The potential application of probiotics and prebiotics for the prevention and treatment of COVID-19
Amin N Olaimat, Iman Aolymat, Murad Al-Holy, Mutamed Ayyash, Mahmoud Abu Ghoush, Anas A Al-Nabulsi, Tareq Osaili, Vasso Apostolopoulos, Shao-Quan Liu, Nagendra P Shah
npj Science of Food, doi:10.1038/s41538-020-00078-9
COVID-19 is a pandemic disease caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This new viral infection was first identified in China in December 2019, and it has subsequently spread globally. The lack of a vaccine or curative treatment for COVID-19 necessitates a focus on other strategies to prevent and treat the infection. Probiotics consist of single or mixed cultures of live microorganisms that can beneficially affect the host by maintaining the intestinal or lung microbiota that play a major role in human health. At present, good scientific evidence exists to support the ability of probiotics to boost human immunity, thereby preventing colonization by pathogens and reducing the incidence and severity of infections. Herein, we present clinical studies of the use of probiotic supplementation to prevent or treat respiratory tract infections. These data lead to promising benefits of probiotics in reducing the risk of COVID-19. Further studies should be conducted to assess the ability of probiotics to combat COVID-19.
AUTHOR CONTRIBUTIONS
COMPETING INTERESTS The authors declare no competing interests.
ADDITIONAL INFORMATION Correspondence and requests for materials should be addressed to A.N.O. or M.A. Reprints and permission information is available at http://www.nature.com/ reprints Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
Ayyash, Olaimat, Al-Nabulsi, Liu, Bioactive properties of novel probiotic Lactococcus lactis fermented camel sausages: Cytotoxicity, angiotensin converting enzyme inhibition, antioxidant capacity, and antidiabetic activity, Food Sci. Anim. Resour
Ayyash, Sherkat, Shah, The effect of NaCl substitution with KCl on Akawi cheese: Chemical composition, proteolysis, angiotensin-converting enzyme-inhibitory activity, probiotic survival, texture profile, and sensory properties, J. Dairy Sci
Balzaretti, A novel rhamnose-rich hetero-exopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells, Appl. Environ. Microbiol
Barcik, Boutin, Sokolowska, Finlay, The role of lung and gut microbiota in the pathology of asthma, Immunity
Bassis, Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals,
doi:10.1128/mBio.00037-15
Bron, Van Baarlen, Kleerebezem, Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa, Nat. Rev. Microbiol
Budden, Emerging pathogenic links between microbiota and the gutlung axis, Nat. Rev. Microbiol
Bustamante, Probiotics and prebiotics potential for the care of skin, female urogenital tract, and respiratory tract, Folia Microbiol. (Praha)
Chehrazi, Cipriano, Enns, Dynamics of drug resistance: optimal control of an infectious disease, Oper. Res
Chiba, Immunobiotic Lactobacillus rhamnosus improves resistance of infant mice against respiratory syncytial virus infection, Int. Immunopharmacol
Chung, Choi, Oh, Eun, Han, Lactobacillus casei prevents the development of dextran sulphate sodium-induced colitis in Tolllike receptor 4 mutant mice, Clin. Exp. Immunol
Ciaglia, Vecchione, Puca, COVID-19 infection and circulating ace2 levels: protective role in women and children, Front. Pediatr
Dang, Marsland, Microbes, metabolites, and the gut-lung axis, Mucos. Immunol
Dargahi, Johnson, Apostolopoulos, Streptococcus thermophilus alters the expression of genes associated with innate and adaptive immunity in human peripheral blood mononuclear cells, PLoS ONE,
doi:10.1371/journal.pone.0228531
Dargahi, Johnson, Donkor, Vasiljevic, Apostolopoulos, Immunomodulatory effects of Streptococcus thermophilus on U937 monocyte cell cultures, J. Funct. Foods
Dargahi, Johnson, Donkor, Vasiljevic, Apostolopoulos, Immunomodulatory effects of probiotics: can they be used to treat allergies and autoimmune diseases?, Maturitas
Dargahi, Matsoukas, Apostolopoulos, Streptococcus thermophilus ST285 alters pro-inflammatory to anti-inflammatory cytokine secretion against multiple sclerosis peptide in mice, Brain Sci
Davani-Davari, Prebiotics: definition, types, sources, mechanisms, and clinical applications, Foods
Davison, Kehaya, Jones, Nutritional and physical activity interventions to improve immunity, Am. J. Lifestyle Med
De Roock, Gut derived lactic acid bacteria induce strain specific CD4 + T cell responses in human PBMC, Clin. Nutr
Eguchi, Fujitani, Nakagawa, Miyazaki, Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055, Sci. Rep
Esler, Esler, Can angiotensin receptor-blocking drugs perhaps be harmful in the COVID-19 pandemic?, J. Hypertens
Fanos, Pintus, Pintus, Marcialis, Lung microbiota in the acute respiratory disease: from coronavirus to metabolomics, J. Pediatr. Neonat. Individ. Med,
doi:10.7363/090139
Fao, Who, Guidelines for the Evaluation of Probiotics in Food
Fernández-Fernández, COVID-19, hypertension and angiotensin receptorblocking drugs, J. Hypertens
Fu, Song, Wang, Fu, Wang, Bifidobacterium infantis potentially alleviates shrimp tropomyosin-induced allergy by tolerogenic dendritic celldependent induction of regulatory T cells and alterations in gut microbiota, Front. Immunol,
doi:10.3389/fimmu.2017.01536
Gibson, Roberfroid, Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics, J. Nutr
Gibson, The international scientific association and scope of prebiotics, Nat. Rev. Gastroenterol. Hepatol
Goto, Anti-influenza virus effects of both live and non-live Lactobacillus acidophilus L-92 accompanied by the activation of innate immunity, Br. J. Nutr,
doi:10.1017/S0007114513001104
Guan, Clinical characteristics of Coronavirus Disease 2019 in China, N. Engl. J. Med
Guarino, Mechanisms of action of prebiotics and their effects on gastro-intestinal disorders in adults, Nutrients
Harata, Intranasal administration of Lactobacillus rhamnosus GG protects mice from H1N1 influenza virus infection by regulating respiratory immune responses, Lett. Appl. Microbiol
Hauptmann, Schaible, Linking microbiota and respiratory disease, FEBS Lett
He, Gut-lung axis: the microbial contributions and clinical implications, Crit. Rev. Microbiol
Holshue, First case of 2019 novel coronavirus in the United States, N. Engl. J. Med
Hori, Kiyoshima, Shida, Yasui, Effect of Intranasal Administration of Lactobacillus casei Shirota on influenza virus infection of upper respiratory tract in mice, Clin. Diagn. Lab. Immunol
Hufnagl, Pali-Schöll, Roth-Walter, Jensen-Jarolim, Dysbiosis of the gut and lung microbiome has a role in asthma, Semin. Immunopathol
Imai, Angiotensin-converting enzyme 2 protects from severe acute lung failure, Nature
Infusino, Diet supplementation, probiotics, and nutraceuticals in SARS-CoV-2 infection: a scoping review, Nutrients,
doi:10.3390/nu12061718
Jiang, Review of the clinical characteristics of Coronavirus Disease 2019 (COVID-19), J. Gen. Intern. Med
Jung, Heat-killed Lactobacillus casei confers broad protection against influenza A virus primary infection and develops heterosubtypic immunity against future secondary infection, Sci. Rep
Kassaa, New Insights on Antiviral Probiotics: From Research to Applications
Kawase, He, Kubota, Harata, Hiramatsu, Oral administration of Lactobacilli from human intestinal tract protects mice against influenza virus infection, Lett. Appl. Microbiol
Kawase, Heat-killed Lactobacillus gasseri TMC0356 protects mice against influenza virus infection by stimulating gut and respiratory immune responses, FEMS Immunol. Med. Microbiol
Khan, Petersen, Shekhar, Commensal bacteria: an emerging player in defense against respiratory pathogens, Front. Immunol
King, Does probiotic consumption reduce antibiotic utilization for common acute infections? A systematic review and meta-analysis, Eur. J. Public Health
Kitazawa, Expression of mRNA encoding IFNα in macrophages stimulated with Lactobacillus gasseri, FEMS Microbiol. Lett
Kopel, Perisetti, Gajendran, Boregowda, Goyal, Clinical insights into the gastrointestinal manifestations of COVID-19, Dig. Dis. Sci
Kudva, Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice, J. Immunol
Landete, Probiotic bacteria for healthier aging: immunomodulation and metabolism of phytoestrogens, Biomed. Res. Int,
doi:10.1155/2017/5939818
Lee, Hu, Chen, Huang, Hsueh, Are children less susceptible to COVID-19?, J. Microbiol. Immunol. Infect
Lehtoranta, Pitkäranta, Korpela, Probiotics in respiratory virus infections, Eur. J. Clin. Microbiol. Infect. Dis
Liu, Tran, Rhoads, Probiotics in disease prevention and treatment, J. Clin. Pharmacol
Makino, Reducing the risk of infection in the elderly by dietary intake of yoghurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1, Br. J. Nutr
Marchisio, Streptococcus salivarius 24SMB administered by nasal spray for the prevention of acute otitis media in otitis-prone children, Eur. J. Clin. Microbiol. Infect. Dis
Merenstein, Use of a fermented dairy probiotic drink containing Lactobacillus casei (DN-114 001) to decrease the rate of illness in kids: the DRINK study A patient-oriented, double-blind, cluster-randomized, placebo-controlled, clinical trial, Eur. J. Clin. Nutr
Miremadi, Ayyash, Sherkat, Stojanovska, Cholesterol reduction mechanisms and fatty acid composition of cellular membranes of probiotic Lactobacilli and Bifidobacteria, J. Funct. Foods
Mukherjee, Hanidziar, More of the gut in the lung: how two microbiomes meet in ARDS, Yale J. Biol. Med
Noci, Modulation of pulmonary microbiota by antibiotic or probiotic aerosol therapy: a strategy to promote immunosurveillance against lung metastases, Cell Rep
Olaimat, Emergence of antibiotic resistance in Listeria monocytogenes isolated from food products: a comprehensive review, Compr. Rev. Food Sci. Food Saf
Park, Lactobacillus plantarum DK119 as a probiotic confers protection against influenza virus by modulating innate immunity, PLoS ONE
Perrone, Mechanisms of methicillin-resistant Staphylococcus aureus pneumonia-induced intestinal epithelial apoptosis, Shock
Rajilić-Stojanović, De Vos, The first 1000 cultured species of the human gastrointestinal microbiota, FEMS Microbiol. Rev
Riet, Van Esch, Roks, Van Den Meiracker, Danser, Hypertension: renin-angiotensin-aldosterone system alterations, Circ. Res
Rodriguez-Morales, Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis, Travel Med. Infect. Dis,
doi:10.1016/j.tmaid.2020.101623
Saad, Delattre, Urdaci, Schmitter, Bressollier, An overview of the last advances in probiotic and prebiotic field, LWT Food Sci. Technol
Santosa, Farnworth, Jones, Probiotics and their potential health claims, Nutr. Rev
Shida, Daily intake of fermented milk with Lactobacillus casei strain Shirota reduces the incidence and duration of upper respiratory tract infections in healthy middle-aged office workers, Eur. J. Nutr
Smyk, COVID-19: focus on the lungs but do not forget the gastrointestinal tract, Eur. J. Clin. Invest,
doi:10.1111/eci.13276
Suresh Kumar, Novelty in the gut: a systematic review and metaanalysis of the gastrointestinal manifestations of COVID-19, BMJ Open Gastroenterol
Taipale, Bifidobacterium animalis subsp. lactis BB-12 in reducing the risk of infections in infancy, Br. J. Nutr
Tang, Clinical significance of the correlation between changes in the major intestinal bacteria species and COVID-19 severity,
doi:10.1016/j.eng.2020.05.013
Tian, Rong, Nian, He, Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission, Aliment. Pharmacol. Ther
Tomosada, Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection, BMC Immunol,
doi:10.1186/1471-2172-14-40
Vital, Harkema, Rizzo, Tiedje, Brandenberger, Alterations of the murine gut microbiome with age and allergic airway disease, J. Immunol. Res
Wan, Enteric involvement in hospitalised patients with COVID-19 outside Wuhan, Lancet Gastroenterol. Hepatol
Wang, Gut-lung crosstalk in pulmonary involvement with inflammatory bowel diseases, World J. Gastroenterol
Wang, Probiotics for prevention and treatment of respiratory tract infections in children: a systematic review and meta-analysis of randomized controlled trials, Med. (Baltim.),
doi:10.1097/MD.0000000000004509
Wu, Lewis, Pae, Meydani, Nutritional modulation of immune function: analysis of evidence, mechanisms, and clinical relevance, Front. Immunol
Wu, Prolonged presence of SARS-CoV-2 viral RNA in faecal samples, Lancet Gastroenterol. Hepatol
Xiao, Evidence for gastrointestinal infection of SARS-CoV-2, Gastroenterol
Xie, Chen, Insight into 2019 novel coronavirus-an updated intrim review and lessons from SARS-CoV and MERS-CoV, Int. J. Infect. Dis
Xu, Management of corona virus disease-19 (COVID-19): The Zhejiang experience, Yi Xue Ban
Yeh, The influence of prebiotic or probiotic supplementation on antibody titers after influenza vaccination: A systematic review and meta-analysis of randomized controlled trials, Drug Des. Devel. Ther
Youn, Intranasal administration of live Lactobacillus species facilitates protection against influenza virus infection in mice, Antivir. Res
Zelaya, Nasal priming with immunobiotic Lactobacillus rhamnosus modulates inflammation-coagulation interactions and reduces influenza virusassociated pulmonary damage, Inflamm. Res
Zendeboodi, Khorshidian, Mortazavian, Da Cruz, Probiotic: conceptualization from a new approach, Cur. Opin. Food Sci
Zhang, Impacts of gut bacteria on human health and diseases, Int. J. Mol. Sci
Zhang, Prospective study of probiotic supplementation results in immune stimulation and improvement of upper respiratory infection rate, Synth. Syst. Biotechnol
Zhu, A novel coronavirus from patients with pneumonia in China, N. Engl. J. Med
Zimmerman, Curtis, Coronavirus infections in children including COVID-19: an overview of the epidemiology, clinical features, diagnosis, treatment and prevention options in children, Pediatr. Infect. Dis. J
Zolnikova, Komkova, Potskherashvili, Trukhmanov, Ivashkin, Application of probiotics for acute respiratory tract infections, Ital. J. Med
Zu, Coronavirus disease 2019 (COVID-19): a perspective from China, Radiology
DOI record:
{
"DOI": "10.1038/s41538-020-00078-9",
"ISSN": [
"2396-8370"
],
"URL": "http://dx.doi.org/10.1038/s41538-020-00078-9",
"abstract": "<jats:title>Abstract</jats:title><jats:p>COVID-19 is a pandemic disease caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This new viral infection was first identified in China in December 2019, and it has subsequently spread globally. The lack of a vaccine or curative treatment for COVID-19 necessitates a focus on other strategies to prevent and treat the infection. Probiotics consist of single or mixed cultures of live microorganisms that can beneficially affect the host by maintaining the intestinal or lung microbiota that play a major role in human health. At present, good scientific evidence exists to support the ability of probiotics to boost human immunity, thereby preventing colonization by pathogens and reducing the incidence and severity of infections. Herein, we present clinical studies of the use of probiotic supplementation to prevent or treat respiratory tract infections. These data lead to promising benefits of probiotics in reducing the risk of COVID-19. Further studies should be conducted to assess the ability of probiotics to combat COVID-19.</jats:p>",
"alternative-id": [
"78"
],
"article-number": "17",
"assertion": [
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Received",
"name": "received",
"order": 1,
"value": "29 May 2020"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Accepted",
"name": "accepted",
"order": 2,
"value": "18 September 2020"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "First Online",
"name": "first_online",
"order": 3,
"value": "5 October 2020"
},
{
"group": {
"label": "Competing interests",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 1,
"value": "The authors declare no competing interests."
}
],
"author": [
{
"ORCID": "http://orcid.org/0000-0001-7202-5440",
"affiliation": [],
"authenticated-orcid": false,
"family": "Olaimat",
"given": "Amin N.",
"sequence": "first"
},
{
"affiliation": [],
"family": "Aolymat",
"given": "Iman",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Al-Holy",
"given": "Murad",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0002-9312-500X",
"affiliation": [],
"authenticated-orcid": false,
"family": "Ayyash",
"given": "Mutamed",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0002-8694-6168",
"affiliation": [],
"authenticated-orcid": false,
"family": "Abu Ghoush",
"given": "Mahmoud",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Al-Nabulsi",
"given": "Anas A.",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Osaili",
"given": "Tareq",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Apostolopoulos",
"given": "Vasso",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Liu",
"given": "Shao-Quan",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Shah",
"given": "Nagendra P.",
"sequence": "additional"
}
],
"container-title": "npj Science of Food",
"container-title-short": "npj Sci Food",
"content-domain": {
"crossmark-restriction": false,
"domain": [
"link.springer.com"
]
},
"created": {
"date-parts": [
[
2020,
10,
5
]
],
"date-time": "2020-10-05T10:05:05Z",
"timestamp": 1601892305000
},
"deposited": {
"date-parts": [
[
2022,
12,
6
]
],
"date-time": "2022-12-06T02:59:28Z",
"timestamp": 1670295568000
},
"funder": [
{
"DOI": "10.13039/501100006013",
"doi-asserted-by": "publisher",
"name": "United Arab Emirates University"
}
],
"indexed": {
"date-parts": [
[
2024,
3,
30
]
],
"date-time": "2024-03-30T11:08:38Z",
"timestamp": 1711796918331
},
"is-referenced-by-count": 133,
"issue": "1",
"issued": {
"date-parts": [
[
2020,
10,
5
]
]
},
"journal-issue": {
"issue": "1",
"published-online": {
"date-parts": [
[
2020,
12
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2020,
10,
5
]
],
"date-time": "2020-10-05T00:00:00Z",
"timestamp": 1601856000000
}
},
{
"URL": "https://creativecommons.org/licenses/by/4.0",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2020,
10,
5
]
],
"date-time": "2020-10-05T00:00:00Z",
"timestamp": 1601856000000
}
}
],
"link": [
{
"URL": "https://www.nature.com/articles/s41538-020-00078-9.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://www.nature.com/articles/s41538-020-00078-9",
"content-type": "text/html",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://www.nature.com/articles/s41538-020-00078-9.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "297",
"original-title": [],
"prefix": "10.1038",
"published": {
"date-parts": [
[
2020,
10,
5
]
]
},
"published-online": {
"date-parts": [
[
2020,
10,
5
]
]
},
"publisher": "Springer Science and Business Media LLC",
"reference": [
{
"DOI": "10.1007/s10096-014-2086-y",
"author": "L Lehtoranta",
"doi-asserted-by": "publisher",
"first-page": "1289",
"journal-title": "Eur. J. Clin. Microbiol. Infect. Dis.",
"key": "78_CR1",
"unstructured": "Lehtoranta, L., Pitkäranta, A. & Korpela, R. Probiotics in respiratory virus infections. Eur. J. Clin. Microbiol. Infect. Dis. 33, 1289–1302 (2014).",
"volume": "33",
"year": "2014"
},
{
"DOI": "10.4081/itjm.2018.931",
"author": "O Zolnikova",
"doi-asserted-by": "publisher",
"first-page": "32",
"journal-title": "Ital. J. Med.",
"key": "78_CR2",
"unstructured": "Zolnikova, O., Komkova, I., Potskherashvili, N., Trukhmanov, A. & Ivashkin, V. Application of probiotics for acute respiratory tract infections. Ital. J. Med. 12, 32–38 (2018).",
"volume": "12",
"year": "2018"
},
{
"key": "78_CR3",
"unstructured": "European Respiratory Society. The Global Impact of Respiratory Disease. 2nd edn. (Forum of International Respiratory Societies, 2017)."
},
{
"DOI": "10.1016/j.tmaid.2020.101623",
"author": "AJ Rodriguez-Morales",
"doi-asserted-by": "publisher",
"first-page": "101623",
"journal-title": "Travel Med. Infect. Dis.",
"key": "78_CR4",
"unstructured": "Rodriguez-Morales, A. J. et al. Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med. Infect. Dis. 34, 101623, https://doi.org/10.1016/j.tmaid.2020.101623 (2020).",
"volume": "34",
"year": "2020"
},
{
"DOI": "10.1016/j.ijid.2020.03.071",
"author": "M Xie",
"doi-asserted-by": "publisher",
"first-page": "119",
"journal-title": "Int. J. Infect. Dis.",
"key": "78_CR5",
"unstructured": "Xie, M. & Chen, Q. Insight into 2019 novel coronavirus—an updated intrim review and lessons from SARS-CoV and MERS-CoV. Int. J. Infect. Dis. 94, 119–124 (2020).",
"volume": "94",
"year": "2020"
},
{
"DOI": "10.1056/NEJMoa2001017",
"author": "N Zhu",
"doi-asserted-by": "publisher",
"first-page": "727",
"journal-title": "N. Engl. J. Med.",
"key": "78_CR6",
"unstructured": "Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).",
"volume": "382",
"year": "2020"
},
{
"DOI": "10.1148/radiol.2020200490",
"author": "ZY Zu",
"doi-asserted-by": "publisher",
"first-page": "E15",
"journal-title": "Radiology",
"key": "78_CR7",
"unstructured": "Zu, Z. Y. et al. Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology 296, E15–E25 (2020).",
"volume": "296",
"year": "2020"
},
{
"DOI": "10.1007/s11606-020-05762-w",
"author": "F Jiang",
"doi-asserted-by": "publisher",
"first-page": "1545",
"journal-title": "J. Gen. Intern. Med.",
"key": "78_CR8",
"unstructured": "Jiang, F. et al. Review of the clinical characteristics of Coronavirus Disease 2019 (COVID-19). J. Gen. Intern. Med. 35, 1545–1549 (2020).",
"volume": "35",
"year": "2020"
},
{
"DOI": "10.1016/S0140-6736(20)30313-5",
"author": "C-W Lu",
"doi-asserted-by": "publisher",
"journal-title": "Lancet",
"key": "78_CR9",
"unstructured": "Lu, C.-W., Liu, X.-F. & Jia, Z.-F. 2019-nCoV transmission through the ocular surface must not be ignored. Lancet 395, e39, https://doi.org/10.1016/S0140-6736(20)30313-5 (2020).",
"volume": "395",
"year": "2020"
},
{
"key": "78_CR10",
"unstructured": "World Health Organization (WHO). Coronavirus disease (COVID-19) Pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (2020)."
},
{
"DOI": "10.1016/j.jmii.2020.02.011",
"author": "PI Lee",
"doi-asserted-by": "publisher",
"first-page": "371",
"journal-title": "J. Microbiol. Immunol. Infect.",
"key": "78_CR11",
"unstructured": "Lee, P. I., Hu, Y. L., Chen, P. Y., Huang, Y. C. & Hsueh, P. R. Are children less susceptible to COVID-19? J. Microbiol. Immunol. Infect. 53, 371–372 (2020).",
"volume": "53",
"year": "2020"
},
{
"DOI": "10.1097/INF.0000000000002660",
"author": "P Zimmerman",
"doi-asserted-by": "publisher",
"first-page": "355",
"journal-title": "Pediatr. Infect. Dis. J.",
"key": "78_CR12",
"unstructured": "Zimmerman, P. & Curtis, N. Coronavirus infections in children including COVID-19: an overview of the epidemiology, clinical features, diagnosis, treatment and prevention options in children. Pediatr. Infect. Dis. J. 39, 355–368 (2020).",
"volume": "39",
"year": "2020"
},
{
"DOI": "10.1056/NEJMoa2002032",
"author": "W Guan",
"doi-asserted-by": "publisher",
"first-page": "1708",
"journal-title": "N. Engl. J. Med.",
"key": "78_CR13",
"unstructured": "Guan, W. et al. Clinical characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 382, 1708–1720 (2020).",
"volume": "382",
"year": "2020"
},
{
"DOI": "10.1056/NEJMoa2001191",
"author": "ML Holshue",
"doi-asserted-by": "publisher",
"first-page": "929",
"journal-title": "N. Engl. J. Med.",
"key": "78_CR14",
"unstructured": "Holshue, M. L. et al. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 382, 929–936 (2020).",
"volume": "382",
"year": "2020"
},
{
"DOI": "10.1016/S2468-1253(20)30083-2",
"author": "Y Wu",
"doi-asserted-by": "publisher",
"first-page": "434",
"journal-title": "Lancet Gastroenterol. Hepatol.",
"key": "78_CR15",
"unstructured": "Wu, Y. et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 5, 434–435 (2020).",
"volume": "5",
"year": "2020"
},
{
"DOI": "10.1053/j.gastro.2020.02.055",
"author": "F Xiao",
"doi-asserted-by": "publisher",
"first-page": "1831",
"journal-title": "Gastroenterol",
"key": "78_CR16",
"unstructured": "Xiao, F. et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterol 158, 1831–1833 (2020).",
"volume": "158",
"year": "2020"
},
{
"DOI": "10.1007/s10620-020-06362-8",
"author": "J Kopel",
"doi-asserted-by": "publisher",
"first-page": "1932",
"journal-title": "Dig. Dis. Sci.",
"key": "78_CR17",
"unstructured": "Kopel, J., Perisetti, A., Gajendran, M., Boregowda, U. & Goyal, H. Clinical insights into the gastrointestinal manifestations of COVID-19. Dig. Dis. Sci. 65, 1932–1939 (2020).",
"volume": "65",
"year": "2020"
},
{
"DOI": "10.1053/j.gastro.2020.05.048",
"doi-asserted-by": "publisher",
"key": "78_CR18",
"unstructured": "Zuo, T. et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterol. https://doi.org/10.1053/j.gastro.2020.05.048 (2020)."
},
{
"DOI": "10.1016/j.eng.2020.05.013",
"doi-asserted-by": "publisher",
"key": "78_CR19",
"unstructured": "Tang, L. et al. Clinical significance of the correlation between changes in the major intestinal bacteria species and COVID-19 severity. Engineering. https://doi.org/10.1016/j.eng.2020.05.013 (2020)."
},
{
"DOI": "10.1016/j.immuni.2020.01.007",
"author": "W Barcik",
"doi-asserted-by": "publisher",
"first-page": "241",
"journal-title": "Immunity",
"key": "78_CR20",
"unstructured": "Barcik, W., Boutin, R. C. T., Sokolowska, M. & Finlay, B. B. The role of lung and gut microbiota in the pathology of asthma. Immunity 52, 241–255 (2020).",
"volume": "52",
"year": "2020"
},
{
"DOI": "10.1287/opre.2018.1817",
"author": "N Chehrazi",
"doi-asserted-by": "publisher",
"first-page": "619",
"journal-title": "Oper. Res.",
"key": "78_CR21",
"unstructured": "Chehrazi, N., Cipriano, L. E. & Enns, E. A. Dynamics of drug resistance: optimal control of an infectious disease. Oper. Res. 67, 619–650 (2019).",
"volume": "67",
"year": "2019"
},
{
"DOI": "10.1007/s12223-019-00759-3",
"author": "M Bustamante",
"doi-asserted-by": "publisher",
"first-page": "245",
"journal-title": "Folia Microbiol. (Praha).",
"key": "78_CR22",
"unstructured": "Bustamante, M. et al. Probiotics and prebiotics potential for the care of skin, female urogenital tract, and respiratory tract. Folia Microbiol. (Praha). 65, 245–264 (2020).",
"volume": "65",
"year": "2020"
},
{
"DOI": "10.1002/1873-3468.12421",
"author": "M Hauptmann",
"doi-asserted-by": "publisher",
"first-page": "3721",
"journal-title": "FEBS Lett.",
"key": "78_CR23",
"unstructured": "Hauptmann, M. & Schaible, U. E. Linking microbiota and respiratory disease. FEBS Lett. 590, 3721–3738 (2016).",
"volume": "590",
"year": "2016"
},
{
"DOI": "10.1371/journal.pbio.1002533",
"doi-asserted-by": "publisher",
"key": "78_CR24",
"unstructured": "Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. https://doi.org/10.1371/journal.pbio.1002533 (2016)."
},
{
"DOI": "10.1111/1574-6976.12075",
"author": "M Rajilić-Stojanović",
"doi-asserted-by": "publisher",
"first-page": "996",
"journal-title": "FEMS Microbiol. Rev.",
"key": "78_CR25",
"unstructured": "Rajilić-Stojanović, M. & de Vos, W. M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 38, 996–1047 (2014).",
"volume": "38",
"year": "2014"
},
{
"DOI": "10.3390/ijms16047493",
"author": "YJ Zhang",
"doi-asserted-by": "publisher",
"first-page": "7493",
"journal-title": "Int. J. Mol. Sci.",
"key": "78_CR26",
"unstructured": "Zhang, Y. J. et al. Impacts of gut bacteria on human health and diseases. Int. J. Mol. Sci. 16, 7493–7519 (2015).",
"volume": "16",
"year": "2015"
},
{
"DOI": "10.1177/1559827614557773",
"author": "G Davison",
"doi-asserted-by": "publisher",
"first-page": "152",
"journal-title": "Am. J. Lifestyle Med.",
"key": "78_CR27",
"unstructured": "Davison, G., Kehaya, C. & Wyn Jones, A. Nutritional and physical activity interventions to improve immunity. Am. J. Lifestyle Med. 10, 152–169 (2014).",
"volume": "10",
"year": "2014"
},
{
"DOI": "10.1128/mBio.00037-15",
"doi-asserted-by": "publisher",
"key": "78_CR28",
"unstructured": "Bassis, C. M. et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio. https://doi.org/10.1128/mBio.00037-15 (2015)."
},
{
"DOI": "10.1128/mBio.02287-16",
"doi-asserted-by": "publisher",
"key": "78_CR29",
"unstructured": "Dickson, R. P. et al. Bacterial topography of the healthy human lower respiratory tract. MBio. https://doi.org/10.1128/mBio.02287-16 (2017)."
},
{
"DOI": "10.7363/090139",
"author": "V Fanos",
"doi-asserted-by": "publisher",
"journal-title": "J. Pediatr. Neonat. Individ. Med.",
"key": "78_CR30",
"unstructured": "Fanos, V., Pintus, M. C., Pintus, R. & Marcialis, M. A. Lung microbiota in the acute respiratory disease: from coronavirus to metabolomics. J. Pediatr. Neonat. Individ. Med. 9, e090139, https://doi.org/10.7363/090139 (2020).",
"volume": "9",
"year": "2020"
},
{
"DOI": "10.1038/s41385-019-0160-6",
"author": "AT Dang",
"doi-asserted-by": "publisher",
"first-page": "843",
"journal-title": "Mucos. Immunol.",
"key": "78_CR31",
"unstructured": "Dang, A. T. & Marsland, B. J. Microbes, metabolites, and the gut–lung axis. Mucos. Immunol. 12, 843–850 (2019).",
"volume": "12",
"year": "2019"
},
{
"DOI": "10.1007/s00281-019-00775-y",
"author": "K Hufnagl",
"doi-asserted-by": "publisher",
"first-page": "75",
"journal-title": "Semin. Immunopathol.",
"key": "78_CR32",
"unstructured": "Hufnagl, K., Pali-Schöll, I., Roth-Walter, F. & Jensen-Jarolim, E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin. Immunopathol. 42, 75–93 (2020).",
"volume": "42",
"year": "2020"
},
{
"DOI": "10.3748/wjg.v19.i40.6794",
"author": "H Wang",
"doi-asserted-by": "publisher",
"first-page": "6794",
"journal-title": "World J. Gastroenterol.",
"key": "78_CR33",
"unstructured": "Wang, H. et al. Gut-lung crosstalk in pulmonary involvement with inflammatory bowel diseases. World J. Gastroenterol. 19, 6794–6804 (2013).",
"volume": "19",
"year": "2013"
},
{
"author": "S Mukherjee",
"first-page": "143",
"journal-title": "Yale J. Biol. Med.",
"key": "78_CR34",
"unstructured": "Mukherjee, S. & Hanidziar, D. More of the gut in the lung: how two microbiomes meet in ARDS. Yale J. Biol. Med. 91, 143–149 (2018).",
"volume": "91",
"year": "2018"
},
{
"DOI": "10.1186/s40560-019-0372-6",
"doi-asserted-by": "publisher",
"key": "78_CR35",
"unstructured": "Otani, S. & Coopersmith, C. M. Gut integrity in critical illness. J. Intens. Care 7, 17. https://doi.org/10.1186/s40560-019-0372-6 (2019)."
},
{
"DOI": "10.1111/eci.13276",
"author": "W Smyk",
"doi-asserted-by": "publisher",
"journal-title": "Eur. J. Clin. Invest.",
"key": "78_CR36",
"unstructured": "Smyk, W. et al. COVID-19: focus on the lungs but do not forget the gastrointestinal tract. Eur. J. Clin. Invest. 50, e13276, https://doi.org/10.1111/eci.13276 (2020).",
"volume": "50",
"year": "2020"
},
{
"DOI": "10.1016/S2468-1253(20)30118-7",
"author": "Y Wan",
"doi-asserted-by": "publisher",
"first-page": "534",
"journal-title": "Lancet Gastroenterol. Hepatol.",
"key": "78_CR37",
"unstructured": "Wan, Y. et al. Enteric involvement in hospitalised patients with COVID-19 outside Wuhan. Lancet Gastroenterol. Hepatol. 5, 534–535 (2020).",
"volume": "5",
"year": "2020"
},
{
"DOI": "10.1371/journal.pone.0111228",
"author": "MA Sze",
"doi-asserted-by": "publisher",
"journal-title": "PLoS ONE",
"key": "78_CR38",
"unstructured": "Sze, M. A. et al. Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs. PLoS ONE 9, e111228, https://doi.org/10.1371/journal.pone.0111228 (2014).",
"volume": "9",
"year": "2014"
},
{
"DOI": "10.1080/1040841X.2016.1176988",
"author": "Y He",
"doi-asserted-by": "publisher",
"first-page": "81",
"journal-title": "Crit. Rev. Microbiol.",
"key": "78_CR39",
"unstructured": "He, Y. et al. Gut–lung axis: the microbial contributions and clinical implications. Crit. Rev. Microbiol. 43, 81–95 (2017).",
"volume": "43",
"year": "2017"
},
{
"DOI": "10.1155/2015/892568",
"author": "M Vital",
"doi-asserted-by": "publisher",
"first-page": "892568",
"journal-title": "J. Immunol. Res.",
"key": "78_CR40",
"unstructured": "Vital, M., Harkema, J. R., Rizzo, M., Tiedje, J. & Brandenberger, C. Alterations of the murine gut microbiome with age and allergic airway disease. J. Immunol. Res. 2015, 892568 (2015).",
"volume": "2015",
"year": "2015"
},
{
"DOI": "10.1111/apt.15731",
"author": "Y Tian",
"doi-asserted-by": "publisher",
"first-page": "843",
"journal-title": "Aliment. Pharmacol. Ther.",
"key": "78_CR41",
"unstructured": "Tian, Y., Rong, L., Nian, W. & He, Y. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment. Pharmacol. Ther. 51, 843–851 (2020).",
"volume": "51",
"year": "2020"
},
{
"DOI": "10.1136/bmjgast-2020-000417",
"author": "VC Suresh Kumar",
"doi-asserted-by": "publisher",
"journal-title": "BMJ Open Gastroenterol.",
"key": "78_CR42",
"unstructured": "Suresh Kumar, V. C. et al. Novelty in the gut: a systematic review and meta-analysis of the gastrointestinal manifestations of COVID-19. BMJ Open Gastroenterol. 7, e000417 (2020).",
"volume": "7",
"year": "2020"
},
{
"DOI": "10.3389/fped.2020.00206",
"author": "E Ciaglia",
"doi-asserted-by": "publisher",
"first-page": "206",
"journal-title": "Front. Pediatr.",
"key": "78_CR43",
"unstructured": "Ciaglia, E., Vecchione, C. & Puca, A. A. COVID-19 infection and circulating ace2 levels: protective role in women and children. Front. Pediatr. 8, 206 (2020).",
"volume": "8",
"year": "2020"
},
{
"DOI": "10.1161/CIRCRESAHA.116.303587",
"author": "L Te Riet",
"doi-asserted-by": "publisher",
"first-page": "960",
"journal-title": "Circ. Res.",
"key": "78_CR44",
"unstructured": "Te Riet, L., Van Esch, J. H. M., Roks, A. J. M., Van Den Meiracker, A. H. & Danser, A. H. J. Hypertension: renin-angiotensin-aldosterone system alterations. Circ. Res. 116, 960–975 (2015).",
"volume": "116",
"year": "2015"
},
{
"DOI": "10.1097/SHK.0b013e318259abdb",
"author": "EE Perrone",
"doi-asserted-by": "publisher",
"first-page": "68",
"journal-title": "Shock",
"key": "78_CR45",
"unstructured": "Perrone, E. E. et al. Mechanisms of methicillin-resistant Staphylococcus aureus pneumonia-induced intestinal epithelial apoptosis. Shock 38, 68–75 (2012).",
"volume": "38",
"year": "2012"
},
{
"DOI": "10.1038/nrmicro.2016.142",
"author": "KF Budden",
"doi-asserted-by": "publisher",
"first-page": "55",
"journal-title": "Nat. Rev. Microbiol.",
"key": "78_CR46",
"unstructured": "Budden, K. F. et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol. 15, 55–63 (2017).",
"volume": "15",
"year": "2017"
},
{
"key": "78_CR47",
"unstructured": "FAO/WHO. Guidelines for the Evaluation of Probiotics in Food. https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf (2002)."
},
{
"DOI": "10.1038/nrmicro2690",
"author": "PA Bron",
"doi-asserted-by": "publisher",
"first-page": "66",
"journal-title": "Nat. Rev. Microbiol.",
"key": "78_CR48",
"unstructured": "Bron, P. A., Van Baarlen, P. & Kleerebezem, M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat. Rev. Microbiol. 10, 66–78 (2012).",
"volume": "10",
"year": "2012"
},
{
"DOI": "10.1016/j.lwt.2012.05.014",
"author": "N Saad",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "LWT Food Sci. Technol.",
"key": "78_CR49",
"unstructured": "Saad, N., Delattre, C., Urdaci, M., Schmitter, J. M. & Bressollier, P. An overview of the last advances in probiotic and prebiotic field. LWT Food Sci. Technol. 50, 1–16 (2013).",
"volume": "50",
"year": "2013"
},
{
"DOI": "10.1111/j.1753-4887.2006.tb00209.x",
"author": "S Santosa",
"doi-asserted-by": "publisher",
"first-page": "265",
"journal-title": "Nutr. Rev.",
"key": "78_CR50",
"unstructured": "Santosa, S., Farnworth, E. & Jones, P. J. H. Probiotics and their potential health claims. Nutr. Rev. 64, 265–274 (2006).",
"volume": "64",
"year": "2006"
},
{
"DOI": "10.1007/978-3-319-49688-7",
"doi-asserted-by": "crossref",
"key": "78_CR51",
"unstructured": "Al Kassaa, I. New Insights on Antiviral Probiotics: From Research to Applications (Springer, 2016)."
},
{
"DOI": "10.1093/jn/125.6.1401",
"author": "GR Gibson",
"doi-asserted-by": "publisher",
"first-page": "1401",
"journal-title": "J. Nutr.",
"key": "78_CR52",
"unstructured": "Gibson, G. R. & Roberfroid, M. B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 1401–1412 (1995).",
"volume": "125",
"year": "1995"
},
{
"DOI": "10.1038/nrgastro.2017.75",
"author": "GR Gibson",
"doi-asserted-by": "publisher",
"first-page": "491",
"journal-title": "Nat. Rev. Gastroenterol. Hepatol.",
"key": "78_CR53",
"unstructured": "Gibson, G. R. et al. The international scientific association and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).",
"volume": "14",
"year": "2017"
},
{
"DOI": "10.3390/nu12041037",
"author": "MPL Guarino",
"doi-asserted-by": "publisher",
"first-page": "1037",
"journal-title": "Nutrients",
"key": "78_CR54",
"unstructured": "Guarino, M. P. L. et al. Mechanisms of action of prebiotics and their effects on gastro-intestinal disorders in adults. Nutrients 12, 1037 (2020).",
"volume": "12",
"year": "2020"
},
{
"DOI": "10.3390/foods8030092",
"author": "D Davani-Davari",
"doi-asserted-by": "publisher",
"first-page": "92",
"journal-title": "Foods",
"key": "78_CR55",
"unstructured": "Davani-Davari, D. et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods 8, 92 (2019).",
"volume": "8",
"year": "2019"
},
{
"DOI": "10.1016/j.maturitas.2018.11.002",
"author": "N Dargahi",
"doi-asserted-by": "publisher",
"first-page": "25",
"journal-title": "Maturitas",
"key": "78_CR56",
"unstructured": "Dargahi, N., Johnson, J., Donkor, O., Vasiljevic, T. & Apostolopoulos, V. Immunomodulatory effects of probiotics: can they be used to treat allergies and autoimmune diseases? Maturitas 119, 25–38 (2019).",
"volume": "119",
"year": "2019"
},
{
"DOI": "10.1371/journal.pone.0000313",
"author": "B Foligne",
"doi-asserted-by": "publisher",
"journal-title": "PLoS ONE",
"key": "78_CR57",
"unstructured": "Foligne, B. et al. A key role of dendritic cells in probiotic functionality. PLoS ONE 2, e313, https://doi.org/10.1371/journal.pone.0000313 (2007).",
"volume": "2",
"year": "2007"
},
{
"DOI": "10.1016/j.clnu.2011.05.005",
"author": "S De Roock",
"doi-asserted-by": "publisher",
"first-page": "845",
"journal-title": "Clin. Nutr.",
"key": "78_CR58",
"unstructured": "De Roock, S. et al. Gut derived lactic acid bacteria induce strain specific CD4 + T cell responses in human PBMC. Clin. Nutr. 30, 845–851 (2011).",
"volume": "30",
"year": "2011"
},
{
"DOI": "10.3389/fimmu.2017.01536",
"author": "L Fu",
"doi-asserted-by": "publisher",
"first-page": "1536",
"journal-title": "Front. Immunol.",
"key": "78_CR59",
"unstructured": "Fu, L., Song, J., Wang, C., Fu, S. & Wang, Y. Bifidobacterium infantis potentially alleviates shrimp tropomyosin-induced allergy by tolerogenic dendritic cell-dependent induction of regulatory T cells and alterations in gut microbiota. Front. Immunol. 8, 1536, https://doi.org/10.3389/fimmu.2017.01536 (2017).",
"volume": "8",
"year": "2017"
},
{
"author": "H Kitazawa",
"first-page": "315",
"journal-title": "FEMS Microbiol. Lett.",
"key": "78_CR60",
"unstructured": "Kitazawa, H. et al. Expression of mRNA encoding IFNα in macrophages stimulated with Lactobacillus gasseri. FEMS Microbiol. Lett. 120, 315–321 (1994).",
"volume": "120",
"year": "1994"
},
{
"DOI": "10.1128/AEM.02702-16",
"author": "S Balzaretti",
"doi-asserted-by": "publisher",
"first-page": "e02702",
"journal-title": "Appl. Environ. Microbiol.",
"key": "78_CR61",
"unstructured": "Balzaretti, S. et al. A novel rhamnose-rich hetero-exopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells. Appl. Environ. Microbiol. 83, e02702–e02716 (2017).",
"volume": "83",
"year": "2017"
},
{
"DOI": "10.1371/journal.pone.0228531",
"author": "N Dargahi",
"doi-asserted-by": "publisher",
"journal-title": "PLoS ONE",
"key": "78_CR62",
"unstructured": "Dargahi, N., Johnson, J. & Apostolopoulos, V. Streptococcus thermophilus alters the expression of genes associated with innate and adaptive immunity in human peripheral blood mononuclear cells. PLoS ONE 15, e0228531, https://doi.org/10.1371/journal.pone.0228531 (2020).",
"volume": "15",
"year": "2020"
},
{
"DOI": "10.1016/j.jff.2018.08.038",
"author": "N Dargahi",
"doi-asserted-by": "publisher",
"first-page": "241",
"journal-title": "J. Funct. Foods",
"key": "78_CR63",
"unstructured": "Dargahi, N., Johnson, J., Donkor, O., Vasiljevic, T. & Apostolopoulos, V. Immunomodulatory effects of Streptococcus thermophilus on U937 monocyte cell cultures. J. Funct. Foods 49, 241–249 (2018).",
"volume": "49",
"year": "2018"
},
{
"DOI": "10.3390/brainsci10020126",
"author": "N Dargahi",
"doi-asserted-by": "publisher",
"first-page": "126",
"journal-title": "Brain Sci.",
"key": "78_CR64",
"unstructured": "Dargahi, N., Matsoukas, J. & Apostolopoulos, V. Streptococcus thermophilus ST285 alters pro-inflammatory to anti-inflammatory cytokine secretion against multiple sclerosis peptide in mice. Brain Sci. 10, 126 (2020).",
"volume": "10",
"year": "2020"
},
{
"DOI": "10.4049/jimmunol.1002194",
"author": "A Kudva",
"doi-asserted-by": "publisher",
"first-page": "1666",
"journal-title": "J. Immunol.",
"key": "78_CR65",
"unstructured": "Kudva, A. et al. Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice. J. Immunol. 186, 1666–1674 (2011).",
"volume": "186",
"year": "2011"
},
{
"DOI": "10.1111/j.1365-2249.2007.03549.x",
"author": "YW Chung",
"doi-asserted-by": "publisher",
"first-page": "182",
"journal-title": "Clin. Exp. Immunol.",
"key": "78_CR66",
"unstructured": "Chung, Y. W., Choi, J. H., Oh, T. Y., Eun, C. S. & Han, D. S. Lactobacillus casei prevents the development of dextran sulphate sodium-induced colitis in Toll-like receptor 4 mutant mice. Clin. Exp. Immunol. 151, 182–189 (2008).",
"volume": "151",
"year": "2008"
},
{
"DOI": "10.1016/j.cofs.2020.03.009",
"author": "F Zendeboodi",
"doi-asserted-by": "publisher",
"first-page": "103",
"journal-title": "Cur. Opin. Food Sci.",
"key": "78_CR67",
"unstructured": "Zendeboodi, F., Khorshidian, N., Mortazavian, A. M. & da Cruz, A. G. Probiotic: conceptualization from a new approach. Cur. Opin. Food Sci. 32, 103–123 (2020).",
"volume": "32",
"year": "2020"
},
{
"DOI": "10.1111/1541-4337.12387",
"author": "AN Olaimat",
"doi-asserted-by": "publisher",
"first-page": "1277",
"journal-title": "Compr. Rev. Food Sci. Food Saf.",
"key": "78_CR68",
"unstructured": "Olaimat, A. N. et al. Emergence of antibiotic resistance in Listeria monocytogenes isolated from food products: a comprehensive review. Compr. Rev. Food Sci. Food Saf. 17, 1277–1292 (2018).",
"volume": "17",
"year": "2018"
},
{
"DOI": "10.3389/fimmu.2019.00001",
"author": "R Khan",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Front. Immunol.",
"key": "78_CR69",
"unstructured": "Khan, R., Petersen, F. C. & Shekhar, S. Commensal bacteria: an emerging player in defense against respiratory pathogens. Front. Immunol. 10, 1–9 (2019).",
"volume": "10",
"year": "2019"
},
{
"DOI": "10.1016/j.intimp.2013.06.024",
"author": "E Chiba",
"doi-asserted-by": "publisher",
"first-page": "373",
"journal-title": "Int. Immunopharmacol.",
"key": "78_CR70",
"unstructured": "Chiba, E. et al. Immunobiotic Lactobacillus rhamnosus improves resistance of infant mice against respiratory syncytial virus infection. Int. Immunopharmacol. 17, 373–382 (2013).",
"volume": "17",
"year": "2013"
},
{
"DOI": "10.1038/s41598-019-39602-7",
"author": "K Eguchi",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Sci. Rep.",
"key": "78_CR71",
"unstructured": "Eguchi, K., Fujitani, N., Nakagawa, H. & Miyazaki, T. Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055. Sci. Rep. 9, 1–2 (2019).",
"volume": "9",
"year": "2019"
},
{
"DOI": "10.1017/S0007114513001104",
"author": "H Goto",
"doi-asserted-by": "publisher",
"first-page": "1810",
"journal-title": "Br. J. Nutr.",
"key": "78_CR72",
"unstructured": "Goto, H. et al. Anti-influenza virus effects of both live and non-live Lactobacillus acidophilus L-92 accompanied by the activation of innate immunity. Br. J. Nutr. 110, 1810–1818, https://doi.org/10.1017/S0007114513001104 (2013).",
"volume": "110",
"year": "2013"
},
{
"author": "M Kawase",
"first-page": "6",
"journal-title": "Lett. Appl. Microbiol.",
"key": "78_CR73",
"unstructured": "Kawase, M., He, F., Kubota, A., Harata, G. & Hiramatsu, M. Oral administration of Lactobacilli from human intestinal tract protects mice against influenza virus infection. Lett. Appl. Microbiol. 51, 6–10 (2010).",
"volume": "51",
"year": "2010"
},
{
"DOI": "10.1016/j.synbio.2018.03.001",
"author": "H Zhang",
"doi-asserted-by": "publisher",
"first-page": "113",
"journal-title": "Synth. Syst. Biotechnol.",
"key": "78_CR74",
"unstructured": "Zhang, H. et al. Prospective study of probiotic supplementation results in immune stimulation and improvement of upper respiratory infection rate. Synth. Syst. Biotechnol. 3, 113–120 (2018).",
"volume": "3",
"year": "2018"
},
{
"DOI": "10.1038/s41598-016-0028-x",
"author": "YJ Jung",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Sci. Rep.",
"key": "78_CR75",
"unstructured": "Jung, Y. J. et al. Heat-killed Lactobacillus casei confers broad protection against influenza A virus primary infection and develops heterosubtypic immunity against future secondary infection. Sci. Rep. 7, 1–12 (2017).",
"volume": "7",
"year": "2017"
},
{
"DOI": "10.1128/CDLI.8.3.593-597.2001",
"author": "T Hori",
"doi-asserted-by": "publisher",
"first-page": "593",
"journal-title": "Clin. Diagn. Lab. Immunol.",
"key": "78_CR76",
"unstructured": "Hori, T., Kiyoshima, J., Shida, K. & Yasui, H. Effect of Intranasal Administration of Lactobacillus casei Shirota on influenza virus infection of upper respiratory tract in mice. Clin. Diagn. Lab. Immunol. 8, 593–597 (2001).",
"volume": "8",
"year": "2001"
},
{
"DOI": "10.1016/j.celrep.2018.08.090",
"author": "V Le Noci",
"doi-asserted-by": "publisher",
"first-page": "3528",
"journal-title": "Cell Rep.",
"key": "78_CR77",
"unstructured": "Le Noci, V. et al. Modulation of pulmonary microbiota by antibiotic or probiotic aerosol therapy: a strategy to promote immunosurveillance against lung metastases. Cell Rep. 24, 3528–3538 (2018).",
"volume": "24",
"year": "2018"
},
{
"author": "MK Park",
"first-page": "26",
"journal-title": "PLoS ONE",
"key": "78_CR78",
"unstructured": "Park, M. K. et al. Lactobacillus plantarum DK119 as a probiotic confers protection against influenza virus by modulating innate immunity. PLoS ONE 8, 26–29 (2013).",
"volume": "8",
"year": "2013"
},
{
"DOI": "10.1111/j.1472-765X.2010.02844.x",
"author": "G Harata",
"doi-asserted-by": "publisher",
"first-page": "597",
"journal-title": "Lett. Appl. Microbiol.",
"key": "78_CR79",
"unstructured": "Harata, G. et al. Intranasal administration of Lactobacillus rhamnosus GG protects mice from H1N1 influenza virus infection by regulating respiratory immune responses. Lett. Appl. Microbiol. 50, 597–602 (2010).",
"volume": "50",
"year": "2010"
},
{
"DOI": "10.1007/s10096-015-2491-x",
"author": "P Marchisio",
"doi-asserted-by": "publisher",
"first-page": "2377",
"journal-title": "Eur. J. Clin. Microbiol. Infect. Dis.",
"key": "78_CR80",
"unstructured": "Marchisio, P. et al. Streptococcus salivarius 24SMB administered by nasal spray for the prevention of acute otitis media in otitis-prone children. Eur. J. Clin. Microbiol. Infect. Dis. 34, 2377–2383 (2015).",
"volume": "34",
"year": "2015"
},
{
"DOI": "10.1186/1471-2172-14-40",
"author": "Y Tomosada",
"doi-asserted-by": "publisher",
"first-page": "40",
"journal-title": "BMC Immunol.",
"key": "78_CR81",
"unstructured": "Tomosada, Y. et al. Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection. BMC Immunol. 14, 40, https://doi.org/10.1186/1471-2172-14-40 (2013).",
"volume": "14",
"year": "2013"
},
{
"DOI": "10.1007/s00011-015-0837-6",
"author": "H Zelaya",
"doi-asserted-by": "publisher",
"first-page": "589",
"journal-title": "Inflamm. Res.",
"key": "78_CR82",
"unstructured": "Zelaya, H. et al. Nasal priming with immunobiotic Lactobacillus rhamnosus modulates inflammation–coagulation interactions and reduces influenza virus-associated pulmonary damage. Inflamm. Res. 64, 589–602 (2015).",
"volume": "64",
"year": "2015"
},
{
"DOI": "10.1111/j.1574-695X.2011.00903.x",
"author": "M Kawase",
"doi-asserted-by": "publisher",
"first-page": "280",
"journal-title": "FEMS Immunol. Med. Microbiol.",
"key": "78_CR83",
"unstructured": "Kawase, M. et al. Heat-killed Lactobacillus gasseri TMC0356 protects mice against influenza virus infection by stimulating gut and respiratory immune responses. FEMS Immunol. Med. Microbiol. 64, 280–288 (2012).",
"volume": "64",
"year": "2012"
},
{
"DOI": "10.1016/j.antiviral.2011.11.004",
"author": "HN Youn",
"doi-asserted-by": "publisher",
"first-page": "138",
"journal-title": "Antivir. Res.",
"key": "78_CR84",
"unstructured": "Youn, H. N. et al. Intranasal administration of live Lactobacillus species facilitates protection against influenza virus infection in mice. Antivir. Res. 93, 138–43 (2012).",
"volume": "93",
"year": "2012"
},
{
"DOI": "10.1007/s11906-017-0723-4",
"author": "I Robles-Vera",
"doi-asserted-by": "publisher",
"first-page": "26",
"journal-title": "Curr. Hypertens. Rep.",
"key": "78_CR85",
"unstructured": "Robles-Vera, I. et al. Antihypertensive effects of probiotics. Curr. Hypertens. Rep. 19, 26, https://doi.org/10.1007/s11906-017-0723-4 (2017).",
"volume": "19",
"year": "2017"
},
{
"DOI": "10.3168/jds.2011-4940",
"author": "MM Ayyash",
"doi-asserted-by": "publisher",
"first-page": "4747",
"journal-title": "J. Dairy Sci.",
"key": "78_CR86",
"unstructured": "Ayyash, M. M., Sherkat, F. & Shah, N. P. The effect of NaCl substitution with KCl on Akawi cheese: Chemical composition, proteolysis, angiotensin-converting enzyme-inhibitory activity, probiotic survival, texture profile, and sensory properties. J. Dairy Sci. 95, 4747–4759 (2012).",
"volume": "95",
"year": "2012"
},
{
"DOI": "10.5851/kosfa.2020.e1",
"author": "M Ayyash",
"doi-asserted-by": "publisher",
"first-page": "155",
"journal-title": "Food Sci. Anim. Resour.",
"key": "78_CR87",
"unstructured": "Ayyash, M., Olaimat, A., Al-Nabulsi, A. & Liu, S. Q. Bioactive properties of novel probiotic Lactococcus lactis fermented camel sausages: Cytotoxicity, angiotensin converting enzyme inhibition, antioxidant capacity, and antidiabetic activity. Food Sci. Anim. Resour. 40, 155–171 (2020).",
"volume": "40",
"year": "2020"
},
{
"DOI": "10.1016/j.jff.2014.05.002",
"author": "F Miremadi",
"doi-asserted-by": "publisher",
"first-page": "295",
"journal-title": "J. Funct. Foods",
"key": "78_CR88",
"unstructured": "Miremadi, F., Ayyash, M., Sherkat, F. & Stojanovska, L. Cholesterol reduction mechanisms and fatty acid composition of cellular membranes of probiotic Lactobacilli and Bifidobacteria. J. Funct. Foods 9, 295–305 (2014).",
"volume": "9",
"year": "2014"
},
{
"DOI": "10.1097/HJH.0000000000002468",
"author": "FJ Fernández-Fernández",
"doi-asserted-by": "publisher",
"first-page": "1191",
"journal-title": "J. Hypertens.",
"key": "78_CR89",
"unstructured": "Fernández-Fernández, F. J. COVID-19, hypertension and angiotensin receptor-blocking drugs. J. Hypertens. 38, 1191 (2020).",
"volume": "38",
"year": "2020"
},
{
"DOI": "10.1097/HJH.0000000000002450",
"author": "M Esler",
"doi-asserted-by": "publisher",
"first-page": "781",
"journal-title": "J. Hypertens.",
"key": "78_CR90",
"unstructured": "Esler, M. & Esler, D. Can angiotensin receptor-blocking drugs perhaps be harmful in the COVID-19 pandemic? J. Hypertens. 38, 781–782 (2020).",
"volume": "38",
"year": "2020"
},
{
"DOI": "10.1038/nature03712",
"author": "Y Imai",
"doi-asserted-by": "publisher",
"first-page": "112",
"journal-title": "Nature",
"key": "78_CR91",
"unstructured": "Imai, Y. et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436, 112–116 (2005).",
"volume": "436",
"year": "2005"
},
{
"DOI": "10.2147/DDDT.S155110",
"author": "TL Yeh",
"doi-asserted-by": "publisher",
"first-page": "217",
"journal-title": "Drug Des. Devel. Ther.",
"key": "78_CR92",
"unstructured": "Yeh, T. L. et al. The influence of prebiotic or probiotic supplementation on antibody titers after influenza vaccination: A systematic review and meta-analysis of randomized controlled trials. Drug Des. Devel. Ther. 12, 217–230 (2018).",
"volume": "12",
"year": "2018"
},
{
"DOI": "10.3390/nu12061718",
"author": "F Infusino",
"doi-asserted-by": "publisher",
"first-page": "1718",
"journal-title": "Nutrients",
"key": "78_CR93",
"unstructured": "Infusino, F. et al. Diet supplementation, probiotics, and nutraceuticals in SARS-CoV-2 infection: a scoping review. Nutrients 12, 1718, https://doi.org/10.3390/nu12061718 (2020).",
"volume": "12",
"year": "2020"
},
{
"author": "K Xu",
"first-page": "147",
"journal-title": "Zhejiang Da Xue Xue Bao. Yi Xue Ban",
"key": "78_CR94",
"unstructured": "Xu, K. et al. Management of corona virus disease-19 (COVID-19): The Zhejiang experience. Zhejiang Da Xue Xue Bao. Yi Xue Ban 49, 147–157 (2020).",
"volume": "49",
"year": "2020"
},
{
"DOI": "10.1016/j.clim.2020.108409",
"author": "A Gasmi",
"doi-asserted-by": "publisher",
"first-page": "108409",
"journal-title": "Clin. Immunol.",
"key": "78_CR95",
"unstructured": "Gasmi, A. et al. Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clin. Immunol. 215, 108409, https://doi.org/10.1016/j.clim.2020.108409 (2020).",
"volume": "215",
"year": "2020"
},
{
"DOI": "10.1017/S000711451000173X",
"author": "S Makino",
"doi-asserted-by": "publisher",
"first-page": "998",
"journal-title": "Br. J. Nutr.",
"key": "78_CR96",
"unstructured": "Makino, S. et al. Reducing the risk of infection in the elderly by dietary intake of yoghurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Br. J. Nutr. 104, 998–1006 (2010).",
"volume": "104",
"year": "2010"
},
{
"DOI": "10.1038/ejcn.2010.65",
"author": "D Merenstein",
"doi-asserted-by": "publisher",
"first-page": "669",
"journal-title": "Eur. J. Clin. Nutr.",
"key": "78_CR97",
"unstructured": "Merenstein, D. et al. Use of a fermented dairy probiotic drink containing Lactobacillus casei (DN-114 001) to decrease the rate of illness in kids: the DRINK study A patient-oriented, double-blind, cluster-randomized, placebo-controlled, clinical trial. Eur. J. Clin. Nutr. 64, 669–677 (2010).",
"volume": "64",
"year": "2010"
},
{
"DOI": "10.1007/s00394-015-1056-1",
"author": "K Shida",
"doi-asserted-by": "publisher",
"first-page": "45",
"journal-title": "Eur. J. Nutr.",
"key": "78_CR98",
"unstructured": "Shida, K. et al. Daily intake of fermented milk with Lactobacillus casei strain Shirota reduces the incidence and duration of upper respiratory tract infections in healthy middle-aged office workers. Eur. J. Nutr. 56, 45–53 (2017).",
"volume": "56",
"year": "2017"
},
{
"DOI": "10.1017/S0007114510003685",
"author": "T Taipale",
"doi-asserted-by": "publisher",
"first-page": "409",
"journal-title": "Br. J. Nutr.",
"key": "78_CR99",
"unstructured": "Taipale, T. et al. Bifidobacterium animalis subsp. lactis BB-12 in reducing the risk of infections in infancy. Br. J. Nutr. 105, 409–416 (2011).",
"volume": "105",
"year": "2011"
},
{
"DOI": "10.3389/fimmu.2019.00001",
"author": "D Wu",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Front. Immunol.",
"key": "78_CR100",
"unstructured": "Wu, D., Lewis, E. D., Pae, M. & Meydani, S. N. Nutritional modulation of immune function: analysis of evidence, mechanisms, and clinical relevance. Front. Immunol. 10, 1–19 (2019).",
"volume": "10",
"year": "2019"
},
{
"DOI": "10.1155/2017/5939818",
"author": "JM Landete",
"doi-asserted-by": "publisher",
"first-page": "5939818",
"journal-title": "Biomed. Res. Int.",
"key": "78_CR101",
"unstructured": "Landete, J. M. et al. Probiotic bacteria for healthier aging: immunomodulation and metabolism of phytoestrogens. Biomed. Res. Int. 2017, 5939818, https://doi.org/10.1155/2017/5939818 (2017).",
"volume": "2017",
"year": "2017"
},
{
"DOI": "10.1002/jcph.1121",
"author": "Y Liu",
"doi-asserted-by": "publisher",
"first-page": "S164",
"issue": "Suppl 10",
"journal-title": "J. Clin. Pharmacol.",
"key": "78_CR102",
"unstructured": "Liu, Y., Tran, D. Q. & Rhoads, J. M. Probiotics in disease prevention and treatment. J. Clin. Pharmacol. 58(Suppl 10), S164–S179 (2018).",
"volume": "58",
"year": "2018"
},
{
"DOI": "10.1093/eurpub/cky185",
"author": "S King",
"doi-asserted-by": "publisher",
"first-page": "494",
"journal-title": "Eur. J. Public Health",
"key": "78_CR103",
"unstructured": "King, S. et al. Does probiotic consumption reduce antibiotic utilization for common acute infections? A systematic review and meta-analysis. Eur. J. Public Health 29, 494–499 (2019).",
"volume": "29",
"year": "2019"
},
{
"DOI": "10.1097/MD.0000000000004509",
"author": "Y Wang",
"doi-asserted-by": "publisher",
"journal-title": "Med. (Baltim.)",
"key": "78_CR104",
"unstructured": "Wang, Y. et al. Probiotics for prevention and treatment of respiratory tract infections in children: a systematic review and meta-analysis of randomized controlled trials. Med. (Baltim.) 95, e4509, https://doi.org/10.1097/MD.0000000000004509 (2016).",
"volume": "95",
"year": "2016"
}
],
"reference-count": 104,
"references-count": 104,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.nature.com/articles/s41538-020-00078-9"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "The potential application of probiotics and prebiotics for the prevention and treatment of COVID-19",
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1007/springer_crossmark_policy",
"volume": "4"
}