,
doi:10.3390/v14020413
Nabi-Afjadi, Heydari, Zalpoor, Arman, Sadoughi et al., Lectins and Lectibodies: Potential Promising Antiviral Agents, Cell Mol. Biol. Lett,
doi:10.1186/s11658-022-00338-4
Nasrollahzadeh, Sajjadi, Nezafat, Shafiei, Polysaccharide Biopolymer Chemistry
Nguyen, Chen, Hu, Wang, Fan et al., In Vitro Antiviral Activity of Sulfated Auricularia Auricula Polysaccharides, Carbohydr. Polym,
doi:10.1016/j.carbpol.2012.06.060
Nikly, Nalbantova, Karcheva-Bahchevanska, Ivanova, Pierre et al., Polysaccharides and Their Derivatives as Potential Antiviral Molecules, Viruses,
doi:10.3390/v14020426
Nikonenko, Buslov, Sushko, Zhbankov, Spectroscopic Manifestation of Stretching Vibrations of Glycosidic Linkage in Polysaccharides, J. Mol. Struct,
doi:10.1016/j.molstruc.2005.05.015
Niyigaba, Liu, De Dieu Habimana, The Extraction, Functionalities and Applications of Plant Polysaccharides in Fermented Foods: A Review, Foods,
doi:10.3390/foods10123004
Nizet, Varki, Aebi, Microbial Lectins: Hemagglutinins, Adhesins and Toxins
O'keefe, Giomarelli, Barnard, Shenoy, Chan et al., Broad-Spectrum In Vitro Activity and In Vivo Efficacy of the Antiviral Protein Griffithsin against Emerging Viruses of the Family Coronaviridae, J. Virol,
doi:10.1128/JVI.02322-09
Onishi, St Ange, Dordick, Linhardt, Heparin and anticoagulation, Front. Biosci
Painter, Algal polysaccharides, Polysaccharides
Panggabean, Adiguna, Rahmawati, Ahmadi, Zainuddin et al., Antiviral Activities of Algal-Based Sulfated Polysaccharides, Molecules,
doi:10.3390/molecules27041178
Peysselon, Ricard-Blum, Heparin-Protein Interactions: From Affinity and Kinetics to Biological Roles. Application to an Interaction Network Regulating Angiogenesis, Matrix Biol,
doi:10.1016/j.matbio.2013.11.001
Pozzi, Vanet, Francesconi, Tagliazucchi, Tassone et al., Anti-SARS-CoV-2 Leads, Drugs, and the Drug Discovery-Genetics Alliance Perspective, J. Med. Chem,
doi:10.1021/acs.jmedchem.2c01229
Qiang, Cai, Ao, Li, Chen et al., Polysaccharides from Chinese Materia Medica: Perspective towards Cancer Management, Int. J. Biol. Macromol,
doi:10.1016/j.ijbiomac.2022.10.139
Queisser, Mellema, Middleton, Portier, Manne et al., COVID-19 Generates Hyaluronan Fragments That Directly Induce Endothelial Barrier Dysfunction, JCI Insight,
doi:10.1172/jci.insight.147472
Rahman, Islam, Shohag, Hossain, Shah et al., Multifaceted Role of Natural Sources for COVID-19 Pandemic as Marine Drugs, Environ. Sci. Pollut. Res,
doi:10.1007/s11356-022-20328-5
Rai, Wypij, Ingle, Trzci Ńska-Wencel, Goli Ńska, Emerging Trends in Pullulan-Based Antimicrobial Systems for Various Applications, Int. J. Mol. Sci,
doi:10.3390/ijms222413596
Ratha, Renuka, Rawat, Bux, Prospective Options of Algae-Derived Nutraceuticals as Supplements to Combat COVID-19 and Human Coronavirus Diseases, Nutrition,
doi:10.1016/j.nut.2020.111089
Ray, Ali, Jana, Mukherjee, Pal et al., Antiviral Strategies Using Natural Source-Derived Sulfated Polysaccharides in the Light of the COVID-19 Pandemic and Major Human Pathogenic Viruses, Viruses,
doi:10.3390/v14010035
Ren, Bai, Zhang, Cai, Del Rio Flores, The Preparation and Structure Analysis Methods of Natural Polysaccharides of Plants and Fungi: A Review of Recent Development, Molecules,
doi:10.3390/molecules24173122
Rincão, Yamamoto, Silva Ricardo, Soares, Paccola Meirelles et al., Polysaccharide and Extracts from Lentinula Edodes: Structural Features and Antiviral Activity, Virol. J,
doi:10.1186/1743-422X-9-37
Salih, Thissera, Yaseen, Hassane, El-Seedi et al., Marine Sulfated Polysaccharides as Promising Antiviral Agents: A Comprehensive Report and Modeling Study Focusing on SARS CoV-2, Mar. Drugs,
doi:10.3390/md19080406
Santacroce, Charitos, Carretta, De Nitto, Lovero, The Human Coronaviruses (HCoVs) and the Molecular Mechanisms of SARS-CoV-2 Infection, J. Mol. Med,
doi:10.1007/s00109-020-02012-8
Santos, Da Silva, Napoleão, Paiva, Correia et al., Function, structure, biological properties and potential applications, Curr. Top. Pept. Protein Res
Sarkar, Paul, Singh, Chowdhury, Nag et al., A Novel Plant Lectin, NTL-125, Interferes with SARS-CoV-2 Interaction with HACE2, Virus Res,
doi:10.1016/j.virusres.2022.198768
Saxena, Ed, Medical Virology: From Pathogenesis to Disease Control
Schütz, Conzelmann, Fois, Groß, Weil et al., Carrageenan-Containing over-the-Counter Nasal and Oral Sprays Inhibit SARS-CoV-2 Infection of Airway Epithelial Cultures, Am. J. Physiol.-Lung Cell. Mol. Physiol,
doi:10.1152/ajplung.00552.2020
Sen, Chakraborty, Mandal, Bhanja, Patra et al., A Review on Antiviral and Immunomodulatory Polysaccharides from Indian Medicinal Plants, Which May Be Beneficial to COVID-19 Infected Patients, Int. J. Biol. Macromol,
doi:10.1016/j.ijbiomac.2021.03.162
Sendi, Razonable, Nelson, Soriano, Gandhi, First-Generation Oral Antivirals against SARS-CoV-2, Clin. Microbiol. Infect,
doi:10.1016/j.cmi.2022.04.015
Serrano-Aroca, Ferrandis-Montesinos, Wang, Antiviral Properties of Alginate-Based Biomaterials: Promising Antiviral Agents against SARS-CoV-2, ACS Appl. Bio Mater,
doi:10.1021/acsabm.1c00523
Shah, Hassan, Bungau, Si, Xu et al., Chemically Diverse and Biologically Active Secondary Metabolites from Marine Phylum chlorophyta, Mar. Drugs,
doi:10.3390/md18100493
Sharma, Shahid, Banerjee, Kumar, Emerging Insights into the Structure-Activity Relationship of Water-Soluble Polysaccharides in Antiviral Therapy, Eur. J. Med. Chem. Rep,
doi:10.1016/j.ejmcr.2023.100122
Shefer, Robin, Chemodanov, Lebendiker, Bostwick et al., Fighting SARS-CoV-2 with Green Seaweed Ulva Sp. Extract: Extraction Protocol Predetermines Crude Ulvan Extract Anti-SARS-CoV-2 Inhibition Properties in In Vitro Vero-E6 Cells Assay, PeerJ,
doi:10.7717/peerj.12398
Shi, Bu, He, Song, Dordick et al., Structural Characteristics of Heparin Binding to SARS-CoV-2 Spike Protein RBD of Omicron Sub-Lineages BA, BA.4 and BA,
doi:10.3390/v14122696
Sholzberg, Tang, Rahhal, Alhamzah, Kreuziger et al., Effectiveness of Therapeutic Heparin versus Prophylactic Heparin on Death, Mechanical Ventilation, or Intensive Care Unit Admission in Moderately Ill Patients with COVID-19 Admitted to Hospital: RAPID Randomised Clinical Trial, BMJ,
doi:10.1136/bmj.n2400
Song, Peng, Wang, Liu, Dong et al., Inhibitory Activities of Marine Sulfated Polysaccharides against SARS-CoV-2, Food Funct,
doi:10.1039/D0FO02017F
Song, Shang, Ratner, Polysaccharides, None
Spoială, Ilie, Ficai, Ficai, Andronescu, From Biomedical Applications of Alginate towards CVD Implications Linked to COVID-19, Pharmaceuticals,
doi:10.3390/ph15030318
Spyropoulos, Goldin, Giannis, Diab, Wang et al., Efficacy and Safety of Therapeutic-Dose Heparin vs Standard Prophylactic or Intermediate-Dose Heparins for Thromboprophylaxis in High-Risk Hospitalized Patients with COVID-19: The HEP-COVID Randomized Clinical Trial, JAMA Intern. Med,
doi:10.1001/jamainternmed.2021.6203
Sriwilaijaroen, Suzuki, Host Receptors of Influenza Viruses and Coronaviruses-Molecular Mechanisms of Recognition, Vaccines,
doi:10.3390/vaccines8040587
Sun, Huang, Sun, Deng, Chien et al., Cationic Pullulan Nanogel as a Safe and Effective Nasal Vaccine Delivery System for Respiratory Infectious Diseases, Hum. Vaccines Immunother,
doi:10.1080/21645515.2018.1461298
Surya, Deepti, Elyas, Plant Lectins: Sugar-Binding Properties and Biotechnological Applications
Tandon, Sharp, Zhang, Pomin, Ashpole et al., Effective Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin Derivatives, J. Virol,
doi:10.1128/JVI.01987-20
Thirumalaisamy, Aroulmoji, Iqbal, Deepa, Sivasankar et al., Molecular Insights of Hyaluronic Acid-Hydroxychloroquine Conjugate as a Promising Drug in Targeting SARS-CoV-2 Viral Proteins, J. Mol. Struct,
doi:10.1016/j.molstruc.2021.130457
Tian, Parsons, Jankowska, Cipollo, Site-Specific Glycosylation Patterns of the SARS-CoV-2 Spike Protein Derived From Recombinant Protein and Viral WA1 and D614G Strains, Front. Chem,
doi:10.3389/fchem.2021.767448
Torres, Troncoso, Pisani, Gatto, Bardi, Natural Polysaccharide Nanomaterials: An Overview of Their Immunological Properties, Int. J. Mol. Sci,
doi:10.3390/ijms20205092
Tree, Turnbull, Buttigieg, Elmore, Coombes et al., Unfractionated Heparin Inhibits Live Wild Type SARS-CoV-2 Cell Infectivity at Therapeutically Relevant Concentrations, Br. J. Pharmacol,
doi:10.1111/bph.15304
Ullah, Khalil, Shaukat, Song, Sources, Extraction and Biomedical Properties of Polysaccharides, Foods,
doi:10.3390/foods8080304
Usman, Rasheed, Lectins and Polysaccharides against SARS-CoV-2
V'kovski, Kratzel, Steiner, Stalder, Thiel, Coronavirus Biology and Replication: Implications for SARS-CoV-2, Nat. Rev. Microbiol,
doi:10.1038/s41579-020-00468-6
Van Damme, Lectins as Tools to Select for Glycosylated Proteins
Van Damme, Plant Lectins: A Composite of Several Distinct Families of Structurally and Evolutionary Related Proteins with Diverse Biological Roles, Crit. Rev. Plant Sci,
doi:10.1016/S0735-2689(98)00365-7
Van Kooyk, Rabinovich, Protein-Glycan Interactions in the Control of Innate and Adaptive Immune Responses, Nat. Immunol,
doi:10.1038/ni.f.203
Venugopal, Marine Polysaccharides
Wang, Li, Wu, Hu, Wu et al., Lentil Lectin Derived from Lens culinaris Exhibit Broad Antiviral Activities against SARS-CoV-2 Variants, Emerg. Microbes Infect,
doi:10.1080/22221751.2021.1957720
Wang, Wu, Zhang, Hao, Zhao et al., Inhibition of Influenza A Virus Infection by Fucoidan Targeting Viral Neuraminidase and Cellular EGFR Pathway, Sci. Rep,
doi:10.1038/srep40760
Watanabe, Takeda, Hiemori, Minamisawa, Tateno, A Glycosaminoglycan Microarray Identifies the Binding of SARS-CoV-2 Spike Protein to Chondroitin Sulfate E, FEBS Lett,
doi:10.1002/1873-3468.14173
Wei, Fu, Wang, Yang, Zhao et al., Advances in Research on Antiviral Activities of Sulfated Polysaccharides from Seaweeds, Pharmaceuticals,
doi:10.3390/ph15050581
Xia, Zhang, Davletshin, Li, You et al., Application of Polysaccharide Biopolymer in Petroleum Recovery, Polymers,
doi:10.3390/polym12091860
Xin, Geng, Guan, Li, Study on the Mechanism of Inhibitory Action of 911 on Replication of HIV-1 In Vitro, Chin. J. Mar. Drugs
Yang, Hughes, Kelkar, Yu, Cheng et al., Inhibition of SARS-CoV-2 Viral Entry upon Blocking N-and O-Glycan Elaboration, eLife,
doi:10.7554/eLife.61552
Yang, Li, Wang, Xu, Wang et al., Inhibitory Activities of Alginate Phosphate and Sulfate Derivatives against SARS-CoV-2 In Vitro, Int. J. Biol. Macromol,
doi:10.1016/j.ijbiomac.2022.11.311
Yang, Tong, Chen, Yu, Human Identical Sequences, Hyaluronan, and Hymecromone-The New Mechanism and Management of COVID-19, Mol. Biomed,
doi:10.1186/s43556-022-00077-0
Zayed, Ulber, Fucoidans, Fehse, Zvyagintseva et al., Downstream Processes and Recent Applications, Mar. Drugs,
doi:10.3390/md11083000
Zeng, Li, Chen, Zhang, The Structures and Biological Functions of Polysaccharides from Traditional Chinese Herbs, Prog. Mol. Biol. Transl. Sci
Zhang, Cui, Feng, Jiao, Jia, Lentinus edodes Polysaccharides Alleviate Acute Lung Injury by Inhibiting Oxidative Stress and Inflammation, Molecules,
doi:10.3390/molecules27217328
Zhang, Xiang, Huo, Zhou, Jiang et al., Molecular Mechanism of Interaction between SARS-CoV-2 and Host Cells and Interventional Therapy, Sig Transduct. Target. Ther,
doi:10.1038/s41392-021-00653-w
Zhao, Zhang, Liu, Wang, Analysis of Chondroitin Sulfate from Different Sources of Cartilage by Electrophoretically Mediated Microanalysis, RSC Adv,
doi:10.1039/C5RA05576H
Álvarez-Viñas, Souto, Flórez-Fernández, Torres, Bandín et al., Antiviral Activity of Carrageenans and Processing Implications, Mar. Drugs,
doi:10.3390/md19080437
{ 'indexed': {'date-parts': [[2024, 4, 11]], 'date-time': '2024-04-11T00:31:20Z', 'timestamp': 1712795480890},
'reference-count': 206,
'publisher': 'MDPI AG',
'issue': '2',
'license': [ { 'start': { 'date-parts': [[2024, 4, 9]],
'date-time': '2024-04-09T00:00:00Z',
'timestamp': 1712620800000},
'content-version': 'vor',
'delay-in-days': 0,
'URL': 'https://creativecommons.org/licenses/by/4.0/'}],
'content-domain': {'domain': [], 'crossmark-restriction': False},
'abstract': '<jats:p>Infection with the novel coronavirus SARS-CoV-2, the cause of coronavirus disease '
'(COVID-19), has emerged as a global pandemic, with a high toll on casualties, economic '
'impact, and human lifestyle. Despite the recent approval of various vaccines against the '
'virus, challenges remain, including the limited availability of these vaccines, the prevalent '
'rejection of vaccination by a large proportion of the population, and the recurrent '
'appearance of new variants of the virus due to mutations. This context raises the alarm for '
'scientists and clinicians to seek alternative and complementary therapies. In this context, '
'natural products and their derivatives serve as reservoirs for potential therapeutic '
'compounds that can be exploited in the research and production of antiviral drugs against '
'COVID-19. Among these substances, lectin and polysaccharides isolated from fauna and flora '
'emerge as complementary strategies for treating coronavirus infection. The review objective '
'is to cover and analyze the specific role of polysaccharides and lectins and their synergy in '
'the fight against this deadly SARS-CoV-2 virus. For this purpose, a primary literature search '
'was conducted on Google Scholar, PubMed, and Web of Sciences using relevant keywords like '
'“SARS-CoV-2 Variants”; “Antiviral Strategies”; “Antiviral Polysaccharides”; “Antiviral '
'Lectins”; and “Synergistic effect”. The results demonstrate that lectins and polysaccharides '
'exhibit antiviral activities against SARS-CoV-2 via mechanisms related to binding and steric '
'blocking, the binding of glycan-based decoys, chemical reactions, virus particle disruption '
'strategies, and steric blocking for competitive inhibition to block SARS-CoV-2 and its '
'variants’ entry. In addition, this review analyzes the rationale behind combining '
'polysaccharides and lectins, emphasizing complementary mechanisms of action. By '
'simultaneously targeting multiple stages of the viral life cycle, this dual strategy aims to '
'comprehensively inhibit viral propagation and enhance the durability of antiviral strategies '
'over time.</jats:p>',
'DOI': '10.3390/microbiolres15020035',
'type': 'journal-article',
'created': {'date-parts': [[2024, 4, 9]], 'date-time': '2024-04-09T14:08:50Z', 'timestamp': 1712671730000},
'page': '525-549',
'source': 'Crossref',
'is-referenced-by-count': 0,
'title': 'Polysaccharides and Lectins: A Natural Complementary Approach against the SARS-CoV-2 Pandemic',
'prefix': '10.3390',
'volume': '15',
'author': [ { 'given': 'Radu',
'family': 'Lefter',
'sequence': 'first',
'affiliation': [ { 'name': 'Biomedical Research Center, Romanian Academy, Iași Branch, 8th '
'Carol I Avenue, 700506 Iași, Romania'}]},
{ 'ORCID': 'http://orcid.org/0000-0003-0137-105X',
'authenticated-orcid': False,
'given': 'Prairna',
'family': 'Balyan',
'sequence': 'additional',
'affiliation': [ { 'name': 'Department of Life Sciences, University of Mumbai, Vidyanagari, '
'Santacruz (E), Mumbai 400098, India'}]},
{ 'given': 'Ioana-Miruna',
'family': 'Balmus',
'sequence': 'additional',
'affiliation': [ { 'name': 'Department of Exact Sciences and Natural Sciences, Institute of '
'Interdisciplinary Research, Alexandru Ioan Cuza University of '
'Iași, 700057 Iași, Romania'},
{ 'name': 'CENEMED Platform for Interdisciplinary Research, Grigore T. Popa '
'University of Medicine and Pharmacy, University St. 16th, 700115 '
'Iași, Romania'}]},
{ 'given': 'Abdellah',
'family': 'Ech-Chahad',
'sequence': 'additional',
'affiliation': [ { 'name': 'Laboratory of Physical Chemistry of Processes and Materials, '
'Faculty of Sciences and Techniques, Hassan First University, '
'B.P. 539, Settat 26000, Morocco'}]},
{ 'ORCID': 'http://orcid.org/0000-0003-4467-5387',
'authenticated-orcid': False,
'given': 'Ahmad',
'family': 'Ali',
'sequence': 'additional',
'affiliation': [ { 'name': 'Department of Life Sciences, University of Mumbai, Vidyanagari, '
'Santacruz (E), Mumbai 400098, India'}]},
{ 'given': 'Alin',
'family': 'Ciobica',
'sequence': 'additional',
'affiliation': [ { 'name': 'Department of Biology, Faculty of Biology, Alexandru Ioan Cuza '
'University of Iași, Bd. Carol I No. 20A, 700505 Iași, Romania'},
{ 'name': 'Center of Biomedical Research, Romanian Academy, Iași Branch, '
'Teodor Codrescu 2, 700481 Iași, Romania'},
{ 'name': 'Academy of Romanian Scientists, Str. Splaiul Independentei No. '
'54, Sector 5, 050094 Bucharest, Romania'}]},
{ 'ORCID': 'http://orcid.org/0000-0002-1239-8058',
'authenticated-orcid': False,
'given': 'Antoneta Dacia',
'family': 'Petroaie',
'sequence': 'additional',
'affiliation': [ { 'name': 'Faculty of Medicine, Grigore T. Popa University of Medicine and '
'Pharmacy, 700115 Iași, Romania'}]},
{ 'given': 'Gabriela',
'family': 'Halitchi',
'sequence': 'additional',
'affiliation': [ { 'name': 'Preclinical Department, Apollonia University, Păcurari Street '
'11, 700511 Iași, Romania'}]},
{ 'given': 'Bogdan',
'family': 'Novac',
'sequence': 'additional',
'affiliation': [ { 'name': 'Faculty of Medicine, Grigore T. Popa University of Medicine and '
'Pharmacy, 700115 Iași, Romania'}]},
{ 'ORCID': 'http://orcid.org/0009-0008-4979-1057',
'authenticated-orcid': False,
'given': 'Catalina',
'family': 'Ionescu',
'sequence': 'additional',
'affiliation': [ { 'name': 'Department of Biology, Faculty of Biology, Alexandru Ioan Cuza '
'University of Iași, Bd. Carol I No. 20A, 700505 Iași, Romania'},
{ 'name': 'Preclinical Department, Apollonia University, Păcurari Street '
'11, 700511 Iași, Romania'}]},
{ 'ORCID': 'http://orcid.org/0000-0001-5748-8500',
'authenticated-orcid': False,
'given': 'Fatima Zahra',
'family': 'Kamal',
'sequence': 'additional',
'affiliation': [ { 'name': 'Laboratory of Physical Chemistry of Processes and Materials, '
'Faculty of Sciences and Techniques, Hassan First University, '
'B.P. 539, Settat 26000, Morocco'},
{ 'name': 'Higher Institute of Nursing Professions and Health Technical '
'(ISPITS), Marrakech 40000, Morocco'}]}],
'member': '1968',
'published-online': {'date-parts': [[2024, 4, 9]]},
'reference': [ { 'key': 'ref_1',
'doi-asserted-by': 'crossref',
'first-page': '394',
'DOI': '10.24171/j.phrp.2022.0155',
'article-title': 'SARS-CoV-2 in Brief: From Virus to Prevention',
'volume': '13',
'author': 'Karami',
'year': '2022',
'journal-title': 'Osong Public Health Res. Perspect.'},
{ 'key': 'ref_2',
'first-page': 'e51497',
'article-title': 'Navigating Novel Uncertainties of COVID-19: The Rise of the JN.1 '
'Variant',
'volume': '16',
'author': 'Altamimi',
'year': '2024',
'journal-title': 'Cureus'},
{ 'key': 'ref_3',
'doi-asserted-by': 'crossref',
'first-page': '5175',
'DOI': '10.1021/acsomega.3c08326',
'article-title': 'The Application of Biomaterials for the Vaccine, Treatment, and '
'Detection of SARS-CoV-2',
'volume': '9',
'author': 'Hu',
'year': '2024',
'journal-title': 'ACS Omega'},
{ 'key': 'ref_4',
'doi-asserted-by': 'crossref',
'unstructured': 'Amit, A.M.L., Pepito, V.C.F., Sumpaico-Tanchanco, L., and Dayrit, M.M. '
'(2022). COVID-19 vaccine brand hesitancy and other challenges to '
'vaccination in the Philippines. PLoS Glob. Public Health, 2.',
'DOI': '10.1371/journal.pgph.0000165'},
{ 'key': 'ref_5',
'doi-asserted-by': 'crossref',
'first-page': '62',
'DOI': '10.1007/s13278-023-01059-y',
'article-title': 'COVID-19 Vaccine Rejection Causes Based on Twitter People’s Opinions '
'Analysis Using Deep Learning',
'volume': '13',
'author': 'Alotaibi',
'year': '2023',
'journal-title': 'Soc. Netw. Anal. Min.'},
{ 'key': 'ref_6',
'doi-asserted-by': 'crossref',
'first-page': '247',
'DOI': '10.1016/j.imj.2023.08.005',
'article-title': 'A Review of SARS-CoV-2 Variants and Vaccines: Viral Properties, '
'Mutations, Vaccine Efficacy, and Safety',
'volume': '2',
'author': 'Islam',
'year': '2023',
'journal-title': 'Infect. Med.'},
{ 'key': 'ref_7',
'unstructured': 'Bah, C.S.F., Fang, E.F., and Ng, T.B. (2013). Antitumor Potential and '
'Other Emerging Medicinal Properties of Natural Compounds, Springer.'},
{ 'key': 'ref_8',
'first-page': '100122',
'article-title': 'Emerging Insights into the Structure-Activity Relationship of '
'Water-Soluble Polysaccharides in Antiviral Therapy',
'volume': '10',
'author': 'Sharma',
'year': '2024',
'journal-title': 'Eur. J. Med. Chem. Rep.'},
{ 'key': 'ref_9',
'doi-asserted-by': 'crossref',
'unstructured': 'Usman, Τ., and Rasheed, A. (2023). Lectins and Polysaccharides against '
'SARS-CoV-2, Elsevier.',
'DOI': '10.1016/B978-0-323-95047-3.00013-7'},
{ 'key': 'ref_10',
'doi-asserted-by': 'crossref',
'first-page': '707',
'DOI': '10.1016/S0959-440X(99)00034-2',
'article-title': 'Lectins',
'volume': '9',
'author': 'Vijayan',
'year': '1999',
'journal-title': 'Curr. Opin. Struct. Biol.'},
{ 'key': 'ref_11',
'doi-asserted-by': 'crossref',
'unstructured': 'Murphy, E.J., Fehrenbach, G.W., Abidin, I.Z., Buckley, C., Montgomery, '
'T., Pogue, R., Murray, P., Major, I., and Rezoagli, E. (2023). '
'Polysaccharides—Naturally Occurring Immune Modulators. Polymers, 15.',
'DOI': '10.3390/polym15102373'},
{ 'key': 'ref_12',
'doi-asserted-by': 'crossref',
'first-page': '1860',
'DOI': '10.15585/mmwr.mm6949e2',
'article-title': 'Summary of Guidance for Public Health Strategies to Address High Levels '
'of Community Transmission of SARS-CoV-2 and Related Deaths, December '
'2020',
'volume': '69',
'author': 'Honein',
'year': '2020',
'journal-title': 'Morb. Mortal. Wkly. Rep.'},
{ 'key': 'ref_13',
'doi-asserted-by': 'crossref',
'first-page': '93',
'DOI': '10.1007/s00109-020-02012-8',
'article-title': 'The Human Coronaviruses (HCoVs) and the Molecular Mechanisms of '
'SARS-CoV-2 Infection',
'volume': '99',
'author': 'Santacroce',
'year': '2021',
'journal-title': 'J. Mol. Med.'},
{ 'key': 'ref_14',
'doi-asserted-by': 'crossref',
'first-page': '582287',
'DOI': '10.3389/fvets.2020.582287',
'article-title': 'The Coronaviruses of Animals and Birds: Their Zoonosis, Vaccines, and '
'Models for SARS-CoV and SARS-CoV2',
'volume': '7',
'author': 'Alluwaimi',
'year': '2020',
'journal-title': 'Front. Vet. Sci.'},
{ 'key': 'ref_15',
'doi-asserted-by': 'crossref',
'first-page': '333',
'DOI': '10.30802/AALAS-CM-21-000007',
'article-title': 'Overview of Coronaviruses in Veterinary Medicine',
'volume': '71',
'author': 'Compton',
'year': '2021',
'journal-title': 'Comp. Med.'},
{ 'key': 'ref_16',
'doi-asserted-by': 'crossref',
'unstructured': 'Saxena, S.K. (2020). Coronavirus Disease 2019 (COVID-19), Springer. '
'Medical Virology: From Pathogenesis to Disease Control.',
'DOI': '10.1007/978-981-15-4814-7'},
{ 'key': 'ref_17',
'doi-asserted-by': 'crossref',
'unstructured': 'Bhattacharyya, P., Das, S., Aich, S. (2021). COVID-19: Morphology and '
'Mechanism of the SARS-CoV-2, Global Outbreak, Medication, Vaccines and '
'Future of the Virus. Front. Biosci., 13.',
'DOI': '10.52586/E884'},
{ 'key': 'ref_18',
'doi-asserted-by': 'crossref',
'first-page': '3',
'DOI': '10.1038/s41580-021-00418-x',
'article-title': 'Mechanisms of SARS-CoV-2 Entry into Cells',
'volume': '23',
'author': 'Jackson',
'year': '2022',
'journal-title': 'Nat. Rev. Mol. Cell Biol.'},
{ 'key': 'ref_19',
'doi-asserted-by': 'crossref',
'unstructured': 'Sriwilaijaroen, N., and Suzuki, Y. (2020). Host Receptors of Influenza '
'Viruses and Coronaviruses—Molecular Mechanisms of Recognition. Vaccines, '
'8.',
'DOI': '10.3390/vaccines8040587'},
{ 'key': 'ref_20',
'doi-asserted-by': 'crossref',
'first-page': '905',
'DOI': '10.1007/s10096-020-04138-6',
'article-title': 'COVID-19: Angiotensin-Converting Enzyme 2 (ACE2) Expression and Tissue '
'Susceptibility to SARS-CoV-2 Infection',
'volume': '40',
'author': 'Beyerstedt',
'year': '2021',
'journal-title': 'Eur. J. Clin. Microbiol. Infect. Dis.'},
{ 'key': 'ref_21',
'doi-asserted-by': 'crossref',
'first-page': '155',
'DOI': '10.1038/s41579-020-00468-6',
'article-title': 'Coronavirus Biology and Replication: Implications for SARS-CoV-2',
'volume': '19',
'author': 'Kratzel',
'year': '2021',
'journal-title': 'Nat. Rev. Microbiol.'},
{ 'key': 'ref_22',
'doi-asserted-by': 'crossref',
'first-page': '233',
'DOI': '10.1038/s41392-021-00653-w',
'article-title': 'Molecular Mechanism of Interaction between SARS-CoV-2 and Host Cells '
'and Interventional Therapy',
'volume': '6',
'author': 'Zhang',
'year': '2021',
'journal-title': 'Sig Transduct. Target. Ther.'},
{ 'key': 'ref_23',
'doi-asserted-by': 'crossref',
'first-page': '241',
'DOI': '10.1186/s12985-023-02210-z',
'article-title': 'What Are the Current Anti-COVID-19 Drugs? From Traditional to Smart '
'Molecular Mechanisms',
'volume': '20',
'author': 'Mahmoud',
'year': '2023',
'journal-title': 'Virol. J.'},
{ 'key': 'ref_24',
'doi-asserted-by': 'crossref',
'unstructured': 'Ren, Y., Bai, Y., Zhang, Z., Cai, W., and Del Rio Flores, A. (2019). The '
'Preparation and Structure Analysis Methods of Natural Polysaccharides of '
'Plants and Fungi: A Review of Recent Development. Molecules, 24.',
'DOI': '10.3390/molecules24173122'},
{ 'key': 'ref_25',
'doi-asserted-by': 'crossref',
'first-page': '480',
'DOI': '10.3390/polysaccharides3030029',
'article-title': 'Polysaccharides: Sources, Characteristics, Properties, and Their '
'Application in Biodegradable Films',
'volume': '3',
'year': '2022',
'journal-title': 'Polysaccharides'},
{ 'key': 'ref_26',
'doi-asserted-by': 'crossref',
'unstructured': 'Torres, F.G., Troncoso, O.P., Pisani, A., Gatto, F., and Bardi, G. '
'(2019). Natural Polysaccharide Nanomaterials: An Overview of Their '
'Immunological Properties. Int. J. Mol. Sci., 20.',
'DOI': '10.3390/ijms20205092'},
{ 'key': 'ref_27',
'doi-asserted-by': 'crossref',
'first-page': '2359',
'DOI': '10.1007/s10924-021-02052-2',
'article-title': 'Polysaccharides; Classification, Chemical Properties, and Future '
'Perspective Applications in Fields of Pharmacology and Biological '
'Medicine (A Review of Current Applications and Upcoming Potentialities)',
'volume': '29',
'author': 'Mohammed',
'year': '2021',
'journal-title': 'J. Polym. Environ.'},
{ 'key': 'ref_28',
'doi-asserted-by': 'crossref',
'first-page': '195',
'DOI': '10.1016/B978-0-12-065602-8.50009-1',
'article-title': 'Algal polysaccharides',
'volume': '2',
'author': 'Painter',
'year': '1983',
'journal-title': 'Polysaccharides'},
{ 'key': 'ref_29',
'doi-asserted-by': 'crossref',
'unstructured': 'Venugopal, V. (2016). Marine Polysaccharides, CRC Press.',
'DOI': '10.1201/b10516'},
{ 'key': 'ref_30',
'doi-asserted-by': 'crossref',
'first-page': '496',
'DOI': '10.1016/j.ijbiomac.2022.10.139',
'article-title': 'Polysaccharides from Chinese Materia Medica: Perspective towards Cancer '
'Management',
'volume': '224',
'author': 'Qiang',
'year': '2023',
'journal-title': 'Int. J. Biol. Macromol.'},
{ 'key': 'ref_31',
'doi-asserted-by': 'crossref',
'first-page': '20',
'DOI': '10.1016/j.molstruc.2005.05.015',
'article-title': 'Spectroscopic Manifestation of Stretching Vibrations of Glycosidic '
'Linkage in Polysaccharides',
'volume': '752',
'author': 'Nikonenko',
'year': '2005',
'journal-title': 'J. Mol. Struct.'},
{ 'key': 'ref_32',
'doi-asserted-by': 'crossref',
'unstructured': 'BeMiller, J.N. (2019). Carbohydrate Chemistry for Food Scientists, '
'Elsevier.',
'DOI': '10.1016/B978-0-12-812069-9.05001-9'},
{ 'key': 'ref_33',
'doi-asserted-by': 'crossref',
'first-page': '16',
'DOI': '10.1104/pp.17.01541',
'article-title': 'Diffuse Growth of Plant Cell Walls',
'volume': '176',
'author': 'Cosgrove',
'year': '2018',
'journal-title': 'Plant Physiol.'},
{ 'key': 'ref_34',
'doi-asserted-by': 'crossref',
'first-page': '4433',
'DOI': '10.1093/jxb/erx291',
'article-title': 'Starch as a Source, Starch as a Sink: The Bifunctional Role of Starch '
'in Carbon Allocation',
'volume': '68',
'author': 'MacNeill',
'year': '2017',
'journal-title': 'J. Exp. Bot.'},
{ 'key': 'ref_35',
'unstructured': 'Daghlas, S.A., and Mohiuddin, S.S. (2024). Biochemistry, Glycogen, '
'StatPearls Publishing.'},
{ 'key': 'ref_36',
'doi-asserted-by': 'crossref',
'unstructured': 'Song, E.-h., Shang, J., and Ratner, D.M. (2012). Polysaccharides, '
'Elsevier.',
'DOI': '10.1016/B978-0-444-53349-4.00246-6'},
{ 'key': 'ref_37',
'doi-asserted-by': 'crossref',
'unstructured': 'Climov, M., Leavitt, T., Molnár, J., and Orgill, D.P. (2016). Natural '
'Biomaterials for Skin Tissue Engineering, Elsevier.',
'DOI': '10.1016/B978-0-12-801654-1.00008-5'},
{ 'key': 'ref_38',
'unstructured': 'Farhana, A., and Khan, Y.S. (2024). Biochemistry, Lipopolysaccharide, '
'StatPearls Publishing.'},
{ 'key': 'ref_39',
'doi-asserted-by': 'crossref',
'unstructured': 'Ullah, S., Khalil, A.A., Shaukat, F., and Song, Y. (2019). Sources, '
'Extraction and Biomedical Properties of Polysaccharides. Foods, 8.',
'DOI': '10.3390/foods8080304'},
{ 'key': 'ref_40',
'doi-asserted-by': 'crossref',
'first-page': '1667',
'DOI': '10.1007/s10311-019-00904-x',
'article-title': 'Applications of Chitosan in Food, Pharmaceuticals, Medicine, Cosmetics, '
'Agriculture, Textiles, Pulp and Paper, Biotechnology, and Environmental '
'Chemistry',
'volume': '17',
'author': 'Lichtfouse',
'year': '2019',
'journal-title': 'Environ. Chem. Lett.'},
{ 'key': 'ref_41',
'doi-asserted-by': 'crossref',
'unstructured': 'Niyigaba, T., Liu, D., and de Dieu Habimana, J. (2021). The Extraction, '
'Functionalities and Applications of Plant Polysaccharides in Fermented '
'Foods: A Review. Foods, 10.',
'DOI': '10.3390/foods10123004'},
{ 'key': 'ref_42',
'doi-asserted-by': 'crossref',
'unstructured': 'Xia, S., Zhang, L., Davletshin, A., Li, Z., You, J., and Tan, S. (2020). '
'Application of Polysaccharide Biopolymer in Petroleum Recovery. '
'Polymers, 12.',
'DOI': '10.3390/polym12091860'},
{ 'key': 'ref_43',
'unstructured': 'BeMiller, J.N. (2014). Encyclopedia of Life Sciences, Wiley.'},
{ 'key': 'ref_44',
'doi-asserted-by': 'crossref',
'unstructured': 'Dwivedi, R., Samanta, P., Sharma, P., Zhang, F., Mishra, S.K., '
'Kucheryavy, P., Kim, S.B., Aderibigbe, A.O., Linhardt, R.J., and Tandon, '
'R. (2021). Structural and Kinetic Analyses of Holothurian Sulfated '
'Glycans Suggest Potential Treatment for SARS-CoV-2 Infection. J. Biol. '
'Chem., 297.',
'DOI': '10.1016/j.jbc.2021.101207'},
{ 'key': 'ref_45',
'doi-asserted-by': 'crossref',
'unstructured': 'Couto, M.R., Rodrigues, J.L., and Rodrigues, L.R. (2022). Heterologous '
'Production of Chondroitin. Biotechnol. Rep., 33.',
'DOI': '10.1016/j.btre.2022.e00710'},
{ 'key': 'ref_46',
'doi-asserted-by': 'crossref',
'first-page': '331',
'DOI': '10.1016/j.ijbiomac.2020.07.106',
'article-title': 'Application Prospect of Polysaccharides in the Development of '
'Anti-Novel Coronavirus Drugs and Vaccines',
'volume': '164',
'author': 'Chen',
'year': '2020',
'journal-title': 'Int. J. Biol. Macromol.'},
{ 'key': 'ref_47',
'doi-asserted-by': 'crossref',
'unstructured': 'Claus-Desbonnet, H., Nikly, E., Nalbantova, V., Karcheva-Bahchevanska, '
'D., Ivanova, S., Pierre, G., Benbassat, N., Katsarov, P., Michaud, P., '
'and Lukova, P. (2022). Polysaccharides and Their Derivatives as '
'Potential Antiviral Molecules. Viruses, 14.',
'DOI': '10.3390/v14020426'},
{ 'key': 'ref_48',
'doi-asserted-by': 'crossref',
'first-page': '1372',
'DOI': '10.2741/4462',
'article-title': 'Heparin and anticoagulation',
'volume': '21',
'author': 'Onishi',
'year': '2016',
'journal-title': 'Front. Biosci.'},
{ 'key': 'ref_49',
'doi-asserted-by': 'crossref',
'first-page': 'L211',
'DOI': '10.1152/ajplung.00199.2020',
'article-title': 'Heparin as a Therapy for COVID-19: Current Evidence and Future '
'Possibilities',
'volume': '319',
'author': 'Hippensteel',
'year': '2020',
'journal-title': 'Am. J. Physiol.-Lung Cell. Mol. Physiol.'},
{ 'key': 'ref_50',
'doi-asserted-by': 'crossref',
'first-page': '25317',
'DOI': '10.1074/jbc.274.36.25317',
'article-title': 'Heparin Dodecasaccharide Binding to Platelet Factor-4 and '
'Growth-Related Protein-α',
'volume': '274',
'author': 'Mikhailov',
'year': '1999',
'journal-title': 'J. Biol. Chem.'},
{ 'key': 'ref_51',
'doi-asserted-by': 'crossref',
'first-page': '73',
'DOI': '10.1016/j.matbio.2013.11.001',
'article-title': 'Heparin–Protein Interactions: From Affinity and Kinetics to Biological '
'Roles. Application to an Interaction Network Regulating Angiogenesis',
'volume': '35',
'author': 'Peysselon',
'year': '2014',
'journal-title': 'Matrix Biol.'},
{ 'key': 'ref_52',
'doi-asserted-by': 'crossref',
'first-page': '1011',
'DOI': '10.3390/v4061011',
'article-title': 'Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike '
'Protein',
'volume': '4',
'author': 'Belouzard',
'year': '2012',
'journal-title': 'Viruses'},
{ 'key': 'ref_53',
'doi-asserted-by': 'crossref',
'unstructured': 'Cheudjeu, A. (2022). The SARS-CoV-2 Entry Inhibition Mechanisms of '
'Serine Protease Inhibitors, OM-85, Heparin and Soluble HS Might Be '
'Linked to HS Attachment Sites. Molecules, 27.',
'DOI': '10.3390/molecules27061947'},
{ 'key': 'ref_54',
'doi-asserted-by': 'crossref',
'first-page': 'e01933-17',
'DOI': '10.1128/JVI.01933-17',
'article-title': 'Entry of Human Coronavirus NL63 into the Cell',
'volume': '92',
'author': 'Milewska',
'year': '2018',
'journal-title': 'J. Virol.'},
{ 'key': 'ref_55',
'doi-asserted-by': 'crossref',
'first-page': '104742',
'DOI': '10.1016/j.antiviral.2020.104742',
'article-title': 'The Spike Glycoprotein of the New Coronavirus 2019-NCoV Contains a '
'Furin-like Cleavage Site Absent in CoV of the Same Clade',
'volume': '176',
'author': 'Coutard',
'year': '2020',
'journal-title': 'Antivir. Res.'},
{ 'key': 'ref_56',
'doi-asserted-by': 'crossref',
'first-page': '104873',
'DOI': '10.1016/j.antiviral.2020.104873',
'article-title': 'Characterization of Heparin and Severe Acute Respiratory '
'Syndrome-Related Coronavirus 2 (SARS-CoV-2) Spike Glycoprotein Binding '
'Interactions',
'volume': '181',
'author': 'Kim',
'year': '2020',
'journal-title': 'Antivir. Res.'},
{ 'key': 'ref_57',
'doi-asserted-by': 'crossref',
'unstructured': 'Shi, D., Bu, C., He, P., Song, Y., Dordick, J.S., Linhardt, R.J., Chi, '
'L., and Zhang, F. (2022). Structural Characteristics of Heparin Binding '
'to SARS-CoV-2 Spike Protein RBD of Omicron Sub-Lineages BA.2.12.1, BA.4 '
'and BA.5. Viruses, 14.',
'DOI': '10.3390/v14122696'},
{ 'key': 'ref_58',
'doi-asserted-by': 'crossref',
'first-page': '1020',
'DOI': '10.1111/jth.14821',
'article-title': 'The Versatile Heparin in COVID-19',
'volume': '18',
'author': 'Thachil',
'year': '2020',
'journal-title': 'J. Thromb. Haemost.'},
{ 'key': 'ref_59',
'doi-asserted-by': 'crossref',
'first-page': 'e01987-20',
'DOI': '10.1128/JVI.01987-20',
'article-title': 'Effective Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin '
'Derivatives',
'volume': '95',
'author': 'Tandon',
'year': '2021',
'journal-title': 'J. Virol.'},
{ 'key': 'ref_60',
'doi-asserted-by': 'crossref',
'first-page': '1700',
'DOI': '10.1055/s-0040-1721319',
'article-title': 'Heparin Inhibits Cellular Invasion by SARS-CoV-2: Structural Dependence '
'of the Interaction of the Spike S1 Receptor-Binding Domain with Heparin',
'volume': '120',
'author': 'Su',
'year': '2020',
'journal-title': 'Thromb. Haemost.'},
{ 'key': 'ref_61',
'doi-asserted-by': 'crossref',
'first-page': '626',
'DOI': '10.1111/bph.15304',
'article-title': 'Unfractionated Heparin Inhibits Live Wild Type SARS-CoV-2 Cell '
'Infectivity at Therapeutically Relevant Concentrations',
'volume': '178',
'author': 'Tree',
'year': '2021',
'journal-title': 'Br. J. Pharmacol.'},
{ 'key': 'ref_62',
'doi-asserted-by': 'crossref',
'first-page': '527',
'DOI': '10.1021/acscentsci.1c01293',
'article-title': 'Synthetic Heparan Sulfate Mimetic Pixatimod (PG545) Potently Inhibits '
'SARS-CoV-2 by Disrupting the Spike–ACE2 Interaction',
'volume': '8',
'author': 'Guimond',
'year': '2022',
'journal-title': 'ACS Cent. Sci.'},
{ 'key': 'ref_63',
'doi-asserted-by': 'crossref',
'first-page': '984',
'DOI': '10.1055/a-1807-0168',
'article-title': 'Pentosan polysulfate Inhibits Attachment and Infection by SARS-CoV-2 In '
'Vitro: Insights into Structural Requirements for Binding',
'volume': '122',
'author': 'Bertini',
'year': '2022',
'journal-title': 'Thromb. Haemost.'},
{ 'key': 'ref_64',
'doi-asserted-by': 'crossref',
'unstructured': 'Buijsers, B., Yanginlar, C., Maciej-Hulme, M.L., de Mast, Q., and van '
'der Vlag, J. (2020). Beneficial Non-Anticoagulant Mechanisms Underlying '
'Heparin Treatment of COVID-19 Patients. eBioMedicine, 59.',
'DOI': '10.1016/j.ebiom.2020.102969'},
{ 'key': 'ref_65',
'doi-asserted-by': 'crossref',
'first-page': '1612',
'DOI': '10.1001/jamainternmed.2021.6203',
'article-title': 'Efficacy and Safety of Therapeutic-Dose Heparin vs Standard '
'Prophylactic or Intermediate-Dose Heparins for Thromboprophylaxis in '
'High-Risk Hospitalized Patients with COVID-19: The HEP-COVID Randomized '
'Clinical Trial',
'volume': '181',
'author': 'Spyropoulos',
'year': '2021',
'journal-title': 'JAMA Intern. Med.'},
{ 'key': 'ref_66',
'doi-asserted-by': 'crossref',
'first-page': 'n2400',
'DOI': '10.1136/bmj.n2400',
'article-title': 'Effectiveness of Therapeutic Heparin versus Prophylactic Heparin on '
'Death, Mechanical Ventilation, or Intensive Care Unit Admission in '
'Moderately Ill Patients with COVID-19 Admitted to Hospital: RAPID '
'Randomised Clinical Trial',
'volume': '375',
'author': 'Sholzberg',
'year': '2021',
'journal-title': 'BMJ'},
{ 'key': 'ref_67',
'doi-asserted-by': 'crossref',
'first-page': '52314',
'DOI': '10.1039/C5RA05576H',
'article-title': 'Analysis of Chondroitin Sulfate from Different Sources of Cartilage by '
'Electrophoretically Mediated Microanalysis',
'volume': '5',
'author': 'Zhao',
'year': '2015',
'journal-title': 'RSC Adv.'},
{ 'key': 'ref_68',
'doi-asserted-by': 'crossref',
'first-page': '232',
'DOI': '10.3390/md12010232',
'article-title': 'Holothurian Fucosylated Chondroitin Sulfate',
'volume': '12',
'author': 'Pomin',
'year': '2014',
'journal-title': 'Mar. Drugs'},
{ 'key': 'ref_69',
'doi-asserted-by': 'crossref',
'unstructured': 'Mizumoto, S., Kwok, J.C.F., Whitelock, J.M., Li, F., and Perris, R. '
'(2022). Editorial: Roles of Chondroitin Sulfate and Dermatan Sulfate as '
'Regulators for Cell and Tissue Development. Front. Cell Dev. Biol., 10.',
'DOI': '10.3389/fcell.2022.941178'},
{ 'key': 'ref_70',
'doi-asserted-by': 'crossref',
'first-page': '335',
'DOI': '10.1177/1759720X10383076',
'article-title': 'Chondroitin Sulfate in the Treatment of Osteoarthritis: From In Vitro '
'Studies to Clinical Recommendations',
'volume': '2',
'author': 'Henrotin',
'year': '2010',
'journal-title': 'Ther. Adv. Musculoskelet.'},
{ 'key': 'ref_71',
'doi-asserted-by': 'crossref',
'unstructured': 'Ray, B., Ali, I., Jana, S., Mukherjee, S., Pal, S., Ray, S., Schütz, M., '
'and Marschall, M. (2021). Antiviral Strategies Using Natural '
'Source-Derived Sulfated Polysaccharides in the Light of the COVID-19 '
'Pandemic and Major Human Pathogenic Viruses. Viruses, 14.',
'DOI': '10.3390/v14010035'},
{ 'key': 'ref_72',
'doi-asserted-by': 'crossref',
'unstructured': 'Abidine, Y., Liu, L., Wallén, O., Trybala, E., Olofsson, S., Bergström, '
'T., and Bally, M. (2022). Cellular Chondroitin Sulfate and the '
'Mucin-like Domain of Viral Glycoprotein C Promote Diffusion of Herpes '
'Simplex Virus 1 While Heparan Sulfate Restricts Mobility. Viruses, 14.',
'DOI': '10.3390/v14081836'},
{ 'key': 'ref_73',
'doi-asserted-by': 'crossref',
'first-page': '2341',
'DOI': '10.1002/1873-3468.14173',
'article-title': 'A Glycosaminoglycan Microarray Identifies the Binding of SARS-CoV-2 '
'Spike Protein to Chondroitin Sulfate E',
'volume': '595',
'author': 'Watanabe',
'year': '2021',
'journal-title': 'FEBS Lett.'},
{ 'key': 'ref_74',
'doi-asserted-by': 'crossref',
'first-page': '7415',
'DOI': '10.1039/D0FO02017F',
'article-title': 'Inhibitory Activities of Marine Sulfated Polysaccharides against '
'SARS-CoV-2',
'volume': '11',
'author': 'Song',
'year': '2020',
'journal-title': 'Food Funct.'},
{ 'key': 'ref_75',
'first-page': '849',
'article-title': 'Inhibition of SARS-CoV-2 Wild-Type (Wuhan-Hu-1) and Delta (B.1.617.2) '
'Strains by Marine Sulfated Glycans',
'volume': '32',
'author': 'Dwivedi',
'year': '2022',
'journal-title': 'Glycobiology'},
{ 'key': 'ref_76',
'doi-asserted-by': 'crossref',
'unstructured': 'Möller, S., Theiß, J., Deinert, T.I.L., Golat, K., Heinze, J., Niemeyer, '
'D., Wyrwa, R., Schnabelrauch, M., and Bogner, E. (2022). High-Sulfated '
'Glycosaminoglycans Prevent Coronavirus Replication. Viruses, 14.',
'DOI': '10.3390/v14020413'},
{ 'key': 'ref_77',
'doi-asserted-by': 'crossref',
'first-page': 'C1037',
'DOI': '10.1152/ajpcell.00071.2022',
'article-title': 'The Role of Hyaluronan Synthesis and Degradation in the Critical '
'Respiratory Illness COVID-19',
'volume': '322',
'author': 'Albtoush',
'year': '2022',
'journal-title': 'Am. J. Physiol.-Cell Physiol.'},
{ 'key': 'ref_78',
'doi-asserted-by': 'crossref',
'first-page': 'e147472',
'DOI': '10.1172/jci.insight.147472',
'article-title': 'COVID-19 Generates Hyaluronan Fragments That Directly Induce '
'Endothelial Barrier Dysfunction',
'volume': '6',
'author': 'Queisser',
'year': '2021',
'journal-title': 'JCI Insight'},
{ 'key': 'ref_79',
'doi-asserted-by': 'crossref',
'unstructured': 'Yang, S., Tong, Y., Chen, L., and Yu, W. (2022). Human Identical '
'Sequences, Hyaluronan, and Hymecromone—The New Mechanism and Management '
'of COVID-19. Mol. Biomed., 3.',
'DOI': '10.1186/s43556-022-00077-0'},
{ 'key': 'ref_80',
'doi-asserted-by': 'crossref',
'first-page': '1931',
'DOI': '10.1016/j.ijbiomac.2021.05.155',
'article-title': 'Chitosan, Alginate, Hyaluronic Acid, Gums, and β-Glucan as Potent '
'Adjuvants and Vaccine Delivery Systems for Viral Threats Including '
'SARS-CoV-2: A Review',
'volume': '182',
'author': 'Mallakpour',
'year': '2021',
'journal-title': 'Int. J. Biol. Macromol.'},
{ 'key': 'ref_81',
'doi-asserted-by': 'crossref',
'first-page': '130457',
'DOI': '10.1016/j.molstruc.2021.130457',
'article-title': 'Molecular Insights of Hyaluronic Acid-Hydroxychloroquine Conjugate as a '
'Promising Drug in Targeting SARS-CoV-2 Viral Proteins',
'volume': '1238',
'author': 'Thirumalaisamy',
'year': '2021',
'journal-title': 'J. Mol. Struct.'},
{ 'key': 'ref_82',
'doi-asserted-by': 'crossref',
'first-page': '2399',
'DOI': '10.2174/0929867043364504',
'article-title': 'Sulfated Seaweed Polysaccharides as Antiviral Agents',
'volume': '11',
'author': 'Damonte',
'year': '2004',
'journal-title': 'Curr. Med. Chem.'},
{ 'key': 'ref_83',
'doi-asserted-by': 'crossref',
'unstructured': 'Salih, A.E.M., Thissera, B., Yaseen, M., Hassane, A.S.I., El-Seedi, '
'H.R., Sayed, A.M., and Rateb, M.E. (2021). Marine Sulfated '
'Polysaccharides as Promising Antiviral Agents: A Comprehensive Report '
'and Modeling Study Focusing on SARS CoV-2. Mar. Drugs, 19.',
'DOI': '10.3390/md19080406'},
{ 'key': 'ref_84',
'doi-asserted-by': 'crossref',
'unstructured': 'Kalasariya, H.S., Patel, N.B., Gacem, A., Alsufyani, T., Reece, L.M., '
'Yadav, V.K., Awwad, N.S., Ibrahium, H.A., Ahn, Y., and Yadav, K.K. '
'(2022). Marine Alga Ulva fasciata-Derived Molecules for the Potential '
'Treatment of SARS-CoV-2: An In Silico Approach. Mar. Drugs, 20.',
'DOI': '10.3390/md20090586'},
{ 'key': 'ref_85',
'doi-asserted-by': 'crossref',
'unstructured': 'Álvarez-Viñas, M., Souto, S., Flórez-Fernández, N., Torres, M.D., '
'Bandín, I., and Domínguez, H. (2021). Antiviral Activity of Carrageenans '
'and Processing Implications. Mar. Drugs, 19.',
'DOI': '10.3390/md19080437'},
{ 'key': 'ref_86',
'doi-asserted-by': 'crossref',
'unstructured': 'Ahmadi, A., Zorofchian Moghadamtousi, S., Abubakar, S., and Zandi, K. '
'(2015). Antiviral Potential of Algae Polysaccharides Isolated from '
'Marine Sources: A Review. BioMed Res. Int., 2015.',
'DOI': '10.1155/2015/825203'},
{ 'key': 'ref_87',
'doi-asserted-by': 'crossref',
'first-page': '57',
'DOI': '10.1186/2049-6958-9-57',
'article-title': 'Carrageenan Nasal Spray in Virus Confirmed Common Cold: Individual '
'Patient Data Analysis of Two Randomized Controlled Trials',
'volume': '9',
'author': 'Koenighofer',
'year': '2014',
'journal-title': 'Multidiscip. Respir. Med.'},
{ 'key': 'ref_88',
'doi-asserted-by': 'crossref',
'first-page': '275',
'DOI': '10.2147/IJGM.S167123',
'article-title': 'Development of a Nasal Spray Containing Xylometazoline Hydrochloride '
'and Iota-Carrageenan for the Symptomatic Relief of Nasal Congestion '
'Caused by Rhinitis and Sinusitis',
'volume': '11',
'author': 'Graf',
'year': '2018',
'journal-title': 'Int. J. Gen. Med.'},
{ 'key': 'ref_89',
'doi-asserted-by': 'crossref',
'unstructured': 'Morokutti-Kurz, M., Fröba, M., Graf, P., Große, M., Grassauer, A., Auth, '
'J., Schubert, U., and Prieschl-Grassauer, E. (2021). Iota-Carrageenan '
'Neutralizes SARS-CoV-2 and Inhibits Viral Replication In Vitro. PLoS '
'ONE, 16.',
'DOI': '10.1371/journal.pone.0237480'},
{ 'key': 'ref_90',
'doi-asserted-by': 'crossref',
'unstructured': 'Bansal, S., Jonsson, C.B., Taylor, S.L., Figueroa, J.M., Dugour, A.V., '
'Palacios, C., and Vega, J.C. (2021). Iota-Carrageenan and Xylitol '
'Inhibit SARS-CoV-2 in Vero Cell Culture. PLoS ONE, 16.',
'DOI': '10.1371/journal.pone.0259943'},
{ 'key': 'ref_91',
'doi-asserted-by': 'crossref',
'first-page': 'L750',
'DOI': '10.1152/ajplung.00552.2020',
'article-title': 'Carrageenan-Containing over-the-Counter Nasal and Oral Sprays Inhibit '
'SARS-CoV-2 Infection of Airway Epithelial Cultures',
'volume': '320',
'author': 'Conzelmann',
'year': '2021',
'journal-title': 'Am. J. Physiol.-Lung Cell. Mol. Physiol.'},
{ 'key': 'ref_92',
'doi-asserted-by': 'crossref',
'first-page': '821',
'DOI': '10.1038/s41598-020-80896-9',
'article-title': 'Antiviral Activity of Lambda-Carrageenan against Influenza Viruses and '
'Severe Acute Respiratory Syndrome Coronavirus 2',
'volume': '11',
'author': 'Jang',
'year': '2021',
'journal-title': 'Sci. Rep.'},
{ 'key': 'ref_93',
'doi-asserted-by': 'crossref',
'unstructured': 'Fröba, M., Große, M., Setz, C., Rauch, P., Auth, J., Spanaus, L., Münch, '
'J., Ruetalo, N., Schindler, M., and Morokutti-Kurz, M. (2021). '
'Iota-Carrageenan Inhibits Replication of SARS-CoV-2 and the Respective '
'Variants of Concern Alpha, Beta, Gamma and Delta. Int. J. Mol. Sci., 22.',
'DOI': '10.3390/ijms222413202'},
{ 'key': 'ref_94',
'doi-asserted-by': 'crossref',
'first-page': '108',
'DOI': '10.1186/1465-9921-11-108',
'article-title': 'Efficacy and Safety of an Antiviral Iota-Carrageenan Nasal Spray: A '
'Randomized, Double-Blind, Placebo-Controlled Exploratory Study in '
'Volunteers with Early Symptoms of the Common Cold',
'volume': '11',
'author': 'Eccles',
'year': '2010',
'journal-title': 'Respir. Res.'},
{ 'key': 'ref_95',
'doi-asserted-by': 'crossref',
'first-page': '121',
'DOI': '10.1186/s12931-015-0281-8',
'article-title': 'Efficacy and Safety of Iota-Carrageenan Nasal Spray versus Placebo in '
'Early Treatment of the Common Cold in Adults: The ICICC Trial',
'volume': '16',
'author': 'Eccles',
'year': '2015',
'journal-title': 'Respir. Res.'},
{ 'key': 'ref_96',
'first-page': '28',
'article-title': 'Safety and Efficacy of a Iota-Carrageenan Nasal Spray in Treatment and '
'Prevention of the Common Cold',
'volume': '94',
'author': 'Bichiri',
'year': '2021',
'journal-title': 'Med. Pharm. Rep.'},
{ 'key': 'ref_97',
'doi-asserted-by': 'crossref',
'first-page': 'e00810',
'DOI': '10.1002/prp2.810',
'article-title': 'Carrageenan Nasal Spray May Double the Rate of Recovery from '
'Coronavirus and Influenza Virus Infections: Re-analysis of Randomized '
'Trial Data',
'volume': '9',
'author': 'Chalker',
'year': '2021',
'journal-title': 'Pharmacol. Res. Perspec.'},
{ 'key': 'ref_98',
'doi-asserted-by': 'crossref',
'unstructured': 'Nasrollahzadeh, M., Sajjadi, M., Nezafat, Z., and Shafiei, N. (2021). '
'Biopolymer-Based Metal Nanoparticle Chemistry for Sustainable '
'Applications, Elsevier.',
'DOI': '10.1016/B978-0-12-822108-2.00018-1'},
{ 'key': 'ref_99',
'doi-asserted-by': 'crossref',
'first-page': '87',
'DOI': '10.1016/S0141-8130(02)00070-3',
'article-title': 'Isolation, Chemical Investigation and Antiviral Activity of '
'Polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta)',
'volume': '31',
'author': 'Mazumder',
'year': '2002',
'journal-title': 'Int. J. Biol. Macromol.'},
{ 'key': 'ref_100',
'doi-asserted-by': 'crossref',
'first-page': '346',
'DOI': '10.1016/j.ijbiomac.2008.07.009',
'article-title': 'Polysaccharides from Gracilaria corticata: Sulfation, Chemical '
'Characterization and Anti-HSV Activities',
'volume': '43',
'author': 'Chattopadhyay',
'year': '2008',
'journal-title': 'Int. J. Biol. Macromol.'},
{ 'key': 'ref_101',
'doi-asserted-by': 'crossref',
'first-page': '335',
'DOI': '10.1016/j.carres.2003.09.028',
'article-title': 'The Structure of the Agaran Sulfate from Acanthophora spicifera '
'(Rhodomelaceae, Ceramiales) and Its Antiviral Activity. Relation '
'between Structure and Antiviral Activity in Agarans',
'volume': '339',
'author': 'Duarte',
'year': '2004',
'journal-title': 'Carbohydr. Res.'},
{ 'key': 'ref_102',
'doi-asserted-by': 'crossref',
'first-page': '53',
'DOI': '10.1078/0944-7113-00007',
'article-title': 'Inhibitory Effect of Sulfated Galactans from the Marine Alga Bostrychia '
'Montagnei on Herpes Simplex Virus Replication In Vitro',
'volume': '8',
'author': 'Duarte',
'year': '2001',
'journal-title': 'Phytomedicine'},
{ 'key': 'ref_103',
'doi-asserted-by': 'crossref',
'unstructured': 'Panggabean, J.A., Adiguna, S.P., Rahmawati, S.I., Ahmadi, P., Zainuddin, '
'E.N., Bayu, A., and Putra, M.Y. (2022). Antiviral Activities of '
'Algal-Based Sulfated Polysaccharides. Molecules, 27.',
'DOI': '10.3390/molecules27041178'},
{ 'key': 'ref_104',
'doi-asserted-by': 'crossref',
'unstructured': 'Geetha Bai, R., and Tuvikene, R. (2021). Potential Antiviral Properties '
'of Industrially Important Marine Algal Polysaccharides and Their '
'Significance in Fighting a Future Viral Pandemic. Viruses, 13.',
'DOI': '10.3390/v13091817'},
{ 'key': 'ref_105',
'doi-asserted-by': 'crossref',
'first-page': '140',
'DOI': '10.1016/j.jhin.2022.11.014',
'article-title': 'SARS-CoV-2 Viability and Viral RNA Persistence on Microbiological Agar '
'Plates',
'volume': '132',
'author': 'Farfour',
'year': '2023',
'journal-title': 'J. Hosp. Infect.'},
{ 'key': 'ref_106',
'doi-asserted-by': 'crossref',
'first-page': '29R',
'DOI': '10.1093/glycob/cwg058',
'article-title': 'Sulfated Fucans, Fresh Perspectives: Structures, Functions, and '
'Biological Properties of Sulfated Fucans and an Overview of Enzymes '
'Active toward This Class of Polysaccharide',
'volume': '13',
'author': 'Berteau',
'year': '2003',
'journal-title': 'Glycobiology'},
{ 'key': 'ref_107',
'doi-asserted-by': 'crossref',
'unstructured': 'Kadam, S.U., Álvarez, C., Tiwari, B.K., and O’Donnell, C.P. (2015). '
'Extraction of Biomolecules from Seaweeds, Elsevier.',
'DOI': '10.1016/B978-0-12-418697-2.00009-X'},
{ 'key': 'ref_108',
'doi-asserted-by': 'crossref',
'unstructured': 'Zayed, A., and Ulber, R. (2020). Fucoidans: Downstream Processes and '
'Recent Applications. Mar. Drugs, 18.',
'DOI': '10.3390/md18030170'},
{ 'key': 'ref_109',
'doi-asserted-by': 'crossref',
'first-page': '3000',
'DOI': '10.3390/md11083000',
'article-title': 'Fucoidans as Potential Inhibitors of HIV-1',
'volume': '11',
'author': 'Prokofjeva',
'year': '2013',
'journal-title': 'Mar. Drugs'},
{ 'key': 'ref_110',
'doi-asserted-by': 'crossref',
'first-page': '109',
'DOI': '10.1016/j.intimp.2007.10.017',
'article-title': 'Defensive Effects of a Fucoidan from Brown Alga Undaria Pinnatifida '
'against Herpes Simplex Virus Infection',
'volume': '8',
'author': 'Hayashi',
'year': '2008',
'journal-title': 'Int. Immunopharmacol.'},
{ 'key': 'ref_111',
'doi-asserted-by': 'crossref',
'first-page': '178',
'DOI': '10.1186/s12985-017-0848-8',
'article-title': 'Fucoidan from Fucus Vesiculosus Suppresses Hepatitis B Virus '
'Replication by Enhancing Extracellular Signal-Regulated Kinase '
'Activation',
'volume': '14',
'author': 'Li',
'year': '2017',
'journal-title': 'Virol. J.'},
{ 'key': 'ref_112',
'doi-asserted-by': 'crossref',
'first-page': '40760',
'DOI': '10.1038/srep40760',
'article-title': 'Inhibition of Influenza A Virus Infection by Fucoidan Targeting Viral '
'Neuraminidase and Cellular EGFR Pathway',
'volume': '7',
'author': 'Wang',
'year': '2017',
'journal-title': 'Sci. Rep.'},
{ 'key': 'ref_113',
'doi-asserted-by': 'crossref',
'first-page': '2138',
'DOI': '10.3390/md10102138',
'article-title': 'Structural Analysis of a Heteropolysaccharide from Saccharina Japonica '
'by Electrospray Mass Spectrometry in Tandem with Collision-Induced '
'Dissociation Tandem Mass Spectrometry (ESI-CID-MS/MS)',
'volume': '10',
'author': 'Jin',
'year': '2012',
'journal-title': 'Mar. Drugs'},
{ 'key': 'ref_114',
'doi-asserted-by': 'crossref',
'first-page': '50',
'DOI': '10.1038/s41421-020-00192-8',
'article-title': 'Sulfated Polysaccharides Effectively Inhibit SARS-CoV-2 In Vitro',
'volume': '6',
'author': 'Kwon',
'year': '2020',
'journal-title': 'Cell Discov.'},
{ 'key': 'ref_115',
'doi-asserted-by': 'crossref',
'first-page': '221',
'DOI': '10.1080/22221751.2020.1719902',
'article-title': 'Genomic Characterization of the 2019 Novel Human-Pathogenic Coronavirus '
'Isolated from a Patient with Atypical Pneumonia after Visiting Wuhan',
'volume': '9',
'author': 'Chan',
'year': '2020',
'journal-title': 'Emerg. Microbes Infect.'},
{ 'key': 'ref_116',
'doi-asserted-by': 'crossref',
'first-page': '7656',
'DOI': '10.1074/jbc.274.12.7656',
'article-title': 'Structure and Anticoagulant Activity of Sulfated Fucans',
'volume': '274',
'author': 'Pereira',
'year': '1999',
'journal-title': 'J. Biol. Chem.'},
{ 'key': 'ref_117',
'doi-asserted-by': 'crossref',
'first-page': '1109',
'DOI': '10.1134/S1068162022060152',
'article-title': 'Prospects for the Use of Marine Sulfated Fucose-Rich Polysaccharides in '
'Treatment and Prevention of COVID-19 and Post-COVID-19 Syndrome',
'volume': '48',
'author': 'Kiselevskiy',
'year': '2022',
'journal-title': 'Russ. J. Bioorg Chem.'},
{ 'key': 'ref_118',
'doi-asserted-by': 'crossref',
'first-page': '46527',
'DOI': '10.1007/s11356-022-20328-5',
'article-title': 'Multifaceted Role of Natural Sources for COVID-19 Pandemic as Marine '
'Drugs',
'volume': '29',
'author': 'Rahman',
'year': '2022',
'journal-title': 'Environ. Sci. Pollut. Res.'},
{ 'key': 'ref_119',
'doi-asserted-by': 'crossref',
'first-page': '71',
'DOI': '10.1016/0167-7799(90)90139-O',
'article-title': 'Alginate as Immobilization Matrix for Cells',
'volume': '8',
'year': '1990',
'journal-title': 'Trends Biotechnol.'},
{ 'key': 'ref_120',
'doi-asserted-by': 'crossref',
'unstructured': 'Spoială, A., Ilie, C.-I., Ficai, D., Ficai, A., and Andronescu, E. '
'(2022). From Biomedical Applications of Alginate towards CVD '
'Implications Linked to COVID-19. Pharmaceuticals, 15.',
'DOI': '10.3390/ph15030318'},
{ 'key': 'ref_121',
'first-page': '15',
'article-title': 'Study on the Mechanism of Inhibitory Action of 911 on Replication of '
'HIV-1 In Vitro',
'volume': '19',
'author': 'Xin',
'year': '2000',
'journal-title': 'Chin. J. Mar. Drugs'},
{ 'key': 'ref_122',
'doi-asserted-by': 'crossref',
'first-page': '276',
'DOI': '10.1016/j.phytochem.2010.11.006',
'article-title': 'Structural Features and In Vitro Antiviral Activities of Sulfated '
'Polysaccharides from Sphacelaria Indica',
'volume': '72',
'author': 'Bandyopadhyay',
'year': '2011',
'journal-title': 'Phytochemistry'},
{ 'key': 'ref_123',
'doi-asserted-by': 'crossref',
'first-page': '96',
'DOI': '10.1016/j.foodhyd.2018.02.026',
'article-title': 'Antiviral and Antioxidant Properties of Active Alginate Edible Films '
'Containing Phenolic Extracts',
'volume': '81',
'author': 'Fabra',
'year': '2018',
'journal-title': 'Food Hydrocoll.'},
{ 'key': 'ref_124',
'doi-asserted-by': 'crossref',
'first-page': '5897',
'DOI': '10.1021/acsabm.1c00523',
'article-title': 'Antiviral Properties of Alginate-Based Biomaterials: Promising '
'Antiviral Agents against SARS-CoV-2',
'volume': '4',
'author': 'Wang',
'year': '2021',
'journal-title': 'ACS Appl. Bio Mater.'},
{ 'key': 'ref_125',
'doi-asserted-by': 'crossref',
'first-page': '316',
'DOI': '10.1016/j.ijbiomac.2022.11.311',
'article-title': 'Inhibitory Activities of Alginate Phosphate and Sulfate Derivatives '
'against SARS-CoV-2 In Vitro',
'volume': '227',
'author': 'Yang',
'year': '2023',
'journal-title': 'Int. J. Biol. Macromol.'},
{ 'key': 'ref_126',
'doi-asserted-by': 'crossref',
'unstructured': 'Li, D., Zhang, S., Yang, C., Li, Q., Wang, S., Xu, X., Hao, J., and Li, '
'C. (2021). A Novel PTP1B Inhibitor-Phosphate of Polymannuronic Acid '
'Ameliorates Insulin Resistance by Regulating IRS-1/Akt Signaling. Int. '
'J. Mol. Sci., 22.',
'DOI': '10.3390/ijms222312693'},
{ 'key': 'ref_127',
'doi-asserted-by': 'crossref',
'unstructured': 'Shah, S.A.A., Hassan, S.S.u., Bungau, S., Si, Y., Xu, H., Rahman, M.H., '
'Behl, T., Gitea, D., Pavel, F.-M., and Corb Aron, R.A. (2020). '
'Chemically Diverse and Biologically Active Secondary Metabolites from '
'Marine Phylum chlorophyta. Mar. Drugs, 18.',
'DOI': '10.3390/md18100493'},
{ 'key': 'ref_128',
'doi-asserted-by': 'crossref',
'first-page': '2391',
'DOI': '10.1007/s11224-020-01586-w',
'article-title': 'Destabilizing the Structural Integrity of COVID-19 by Caulerpin and Its '
'Derivatives along with Some Antiviral Drugs: An In Silico Approaches '
'for a Combination Therapy',
'volume': '31',
'author': 'Ahmed',
'year': '2020',
'journal-title': 'Struct. Chem.'},
{ 'key': 'ref_129',
'doi-asserted-by': 'crossref',
'first-page': '101422',
'DOI': '10.1016/j.algal.2019.101422',
'article-title': 'Ulvan: A Systematic Review of Extraction, Composition and Function',
'volume': '39',
'author': 'Kidgell',
'year': '2019',
'journal-title': 'Algal Res.'},
{ 'key': 'ref_130',
'doi-asserted-by': 'crossref',
'first-page': 'e12398',
'DOI': '10.7717/peerj.12398',
'article-title': 'Fighting SARS-CoV-2 with Green Seaweed Ulva Sp. Extract: Extraction '
'Protocol Predetermines Crude Ulvan Extract Anti-SARS-CoV-2 Inhibition '
'Properties in In Vitro Vero-E6 Cells Assay',
'volume': '9',
'author': 'Shefer',
'year': '2021',
'journal-title': 'PeerJ'},
{ 'key': 'ref_131',
'doi-asserted-by': 'crossref',
'first-page': '215',
'DOI': '10.1038/s41586-020-2180-5',
'article-title': 'Structure of the SARS-CoV-2 Spike Receptor-Binding Domain Bound to the '
'ACE2 Receptor',
'volume': '581',
'author': 'Lan',
'year': '2020',
'journal-title': 'Nature'},
{ 'key': 'ref_132',
'doi-asserted-by': 'crossref',
'unstructured': 'Mazur-Marzec, H., Cegłowska, M., Konkel, R., and Pyrć, K. (2021). '
'Antiviral Cyanometabolites—A Review. Biomolecules, 11.',
'DOI': '10.3390/biom11030474'},
{ 'key': 'ref_133',
'doi-asserted-by': 'crossref',
'unstructured': 'Wei, Q., Fu, G., Wang, K., Yang, Q., Zhao, J., Wang, Y., Ji, K., and '
'Song, S. (2022). Advances in Research on Antiviral Activities of '
'Sulfated Polysaccharides from Seaweeds. Pharmaceuticals, 15.',
'DOI': '10.3390/ph15050581'},
{ 'key': 'ref_134',
'doi-asserted-by': 'crossref',
'first-page': '1463',
'DOI': '10.1089/aid.1996.12.1463',
'article-title': 'A Natural Sulfated Polysaccharide, Calcium Spirulan, Isolated from '
'Spirulina platensis: In Vitro and Ex Vivo Evaluation of Anti-Herpes '
'Simplex Virus and Anti-Human Immunodeficiency Virus Activities',
'volume': '12',
'author': 'Hayashi',
'year': '1996',
'journal-title': 'AIDS Res. Hum. Retroviruses'},
{ 'key': 'ref_135',
'doi-asserted-by': 'crossref',
'first-page': '83',
'DOI': '10.1021/np960017o',
'article-title': 'Calcium Spirulan, an Inhibitor of Enveloped Virus Replication, from a '
'Blue-Green Alga Spirulina platensis',
'volume': '59',
'author': 'Hayashi',
'year': '1996',
'journal-title': 'J. Nat. Prod.'},
{ 'key': 'ref_136',
'doi-asserted-by': 'crossref',
'first-page': '111089',
'DOI': '10.1016/j.nut.2020.111089',
'article-title': 'Prospective Options of Algae-Derived Nutraceuticals as Supplements to '
'Combat COVID-19 and Human Coronavirus Diseases',
'volume': '83',
'author': 'Ratha',
'year': '2021',
'journal-title': 'Nutrition'},
{ 'key': 'ref_137',
'doi-asserted-by': 'crossref',
'first-page': '17101',
'DOI': '10.1038/s41598-022-22148-6',
'article-title': 'In Vitro Inhibition of SARS-CoV-2 Infection by Dry Algae Powders',
'volume': '12',
'year': '2022',
'journal-title': 'Sci. Rep.'},
{ 'key': 'ref_138',
'doi-asserted-by': 'crossref',
'first-page': '73',
'DOI': '10.1016/j.ijbiomac.2013.03.046',
'article-title': 'Polysaccharide Extraction from Spirulina Sp. and Its Antioxidant '
'Capacity',
'volume': '58',
'author': 'Chaiklahan',
'year': '2013',
'journal-title': 'Int. J. Biol. Macromol.'},
{ 'key': 'ref_139',
'doi-asserted-by': 'crossref',
'first-page': '462',
'DOI': '10.1016/j.ijbiomac.2021.03.162',
'article-title': 'A Review on Antiviral and Immunomodulatory Polysaccharides from Indian '
'Medicinal Plants, Which May Be Beneficial to COVID-19 Infected Patients',
'volume': '181',
'author': 'Sen',
'year': '2021',
'journal-title': 'Int. J. Biol. Macromol.'},
{ 'key': 'ref_140',
'doi-asserted-by': 'crossref',
'first-page': '153930',
'DOI': '10.1016/j.phymed.2022.153930',
'article-title': 'Role of Medicinal Plants in Inhibiting SARS-CoV-2 and in the Management '
'of Post-COVID-19 Complications',
'volume': '98',
'author': 'Mukherjee',
'year': '2022',
'journal-title': 'Phytomedicine'},
{ 'key': 'ref_141',
'doi-asserted-by': 'crossref',
'first-page': '423',
'DOI': '10.1016/bs.pmbts.2019.03.003',
'article-title': 'The Structures and Biological Functions of Polysaccharides from '
'Traditional Chinese Herbs',
'volume': '143',
'author': 'Zeng',
'year': '2019',
'journal-title': 'Prog. Mol. Biol. Transl. Sci.'},
{ 'key': 'ref_142',
'doi-asserted-by': 'crossref',
'first-page': '722',
'DOI': '10.1016/j.jgr.2022.03.008',
'article-title': 'Potential Benefits of Ginseng against COVID-19 by Targeting '
'Inflammasomes',
'volume': '46',
'author': 'Yi',
'year': '2022',
'journal-title': 'J. Ginseng Res.'},
{ 'key': 'ref_143',
'doi-asserted-by': 'crossref',
'first-page': '104743',
'DOI': '10.1016/j.phrs.2020.104743',
'article-title': 'Traditional Chinese Medicine for COVID-19 Treatment',
'volume': '155',
'author': 'Ren',
'year': '2020',
'journal-title': 'Pharmacol. Res.'},
{ 'key': 'ref_144',
'doi-asserted-by': 'crossref',
'first-page': '116346',
'DOI': '10.1016/j.carbpol.2020.116346',
'article-title': 'The Important Role of Polysaccharides from a Traditional Chinese '
'Medicine-Lung Cleansing and Detoxifying Decoction against the COVID-19 '
'Pandemic',
'volume': '240',
'author': 'Cao',
'year': '2020',
'journal-title': 'Carbohydr. Polym.'},
{ 'key': 'ref_145',
'doi-asserted-by': 'crossref',
'unstructured': 'Ghoneum, M., Abdulmalek, S., and Fadel, H.H. (2023). Biobran/MGN-3, an '
'Arabinoxylan Rice Bran, Protects against Severe Acute Respiratory '
'Syndrome Coronavirus 2 (SARS-CoV-2): An In Vitro and In Silico Study. '
'Nutrients, 15.',
'DOI': '10.3390/nu15020453'},
{ 'key': 'ref_146',
'doi-asserted-by': 'crossref',
'unstructured': 'García-Castro, A., Román-Gutiérrez, A.D., Castañeda-Ovando, A., '
'Cariño-Cortés, R., Acevedo-Sandoval, O.A., López-Perea, P., and '
'Guzmán-Ortiz, F.A. (2022). Cereals as a Source of Bioactive Compounds '
'with Anti-Hypertensive Activity and Their Intake in Times of COVID-19. '
'Foods, 11.',
'DOI': '10.3390/foods11203231'},
{ 'key': 'ref_147',
'doi-asserted-by': 'crossref',
'first-page': '223',
'DOI': '10.1016/j.tifs.2020.12.026',
'article-title': 'Polysaccharides Obtained from Natural Edible Sources and Their Role in '
'Modulating the Immune System: Biologically Active Potential That Can Be '
'Exploited against COVID-19',
'volume': '108',
'author': 'Barbosa',
'year': '2021',
'journal-title': 'Trends Food Sci. Technol.'},
{ 'key': 'ref_148',
'doi-asserted-by': 'crossref',
'first-page': '100023',
'DOI': '10.1016/j.focha.2022.100023',
'article-title': 'A Concise Review of Mushrooms Antiviral and Immunomodulatory Properties '
'That May Combat against COVID-19',
'volume': '1',
'author': 'Arunachalam',
'year': '2022',
'journal-title': 'Food Chem. Adv.'},
{ 'key': 'ref_149',
'doi-asserted-by': 'crossref',
'first-page': '475',
'DOI': '10.1016/S0378-8741(00)00266-X',
'article-title': 'Possible Mode of Antiviral Activity of Acidic Protein Bound '
'Polysaccharide Isolated from Ganoderma lucidum on Herpes Simplex '
'Viruses',
'volume': '72',
'author': 'Eo',
'year': '2000',
'journal-title': 'J. Ethnopharmacol.'},
{ 'key': 'ref_150',
'doi-asserted-by': 'crossref',
'first-page': '566',
'DOI': '10.4014/jmb.0901.013',
'article-title': 'Study on immunostimulating activity of macrophage treated with purified '
'polysaccharides from liquid culture and fruiting body of Lentinus '
'edodes',
'volume': '19',
'author': 'Lee',
'year': '2009',
'journal-title': 'J.Microbiol.Biotechnol.'},
{ 'key': 'ref_151',
'doi-asserted-by': 'crossref',
'first-page': '37',
'DOI': '10.1186/1743-422X-9-37',
'article-title': 'Polysaccharide and Extracts from Lentinula Edodes: Structural Features '
'and Antiviral Activity',
'volume': '9',
'author': 'Yamamoto',
'year': '2012',
'journal-title': 'Virol. J.'},
{ 'key': 'ref_152',
'doi-asserted-by': 'crossref',
'first-page': '284',
'DOI': '10.1007/s12250-014-3486-y',
'article-title': 'Antiviral Activity of Basidiomycete Mycelia against Influenza Type A '
'(Serotype H1N1) and Herpes Simplex Virus Type 2 in Cell Culture',
'volume': '29',
'author': 'Krupodorova',
'year': '2014',
'journal-title': 'Virol. Sin.'},
{ 'key': 'ref_153',
'doi-asserted-by': 'crossref',
'first-page': '1753',
'DOI': '10.1016/j.ijbiomac.2021.05.139',
'article-title': 'Classification, Structure and Mechanism of Antiviral Polysaccharides '
'Derived from Edible and Medicinal Fungus',
'volume': '183',
'author': 'Guo',
'year': '2021',
'journal-title': 'Int. J. Biol. Macromol.'},
{ 'key': 'ref_154',
'doi-asserted-by': 'crossref',
'first-page': '1254',
'DOI': '10.1016/j.carbpol.2012.06.060',
'article-title': 'In Vitro Antiviral Activity of Sulfated Auricularia Auricula '
'Polysaccharides',
'volume': '90',
'author': 'Nguyen',
'year': '2012',
'journal-title': 'Carbohydr. Polym.'},
{ 'key': 'ref_155',
'doi-asserted-by': 'crossref',
'unstructured': 'Mirończuk-Chodakowska, I., Kujawowicz, K., and Witkowska, A.M. (2021). '
'Beta-Glucans from Fungi: Biological and Health-Promoting Potential in '
'the COVID-19 Pandemic Era. Nutrients, 13.',
'DOI': '10.3390/nu13113960'},
{ 'key': 'ref_156',
'doi-asserted-by': 'crossref',
'first-page': '139330',
'DOI': '10.1016/j.scitotenv.2020.139330',
'article-title': 'β-Glucan Extracts from the Same Edible Shiitake Mushroom Lentinus '
'edodes Produce Differential In-Vitro Immunomodulatory and Pulmonary '
'Cytoprotective Effects—Implications for Coronavirus Disease (COVID-19) '
'Immunotherapies',
'volume': '732',
'author': 'Murphy',
'year': '2020',
'journal-title': 'Sci. Total Environ.'},
{ 'key': 'ref_157',
'doi-asserted-by': 'crossref',
'unstructured': 'Zhang, Y., Cui, Y., Feng, Y., Jiao, F., and Jia, L. (2022). Lentinus '
'edodes Polysaccharides Alleviate Acute Lung Injury by Inhibiting '
'Oxidative Stress and Inflammation. Molecules, 27.',
'DOI': '10.3390/molecules27217328'},
{ 'key': 'ref_158',
'unstructured': 'Chen, S., Wang, X., Ha, D., and Yoshitake, R. (2024, April 05). White '
'Button Mushroom (Agaricus bisporus) Interrupts Tissue AR-TMPRSS2 '
'Expression and Attenuates Pro-Inflammatory Cytokines in C57BL/6 Mice: '
'Implication for COVID-19 Dietary Intervention; Review, Available online: '
'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010737/.'},
{ 'key': 'ref_159',
'doi-asserted-by': 'crossref',
'unstructured': 'Sun, T.-K., Huang, W.-C., Sun, Y.-W., Deng, J.-S., Chien, L.-H., Chou, '
'Y.-N., Jiang, W.-P., Lin, J.-G., and Huang, G.-J. (2022). Schizophyllum '
'commune Reduces Expression of the SARS-CoV-2 Receptors ACE2 and TMPRSS2. '
'Int. J. Mol. Sci., 23.',
'DOI': '10.3390/ijms232314766'},
{ 'key': 'ref_160',
'doi-asserted-by': 'crossref',
'first-page': '2189',
'DOI': '10.1080/21645515.2018.1461298',
'article-title': 'Cationic Pullulan Nanogel as a Safe and Effective Nasal Vaccine '
'Delivery System for Respiratory Infectious Diseases',
'volume': '14',
'author': 'Yuki',
'year': '2018',
'journal-title': 'Hum. Vaccines Immunother.'},
{ 'key': 'ref_161',
'doi-asserted-by': 'crossref',
'unstructured': 'Rai, M., Wypij, M., Ingle, A.P., Trzcińska-Wencel, J., and Golińska, P. '
'(2021). Emerging Trends in Pullulan-Based Antimicrobial Systems for '
'Various Applications. Int. J. Mol. Sci., 22.',
'DOI': '10.3390/ijms222413596'},
{ 'key': 'ref_162',
'doi-asserted-by': 'crossref',
'first-page': '45',
'DOI': '10.1007/s00253-010-2892-9',
'article-title': 'Lectins: Production and Practical Applications',
'volume': '89',
'author': 'Lam',
'year': '2011',
'journal-title': 'Appl. Microbiol. Biotechnol.'},
{ 'key': 'ref_163',
'unstructured': 'Van Damme, E.J.M. (2011). Methods in Molecular Biology, Springer.'},
{ 'key': 'ref_164',
'doi-asserted-by': 'crossref',
'first-page': '55',
'DOI': '10.1007/BF02789176',
'article-title': 'Mechanisms and Assessment of Lectin-Mediated Mitogenesis',
'volume': '11',
'author': 'Kilpatrick',
'year': '1999',
'journal-title': 'Mol. Biotechnol.'},
{ 'key': 'ref_165',
'doi-asserted-by': 'crossref',
'first-page': '179',
'DOI': '10.1016/j.antiviral.2007.03.003',
'article-title': 'Plant Lectins Are Potent Inhibitors of Coronaviruses by Interfering '
'with Two Targets in the Viral Replication Cycle',
'volume': '75',
'author': 'Keyaerts',
'year': '2007',
'journal-title': 'Antivir. Res.'},
{ 'key': 'ref_166',
'doi-asserted-by': 'crossref',
'first-page': '1',
'DOI': '10.1007/s13205-011-0036-2',
'article-title': 'Recent Developments in Mushrooms as Anti-Cancer Therapeutics: A Review',
'volume': '2',
'author': 'Patel',
'year': '2012',
'journal-title': '3 Biotech'},
{ 'key': 'ref_167',
'doi-asserted-by': 'crossref',
'first-page': '452',
'DOI': '10.1016/j.anaerobe.2011.06.004',
'article-title': 'Lectins of Living Organisms. The Overview',
'volume': '17',
'author': 'Lakhtin',
'year': '2011',
'journal-title': 'Anaerobe'},
{ 'key': 'ref_168',
'unstructured': 'Nizet, V., Varki, A., and Aebi, M. (2017). Essentials of Glycobiology, '
'Cold Spring Harbor Laboratory Press. [3rd ed.].'},
{ 'key': 'ref_169',
'doi-asserted-by': 'crossref',
'first-page': '127',
'DOI': '10.1016/S0065-2318(08)60220-6',
'article-title': 'The lectins: Carbohydrate-binding proteins of plants and animals',
'volume': '35',
'author': 'Goldstein',
'year': '1978',
'journal-title': 'Adv. Carbohydr. Chem. Biochem.'},
{ 'key': 'ref_170',
'first-page': '41',
'article-title': 'Lectins: Function, structure, biological properties and potential '
'applications',
'volume': '15',
'author': 'Santos',
'year': '2014',
'journal-title': 'Curr. Top. Pept. Protein Res.'},
{ 'key': 'ref_171',
'doi-asserted-by': 'crossref',
'first-page': '237',
'DOI': '10.1016/j.antiviral.2006.02.004',
'article-title': 'Inhibition of HIV Entry by Carbohydrate-Binding Proteins',
'volume': '71',
'author': 'Balzarini',
'year': '2006',
'journal-title': 'Antivir. Res.'},
{ 'key': 'ref_172',
'doi-asserted-by': 'crossref',
'unstructured': 'Martínez-Alarcón, D., Blanco-Labra, A., and García-Gasca, T. (2018). '
'Expression of Lectins in Heterologous Systems. Int. J. Mol. Sci., 19.',
'DOI': '10.3390/ijms19020616'},
{ 'key': 'ref_173',
'doi-asserted-by': 'crossref',
'unstructured': 'Catanzaro, E., Calcabrini, C., Bishayee, A., and Fimognari, C. (2019). '
'Antitumor Potential of Marine and Freshwater Lectins. Mar. Drugs, 18.',
'DOI': '10.3390/md18010011'},
{ 'key': 'ref_174',
'doi-asserted-by': 'crossref',
'unstructured': 'Anderson, K.N., Evers, D.L., and Rice, K.G. (2008). Structure and '
'Function of Mammalian Carbohydrate-Lectin Interactions, Springer.',
'DOI': '10.1007/978-3-540-30429-6_63'},
{ 'key': 'ref_175',
'doi-asserted-by': 'crossref',
'first-page': '1187',
'DOI': '10.1007/BF00028991',
'article-title': 'Cloning and Characterization of a CDNA Encoding an Antimicrobial '
'Chitin-Binding Protein from Amaranth, Amaranthus caudatus',
'volume': '22',
'author': 'David',
'year': '1993',
'journal-title': 'Plant Mol. Biol.'},
{ 'key': 'ref_176',
'doi-asserted-by': 'crossref',
'first-page': '575',
'DOI': '10.1080/07352689891304276',
'article-title': 'Plant Lectins: A Composite of Several Distinct Families of Structurally '
'and Evolutionary Related Proteins with Diverse Biological Roles',
'volume': '17',
'year': '1998',
'journal-title': 'Crit. Rev. Plant Sci.'},
{ 'key': 'ref_177',
'doi-asserted-by': 'crossref',
'first-page': '117',
'DOI': '10.1007/s00418-011-0848-5',
'article-title': 'Lectins for Histochemical Demonstration of Glycans',
'volume': '136',
'author': 'Roth',
'year': '2011',
'journal-title': 'Histochem. Cell Biol.'},
{ 'key': 'ref_178',
'doi-asserted-by': 'crossref',
'first-page': '1',
'DOI': '10.1016/j.antiviral.2016.07.011',
'article-title': 'Middle East Respiratory Syndrome Coronavirus Infection Is Inhibited by '
'Griffithsin',
'volume': '133',
'author': 'Millet',
'year': '2016',
'journal-title': 'Antivir. Res.'},
{ 'key': 'ref_179',
'doi-asserted-by': 'crossref',
'first-page': '2511',
'DOI': '10.1128/JVI.02322-09',
'article-title': 'Broad-Spectrum In Vitro Activity and In Vivo Efficacy of the Antiviral '
'Protein Griffithsin against Emerging Viruses of the Family '
'Coronaviridae',
'volume': '84',
'author': 'Giomarelli',
'year': '2010',
'journal-title': 'J. Virol.'},
{ 'key': 'ref_180',
'doi-asserted-by': 'crossref',
'first-page': '5286',
'DOI': '10.2174/1381612826666200821120409',
'article-title': 'The Emergence of Human Pathogenic Coronaviruses: Lectins as Antivirals '
'for SARS-CoV-2',
'volume': '26',
'author': 'Sohrab',
'year': '2020',
'journal-title': 'Curr. Pharm. Des.'},
{ 'key': 'ref_181',
'doi-asserted-by': 'crossref',
'first-page': '767448',
'DOI': '10.3389/fchem.2021.767448',
'article-title': 'Site-Specific Glycosylation Patterns of the SARS-CoV-2 Spike Protein '
'Derived From Recombinant Protein and Viral WA1 and D614G Strains',
'volume': '9',
'author': 'Tian',
'year': '2021',
'journal-title': 'Front. Chem.'},
{ 'key': 'ref_182',
'doi-asserted-by': 'crossref',
'first-page': '37',
'DOI': '10.1016/j.antiviral.2017.03.007',
'article-title': 'Antiviral Lectins: Selective Inhibitors of Viral Entry',
'volume': '142',
'author': 'Mitchell',
'year': '2017',
'journal-title': 'Antivir. Res.'},
{ 'key': 'ref_183',
'doi-asserted-by': 'crossref',
'unstructured': 'Ahmed, M.N., Jahan, R., Nissapatorn, V., Wilairatana, P., and '
'Rahmatullah, M. (2022). Plant Lectins as Prospective Antiviral '
'Biomolecules in the Search for COVID-19 Eradication Strategies. Biomed. '
'Pharmacother., 146.',
'DOI': '10.1016/j.biopha.2021.112507'},
{ 'key': 'ref_184',
'doi-asserted-by': 'crossref',
'unstructured': 'Surya, P.H., Deepti, M., and Elyas, K.K. (2020). Plant Lectins: '
'Sugar-Binding Properties and Biotechnological Applications, Springer.',
'DOI': '10.1007/978-981-15-5136-9_17'},
{ 'key': 'ref_185',
'doi-asserted-by': 'crossref',
'first-page': 'e61552',
'DOI': '10.7554/eLife.61552',
'article-title': 'Inhibition of SARS-CoV-2 Viral Entry upon Blocking N- and O-Glycan '
'Elaboration',
'volume': '9',
'author': 'Yang',
'year': '2020',
'journal-title': 'eLife'},
{ 'key': 'ref_186',
'doi-asserted-by': 'crossref',
'first-page': '108016',
'DOI': '10.1016/j.celrep.2020.108016',
'article-title': 'A Carbohydrate-Binding Protein from the Edible Lablab Beans Effectively '
'Blocks the Infections of Influenza Viruses and SARS-CoV-2',
'volume': '32',
'author': 'Liu',
'year': '2020',
'journal-title': 'Cell Rep.'},
{ 'key': 'ref_187',
'doi-asserted-by': 'crossref',
'unstructured': 'Auth, J., Fröba, M., Große, M., Rauch, P., Ruetalo, N., Schindler, M., '
'Morokutti-Kurz, M., Graf, P., Dolischka, A., and Prieschl-Grassauer, E. '
'(2021). Lectin from Triticum vulgaris (WGA) Inhibits Infection with '
'SARS-CoV-2 and Its Variants of Concern Alpha and Beta. Int. J. Mol. '
'Sci., 22.',
'DOI': '10.3390/ijms221910205'},
{ 'key': 'ref_188',
'doi-asserted-by': 'crossref',
'first-page': '1519',
'DOI': '10.1080/22221751.2021.1957720',
'article-title': 'Lentil Lectin Derived from Lens culinaris Exhibit Broad Antiviral '
'Activities against SARS-CoV-2 Variants',
'volume': '10',
'author': 'Wang',
'year': '2021',
'journal-title': 'Emerg. Microbes Infect.'},
{ 'key': 'ref_189',
'doi-asserted-by': 'crossref',
'first-page': '77',
'DOI': '10.15406/htij.2021.09.00259',
'article-title': 'Recombinant Lectins as Pioneering Anti-Viral Agents against COVID-19',
'volume': '9',
'year': '2021',
'journal-title': 'Hematol. Transfus. Int. J.'},
{ 'key': 'ref_190',
'doi-asserted-by': 'crossref',
'first-page': '2917',
'DOI': '10.1007/s11010-021-04107-3',
'article-title': 'Status of Mannose-Binding Lectin (MBL) and Complement System in '
'COVID-19 Patients and Therapeutic Applications of Antiviral Plant MBLs',
'volume': '476',
'author': 'Gupta',
'year': '2021',
'journal-title': 'Mol. Cell Biochem.'},
{ 'key': 'ref_191',
'doi-asserted-by': 'crossref',
'first-page': '1253',
'DOI': '10.1021/acsinfecdis.2c00006',
'article-title': 'A Highly Potent SARS-CoV-2 Blocking Lectin Protein',
'volume': '8',
'author': 'Ahan',
'year': '2022',
'journal-title': 'ACS Infect. Dis.'},
{ 'key': 'ref_192',
'doi-asserted-by': 'crossref',
'first-page': '100774',
'DOI': '10.1016/j.xcrm.2022.100774',
'article-title': 'A Molecularly Engineered, Broad-Spectrum Anti-Coronavirus Lectin '
'Inhibits SARS-CoV-2 and MERS-CoV Infection In Vivo',
'volume': '3',
'author': 'Chan',
'year': '2022',
'journal-title': 'Cell Rep. Med.'},
{ 'key': 'ref_193',
'doi-asserted-by': 'crossref',
'first-page': '198768',
'DOI': '10.1016/j.virusres.2022.198768',
'article-title': 'A Novel Plant Lectin, NTL-125, Interferes with SARS-CoV-2 Interaction '
'with HACE2',
'volume': '315',
'author': 'Sarkar',
'year': '2022',
'journal-title': 'Virus Res.'},
{ 'key': 'ref_194',
'doi-asserted-by': 'crossref',
'unstructured': 'Nabi-Afjadi, M., Heydari, M., Zalpoor, H., Arman, I., Sadoughi, A., '
'Sahami, P., and Aghazadeh, S. (2022). Lectins and Lectibodies: Potential '
'Promising Antiviral Agents. Cell Mol. Biol. Lett., 27.',
'DOI': '10.1186/s11658-022-00338-4'},
{ 'key': 'ref_195',
'doi-asserted-by': 'crossref',
'unstructured': 'Meiers, J., Dastbaz, J., Adam, S., Rasheed, S., Kirsch, S.H., Meiser, '
'P., Gross, P., Müller, R., and Titz, A. (2023). Pineapple Lectin AcmJRL '
'Binds SARS-CoV-2 Spike Protein in a Carbohydrate-Dependent Fashion. '
'ChemBioChem, 24.',
'DOI': '10.1002/cbic.202200463'},
{ 'key': 'ref_196',
'doi-asserted-by': 'crossref',
'unstructured': 'Alsaidi, S., Cornejal, N., Mahoney, O., Melo, C., Verma, N., Bonnaire, '
'T., Chang, T., O’Keefe, B.R., Sailer, J., and Zydowsky, T.M. (2021). '
'Griffithsin and Carrageenan Combination Results in Antiviral Synergy '
'against SARS-CoV-1 and 2 in a Pseudoviral Model. Mar. Drugs, 19.',
'DOI': '10.3390/md19080418'},
{ 'key': 'ref_197',
'doi-asserted-by': 'crossref',
'unstructured': 'Mazalovska, M., and Kouokam, J.C. (2018). Lectins as Promising '
'Therapeutics for the Prevention and Treatment of HIV and Other Potential '
'Coinfections. BioMed Res. Int., 2018.',
'DOI': '10.1155/2018/3750646'},
{ 'key': 'ref_198',
'doi-asserted-by': 'crossref',
'first-page': '118526',
'DOI': '10.1016/j.carbpol.2021.118526',
'article-title': 'Recent Advances in Antiviral Activities and Potential Mechanisms of '
'Sulfated Polysaccharides',
'volume': '272',
'author': 'Lu',
'year': '2021',
'journal-title': 'Carbohydr. Polym.'},
{ 'key': 'ref_199',
'doi-asserted-by': 'crossref',
'unstructured': 'Hassan, S., Donia, A., Sial, U., Zhang, X., and Bokhari, H. (2020). '
'Glycoprotein- and Lectin-Based Approaches for Detection of Pathogens. '
'Pathogens, 9.',
'DOI': '10.3390/pathogens9090694'},
{ 'key': 'ref_200',
'doi-asserted-by': 'crossref',
'first-page': '3664',
'DOI': '10.1021/acs.jmedchem.2c01229',
'article-title': 'Antitarget, Anti-SARS-CoV-2 Leads, Drugs, and the Drug '
'Discovery–Genetics Alliance Perspective',
'volume': '66',
'author': 'Pozzi',
'year': '2023',
'journal-title': 'J. Med. Chem.'},
{ 'key': 'ref_201',
'doi-asserted-by': 'crossref',
'first-page': '1230',
'DOI': '10.1016/j.cmi.2022.04.015',
'article-title': 'First-Generation Oral Antivirals against SARS-CoV-2',
'volume': '28',
'author': 'Sendi',
'year': '2022',
'journal-title': 'Clin. Microbiol. Infect.'},
{ 'key': 'ref_202',
'doi-asserted-by': 'crossref',
'first-page': '593',
'DOI': '10.1038/ni.f.203',
'article-title': 'Protein-Glycan Interactions in the Control of Innate and Adaptive '
'Immune Responses',
'volume': '9',
'author': 'Rabinovich',
'year': '2008',
'journal-title': 'Nat. Immunol.'},
{ 'key': 'ref_203',
'doi-asserted-by': 'crossref',
'first-page': '1',
'DOI': '10.1016/j.jgr.2015.12.006',
'article-title': 'Animal Lectins: Potential Receptors for Ginseng Polysaccharides',
'volume': '41',
'author': 'Loh',
'year': '2017',
'journal-title': 'J. Ginseng Res.'},
{ 'key': 'ref_204',
'doi-asserted-by': 'crossref',
'first-page': '5148',
'DOI': '10.1128/IAI.02006-06',
'article-title': 'Galectin-3 Modulates Immune and Inflammatory Responses during '
'Helminthic Infection: Impact of Galectin-3 Deficiency on the Functions '
'of Dendritic Cells',
'volume': '75',
'author': 'Breuilh',
'year': '2007',
'journal-title': 'Infect. Immun.'},
{ 'key': 'ref_205',
'doi-asserted-by': 'crossref',
'unstructured': 'Chiodo, F., Bruijns, S.C., Rodriguez, E., Li, R.E., Molinaro, A., '
'Silipo, A., Di Lorenzo, F., Garcia-Rivera, D., Valdes-Balbin, Y., and '
'Verez-Bencomo, V. (2020). Novel ACE2-Independent Carbohydrate-Binding of '
'SARS-CoV-2 Spike Protein to Host Lectins and Lung Microbiota. bioRxiv.',
'DOI': '10.1101/2020.05.13.092478'},
{ 'key': 'ref_206',
'doi-asserted-by': 'crossref',
'first-page': '649',
'DOI': '10.1080/16583655.2021.1999068',
'article-title': 'Sulphated polysaccharides from seaweeds as potential entry inhibitors '
'and vaccine adjuvants against SARS-CoV-2 RBD spike protein: A '
'computational approach',
'volume': '15',
'author': 'Douma',
'year': '2021',
'journal-title': 'J. Taibah Univ. Sci.'}],
'container-title': 'Microbiology Research',
'original-title': [],
'language': 'en',
'link': [ { 'URL': 'https://www.mdpi.com/2036-7481/15/2/35/pdf',
'content-type': 'unspecified',
'content-version': 'vor',
'intended-application': 'similarity-checking'}],
'deposited': { 'date-parts': [[2024, 4, 10]],
'date-time': '2024-04-10T09:15:24Z',
'timestamp': 1712740524000},
'score': 1,
'resource': {'primary': {'URL': 'https://www.mdpi.com/2036-7481/15/2/35'}},
'subtitle': [],
'short-title': [],
'issued': {'date-parts': [[2024, 4, 9]]},
'references-count': 206,
'journal-issue': {'issue': '2', 'published-online': {'date-parts': [[2024, 6]]}},
'alternative-id': ['microbiolres15020035'],
'URL': 'http://dx.doi.org/10.3390/microbiolres15020035',
'relation': {},
'ISSN': ['2036-7481'],
'subject': [],
'container-title-short': 'Microbiology Research',
'published': {'date-parts': [[2024, 4, 9]]}}