Conv. Plasma
Nigella Sativa

All selenium studies
Meta analysis
study COVID-19 treatment researchSeleniumSelenium (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Selenium—More than Just a Fortuitous Sulfur Substitute in Redox Biology

Maia et al., Molecules, doi:10.3390/molecules29010120
Dec 2023  
  Source   PDF   All Studies   Meta AnalysisMeta
Review of the role of selenium and selenoproteins in viral infections. Authors note that several studies have shown lower serum selenium levels in COVID-19 patients, and selenium deficiency has been linked with increased severity and mortality of other viral infections as well, potentially due to reduced activity of antioxidant selenoenzymes like glutathione peroxidases (GPxs) and thioredoxin reductases (TrxRs).
Reviews covering selenium for COVID-19 include Foshati, Maia, Yuan.
Maia et al., 24 Dec 2023, multiple countries, peer-reviewed, 4 authors. Contact: (corresponding author),,,
This PaperSeleniumAll
Selenium—More than Just a Fortuitous Sulfur Substitute in Redox Biology
Luisa B Maia, Biplab K Maiti, Isabel Moura, José J G Moura
Molecules, doi:10.3390/molecules29010120
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Abbreviations ACE-2: angiotensin-converting enzyme 2; COVID-19, Coronavirus Disease-2019; Cys-FDH, cysteine-containing FDH; Cys-FMFDH, cysteine-containing FMFDH; Cys-Mo-FDH, cysteine and molybdenum-containing FDH; Cys-W-FDH, cysteine and tungsten-containing FDH; Dios, iodothyronine deiodinases; DM, diabetes mellitus; EPR, electron paramagnetic resonance spectroscopy; FDH, formate dehydrogenase; [Fe]-Hase, [Fe]-hydrogenase; [FeFe]-Hase, [FeFe]-hydrogenases; FMFDH, Nformyl-methanofuran dehydrogenases; GPx, glutathione peroxidase; GSH, glutathione; Hase, hydrogenases; HIV, human immunodeficiency virus; IRD, inner-ring deiodination; Mpro, main proteases; [NiFe]-Hase, [NiFe]-hydrogenase; [NiSeFe]-Hase, [NiSeFe]-hydrogenase; ORD, outer-ring deiodination; ROS, reactive oxygen species; R-SeOH, selenenic acid; R-SeOOH, seleninic acid; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SeCys-FDH, selenocysteine-containing FDH; SeCys-FMFDH, selebocysteine-containing FMFDH; SeCys-Mo-FDH, selenocysteine and molybdenumcontaining FDH; SeCys-W-FDH, selenocysteine and tungsten-containing FDH; SePs, selenoproteins; T2DM, Type 2 diabetes mellitus; TGR, thioredoxin glutathione reductase; Trx, thioredoxin; TrxR, thioredoxin reductase; XAS, X-ray absorption spectroscopy.
Abdo, Knapp, Biomimetic Seleninates and Selenonates, J. Am. Chem. Soc, doi:10.1021/ja8034448
Adams, Mortenson, Mo reductases: Nitrate reductase and formate dehydrogenase
Al-Taie, Uceyler, Eubner, Jakob, Mork et al., Expression Profiling and Genetic Alterations of the Selenoproteins GI-GPx and SePP in Colorectal Carcinogenesis, Nutr. Cancer, doi:10.1207/s15327914nc4801_2
Alekseeva, Savin, Tishkov, NAD+-dependent formate dehydrogenase from plants, Acta Nat, doi:10.32607/20758251-2011-3-4-38-54
Allmang, Wurth, Krol, The Selenium to Selenoprotein Pathway in Eukaryotes: More Molecular Partners than Anticipated, Biochim. Biophys. Acta Gen. Subj, doi:10.1016/j.bbagen.2009.03.003
Almendra, Brondino, Gavel, Pereira, Tavares et al., Purification and characterization of a tungsten-containing formate dehydrogenase from Desulfovibrio gigas, Biochemistry, doi:10.1021/bi990069n
Andreesen, Ljungdahl, Formate dehydrogenase of Clostridium thermoaceticum: Incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme, J. Bacteriol, doi:10.1128/jb.116.2.867-873.1973
Arnér, Focus on mammalian thioredoxin reductases--important selenoproteins with versatile functions, Biochim. Biophys. Acta, doi:10.1016/j.bbagen.2009.01.014
Arnér, Selenoproteins-What unique properties can arise with selenocysteine in place of cysteine?, Antioxid. Redox Signal, doi:10.1089/ars.2015.6469
Arscott, Gromer, Schirmer, Williams, Jr, The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli, Proc. Natl. Acad. Sci, doi:10.1073/pnas.94.8.3621
Arsova-Sarafinovska, Matevska, Eken, Petrovski, Banev et al., Glutathione peroxidase 1 (GPX1) genetic polymorphism, erythrocyte GPX activity, and prostate cancer risk, Int. Urol. Nephrol, doi:10.1007/s11255-008-9407-y
Auwerx, Isacsson, Söderlund, Balzarini, Johansson et al., Human glutaredoxin-1 catalyzes the reduction of HIV-1 gp120 and CD4 disulfides and its inhibition reduces HIV-1 replication, Int. J. Biochem. Cell Biol, doi:10.1016/j.biocel.2008.10.031
Avery, Hoffmann, Selenium, Selenoproteins, and Immunity, Nutrients, doi:10.3390/nu10091203
Axley, Böck, Stadtman, Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium, Proc. Natl. Acad. Sci, doi:10.1073/pnas.88.19.8450
Baliga, Wang, Zhuo, Schwartz, Diamond, Selenium and GPx-1 overexpression protect mammalian cells against UV-induced DNA damage, Biol. Trace. Elem. Res, doi:10.1007/BF02685998
Baltazar, Marques, Soares, Delacey, Pereira et al., Nickel-iron-selenium hydrogenases-An overview, Eur. J. Inorg. Chem, doi:10.1002/ejic.201001127
Banerjee, Zhang, Manda, Banks, Nuran Ercal, HIV proteins (gp120 and Tat) and methamphetamine in oxidative stress-induced damage in the brain: Potential role of the thiol antioxidant N-acetylcysteine amide, Free Radic. Biol. Med, doi:10.1016/j.freeradbiomed.2010.02.023
Banning, Kipp, Schmitmeier, Löwinger, Florian et al., Glutathione Peroxidase 2 Inhibits Cyclooxygenase-2-Mediated Migration and Invasion of HT-29 Adenocarcinoma Cells but Supports Their Growth as Tumors in Nude Mice, Cancer Res, doi:10.1158/0008-5472.CAN-08-1321
Barbosa, Baltazar, Cruz, Lousa, Soares, Studying O2 pathways in [NiFe]-and [NiFeSe]-hydrogenases, Sci. Rep, doi:10.1038/s41598-020-67494-5
Barbouche, Miquelis, Jones, Fenouillet, Protein-disulfide isomerase-mediated reduction of two disulfide bonds of HIV envelope glycoprotein 120 occurs post-CXCR4 binding and is required for fusion, J. Biol. Chem, doi:10.1074/jbc.M205467200
Barchielli, Capperucci, Tanini, The Role of Selenium in Pathologies: An Updated Review, Antioxidants, doi:10.3390/antiox11020251
Beck, Kolbeck, Rohr, Shi, Morris et al., Benign human enterovirus becomes virulent in selenium-deficient mice, J. Med. Virol, doi:10.1002/jmv.1890430213
Behne, Kyriakopoulos, Meinhold, Köhrle, Identification of type I iodothyronine 5 ′ -deiodinase as a selenoenzyme, Biochem. Biophys. Res. Commun, doi:10.1016/S0006-291X(05)80905-2
Bell, Fisher, Wu, Hilvert, Kinetic studies on the peroxidase activity of selenosubtilisin, Biochemistry, doi:10.1021/bi00065a030
Berry, Banu, Larsen, Type I iodothyronine deiodinase is a selenocysteine-containing enzyme, Nature, doi:10.1038/349438a0
Berry, Martin, Tujebajeva, Grundner-Culemann, Mansell et al., Selenocysteine Insertion Sequence Element Characterization and Selenoprotein Expression, Methods Enzymol
Bertram, Karrasch, Schmitz, Böcher, Albracht et al., Formylmethanofuran dehydrogenases from methanogenic Archaea. Substrate specificity, EPR properties and reversible inactivation by cyanide of the molybdenum or tungsten iron-sulfur proteins, Eur. J. Biochem, doi:10.1111/j.1432-1033.1994.tb18646.x
Besse, Siedler, Diercks, Kessler, Moroder, The redox potentials of selenocystine in unconstrained cyclic peptides, Angew. Chem. Int. Ed. Engl, doi:10.1002/anie.199708831
Bianco, Kim, Deiodinases, Implications of the local control of thyroid hormone action, J. Clin. Investig, doi:10.1172/JCI29812
Bianco, Salvatore, Gereben, Berry, Larsen et al., Cellular and Molecular Biology, and Physiological Roles of the Iodothyronine Selenodeiodinases, J. Iodothyronine deiodinases. Methods Enzymol, doi:10.1210/edrv.23.1.0455
Biswas, Mclay, Campbell, Selenium Supplementation in Pregnancy-Maternal and Newborn Outcomes, J. Nutr. Metab
Biterova, Turanov, Gladyshev, Barycki, Crystal structures of oxidized and reduced mitochondrial thioredoxin reductase provide molecular details of the reaction mechanism, Proc. Natl. Acad. Sci, doi:10.1073/pnas.0504218102
Bleijlevens, Van Broekhuizen, De Lacey, Roseboom, Fernandez et al., The Activation of the [NiFe]-Hydrogenase from Allochromatium Vinosum. An Infrared Spectro-Electrochemical Study, J. Biol. Inorg. Chem, doi:10.1007/s00775-004-0570-z
Borchert, Kalms, Roth, Rademacher, Schmidt et al., Crystal structure and functional characterization of selenocysteine-containing glutathione peroxidase 4 suggests an alternative mechanism of peroxide reduction, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, doi:10.1016/j.bbalip.2018.06.006
Bortoli, Torsello, Bickelhaupt, Orian, Role of the Chalcogen (S, Se, Te) in the Oxidation Mechanism of the Glutathione Peroxidase Active Site, ChemPhysChem, doi:10.1002/cphc.201700743
Boyd, Selenium stories, Nat. Chem, doi:10.1038/nchem.1076
Boyington, Gladyshev, Khangulov, Stadtman, Sun, Crystal structure of formate dehydrogenase H: Catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster, Science, doi:10.1126/science.275.5304.1305
Brent, Mechanisms of thyroid hormone action, J. Clin. Investig, doi:10.1172/JCI60047
Brigelius-Flohé, Flohé, Regulatory Phenomena in the Glutathione Peroxidase Superfamily, Antioxid. Redox Signal, doi:10.1089/ars.2019.7905
Bulteau, Chavatte, Update on Selenoprotein Biosynthesis, Antioxid. Redox Signal, doi:10.1089/ars.2015.6391
Burgos-Morón, Abad-Jiménez, De Marañón, Iannantuoni, Escribano-López et al., Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues, J. Clin. Med, doi:10.3390/jcm8091385
Bănescu, Trifa, Voidăzan, Moldovan, Macarie et al., GPX1, MnSOD, GSTM1, GSTT1, and GSTP1 Genetic Polymorphisms in Chronic Myeloid Leukemia: A Case-Control Study, Oxid. Med. Cell. Longev, doi:10.1155/2014/875861
Cai, Zhang, Duan, Wu, Fang, Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells, Toxicol. Appl. Pharmacol, doi:10.1016/j.taap.2012.05.012
Carepo, Tierney, Brondino, Yang, Pamplona et al., 17 O ENDOR detection of a solvent-derived Ni-(OH(x))-Fe bridge that is lost upon activation of the hydrogenase from Desulfovibrio gigas, J. Am. Chem. Soc, doi:10.1021/ja010204v
Cejas, García-Cabezas, Casado, Belda-Iniesta, De Castro et al., Phospholipid hydroperoxide glutathione peroxidase (PHGPx) expression is downregulated in poorly differentiated breast invasive ductal carcinoma, Free Radic. Res, doi:10.1080/10715760701286167
Cerutti, Killick, Jugnarain, Papathanasopoulos, Capovilla, Disulfide reduction in CD4 domain 1 or 2 is essential for interaction with HIV glycoprotein 120 (gp120), which impairs thioredoxin-driven CD4 dimerization, J. Biol. Chem, doi:10.1074/jbc.M113.539353
Chan, Kim, HIV Entry and Its Inhibition, Cell, doi:10.1016/S0092-8674(00)81430-0
Chang, Worley, Phaëton, Hempel, Extracellular Glutathione Peroxidase GPx3 and Its Role in Cancer, Cancers, doi:10.3390/cancers12082197
Chatterjee, Khunti, Davies, Type 2 diabetes, Lancet, doi:10.1016/S0140-6736(17)30058-2
Cheng, Sandalova, Lindqvist, Arnér, Crystal structure and catalysis of the selenoprotein thioredoxin reductase 1, J. Biol. Chem, doi:10.1074/jbc.M807068200
Cheng, Xu, Li, Ruan, GPX1, a biomarker for the diagnosis and prognosis of kidney cancer, promotes the progression of kidney cancer, Aging, doi:10.18632/aging.102555
Chiarello, Abad, Rojas, Toledo, Vázquez et al., Oxidative stress: Normal pregnancy versus preeclampsia, Biochim. Biophys. Acta (BBA)-Mol. Basis Dis, doi:10.1016/j.bbadis.2018.12.005
Clark, Combs, Jr, Turnbull, Slate et al., Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group, JAMA, doi:10.1001/jama.1996.03540240035027
Combs, Jr, Status of selenium in prostate cancer prevention, Br. J. Cancer, doi:10.1038/sj.bjc.6601974
Cramer, Liu, Mortenson, Spence, Liu et al., Formate dehydrogenase molybdenum and tungsten sites-Observation by EXAFS of structural differences, J. Inorg. Biochem, doi:10.1016/0162-0134(85)83015-4
Dagnell, Schmidt, Arnér, The A to Z of modulated cell patterning by mammalian thioredoxin reductases, Free Radic. Biol. Med, doi:10.1016/j.freeradbiomed.2017.12.029
Debasish Manna, Mugesh, Regioselective Deiodination of Thyroxine by Iodothyronine Deiodinase Mimics: An Unusual Mechanistic Pathway Involving Cooperative Chalcogen and Halogen Bonding, J. Am. Chem. Soc, doi:10.1021/ja210478k
Di Bernardo, Thompson, Gardner, Chobot, Eastwood et al., Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks, Nat. Biotechnol, doi:10.1038/nbt1075
Dietrich, Righetto, Kumar, Wietrzynski, Trischler et al., Membrane-anchored HDCR nanowires drive hydrogen-powered CO 2 fixation, Nature, doi:10.1038/s41586-022-04971-z
Driscoll, Copeland, Mechanism and regulation of selenoprotein synthesis, Annu. Rev. Nutr, doi:10.1146/annurev.nutr.23.011702.073318
Duffus, Schrapers, Schuth, Mebs, Dau et al., Anion binding and oxidative modification at the molybdenum cofactor of formate dehydrogenase from Rhodobacter capsulatus studied by X-ray absorption spectroscopy, Inorg. Chem, doi:10.1021/acs.inorgchem.9b01613
Eckenroth, Harris, Turanov, Gladyshev, Raines et al., Semisynthesis and characterization of mammalian thioredoxin reductase, Biochemistry, doi:10.1021/bi0517887
Eidsness, Scott, Prickril, Dervartanian, Legall et al., Evidence for selenocysteine coordination to the active site nickel in the [NiFeSe] hydrogenases from Desulfovibrio baculatus, Proc. Natl. Acad. Sci, doi:10.1073/pnas.86.1.147
Epp, Ladenstein, Wendel, The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution, Eur. J. Biochem, doi:10.1111/j.1432-1033.1983.tb07429.x
Eva Falck, Karlsson, Carlsson, Helenius, Karlsson et al., Loss of glutathione peroxidase 3 expression is correlated with epigenetic mechanisms in endometrial adenocarcinoma, Cancer Cell Int, doi:10.1186/1475-2867-10-46
Evren Okur, Karantas, Siafaka, Diabetes Mellitus: A Review on Pathophysiology, Current Status of Oral Pathophysiology, Current Status of Oral Medications and Future Perspectives, ACTA Pharm. Sci
Fairweather-Tait, Bao, Broadley, Collings, Ford et al., Selenium in human health and disease, Antioxid. Redox Signal, doi:10.1089/ars.2010.3275
Farzin, Sajadi, Comparison of serum trace element levels in patients with or without pre-eclampsia, J. Res. Med. Sci
Fauque, Barton, Legall, Oxidative Phosphorylation Linked to the Dissimilatory Reduction of Elemental Sulphur by Desulfovibrio, Ciba Found. Symp
Fauque, Peck, Jr, Moura, Huynh et al., The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio, FEMS Microbiol. Rev, doi:10.1111/j.1574-6968.1988.tb02748.x
Ferguson, Rojo, Von Lindern, O'brien, HIV-1 replication cycle, Clin. Lab. Med, doi:10.1016/S0272-2712(02)00015-X
Ferry, Formate dehydrogenase, FEMS Microbiol. Rev, doi:10.1111/j.1574-6968.1990.tb04940.x
Fichtner, Laurich, Bothe, Lubitz, Spectroelectrochemical Characterization of the [NiFe] Hydrogenase of Desulfovibrio vulgaris Miyazaki F, Biochemistry, doi:10.1021/bi0602462
Filippova, Polyakov, Tikhonova, Stekhanova, Booeko et al., Structure of a new crystal modification of the bacterial NAD-dependent formate dehydrogenase with a resolution of 2.1 Å, Crystallogr. Rep, doi:10.1134/1.2049398
Fischer, Krasna, Rittenberg, The interaction of hydrogenase with oxygen, J. Biol. Chem, doi:10.1016/S0021-9258(18)65483-3
Flohe, Günzler, Schock, Glutathione peroxidase: A selenoenzyme, FEBS Lett, doi:10.1016/0014-5793(73)80755-0
Foerster, Van Gastel, Brecht, Lubitz, An Orientation-Selected ENDOR and HYSCORE Study of the Ni-C Active State of Desulfovibrio vulgaris Miyazaki F Hydrogenase, J. Biol. Inorg. Chem, doi:10.1007/s00775-004-0613-5
Forstrom, Zakowski, Tappel, Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine, Biochemistry, doi:10.1021/bi00606a028
Frankel, Pabo, Cellular uptake of the tat protein from human immunodeficiency virus, Cell, doi:10.1016/0092-8674(88)90263-2
Freed, Martin, HIVs and their replication
Frey, Fontecilla-Camps, Volbeda, Nickel-Iron Hydrogenases
Fritz-Wolf, Kehr, Stumpf, Rahlfs, Becker, Crystal structure of the human thioredoxin reductase-thioredoxin complex, Nat. Commun, doi:10.1038/ncomms1382
Fritz-Wolf, Urig, Becker, The structure of human thioredoxin reductase 1 provides insights into C-terminal rearrangements during catalysis, J. Mol. Biol, doi:10.1016/j.jmb.2007.04.044
Gallardo, Todd, Lima, Jonathan, Chekan et al., SARS-CoV-2 Main Protease Targets Host Selenoproteins and Glutathione Biosynthesis for Knockdown via Proteolysis, Potentially Disrupting the Thioredoxin and Glutaredoxin Redox Cycles, Antioxidants, doi:10.3390/antiox12030559
Gallina, Hanley, Mandel, Trahey, Broder et al., Inhibitors of protein-disulfide isomerase prevent cleavage of disulfide bonds in receptor-bound glycoprotein 120 and prevent HIV-1 entry, J. Biol. Chem, doi:10.1074/jbc.M204547200
Gentile, Dilauro, Salvatore, Biosynthesis and Secretion of Thyroid Hormones
George, Colangelo, Dong, Scott, Khangulov et al., X-ray absorption spectroscopy of the molybdenum site of Escherichia coli formate dehydrogenase, J. Am. Chem. Soc, doi:10.1021/ja973004l
George, Costa, Moura, Moura, Observation of ligand-based redox chemistry at the active site of a molybdenum enzyme, J. Am. Chem. Soc, doi:10.1021/ja9841761
Giustarini, Santucci, Bartolini, Galli, Rossi, The age-dependent decline of the extracellular thiol-disulfide balance and its role in SARS-CoV-2 infection, Redox Biol, doi:10.1016/j.redox.2021.101902
Gladyshev, Boyington, Khangulov, Grahame, Stadtman et al., Characterization of crystalline formate dehydrogenase H from Escherichia coli: Stabilization, EPR spectroscopy, and preliminary crystallographic analysis, J. Biol. Chem, doi:10.1074/jbc.271.14.8095
Gladyshev, Factor, Housseau, Hatfield, Contrasting patterns of regulation of the antioxidant selenoproteins, thioredoxin reductase, and glutathione peroxidase, in cancer cells, Biochem. Biophys. Res. Commun, doi:10.1006/bbrc.1998.9495
Gladyshev, Jeang, Stadtman, Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene, Proc. Natl. Acad. Sci, doi:10.1073/pnas.93.12.6146
Gladyshev, Khangulov, Axley, Stadtman, Coordination of selenium to molybdenum in formate dehydrogenase H from Escherichia coli, Proc. Natl. Acad. Sci, doi:10.1073/pnas.91.16.7708
Gladyshev, Khangulov, Stadtman, Nicotinic acid hydroxylase from Clostridium barkeri: Electron paramagnetic resonance studies show that selenium is coordinated with molybdenum in the catalytically active selenium-dependent enzyme, Proc. Natl. Acad. Sci, doi:10.1073/pnas.91.1.232
Gladyshev, Stadtman, Hatfield, Jeang, Levels of major selenoproteins in T cells decrease during HIV infection and low molecular mass selenium compounds increase, Proc. Natl. Acad. Sci, doi:10.1073/pnas.96.3.835
Gordon, Jang, Bouhaddou, Xu, Obernier et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature, doi:10.1038/s41586-020-2286-9
Graham, Niks, Zane, Gui, Hom et al., How a formate dehydrogenase responds to oxygen: Unexpected O 2 insensitivity of an enzyme harboring tungstopterin, selenocysteine, and [4Fe-4S] clusters, ACS Catal, doi:10.1021/acscatal.2c00316
Grimaldi, Schoepp-Cothenet, Ceccaldi, Guigliarelli, Magalon, The prokaryotic Mo/W-bisPGD enzymes family: A catalytic workhorse in bioenergetic, Biochim. Biophys. Acta Bioenerg, doi:10.1016/j.bbabio.2013.01.011
Gromer, Arscott, Williams, Jr, Schirmer et al., Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds, J. Biol. Chem, doi:10.1074/jbc.273.32.20096
Gutierrez-Sanz, Marques, Baltazar, Fernandez, Soares et al., Influence of the Protein Structure Surrounding the Active Site on the Catalytic Activity of [NiFeSe] Hydrogenases, J. Biol. Inorg. Chem, doi:10.1007/s00775-013-0986-4
Hadrup, Ravn-Haren, Acute human toxicity and mortality after selenium ingestion: A review, J. Trace Elem. Med. Biol, doi:10.1016/j.jtemb.2019.126435
Handy, Loscalzo, The role of glutathione peroxidase-1 in health and disease, Free Radic. Biol. Med, doi:10.1016/j.freeradbiomed.2022.06.004
Handy, Lubos, Yang, Galbraith, Kelly et al., Glutathione peroxidase-1 regulates mitochondrial function to modulate redox-dependent cellular responses, J. Biol. Chem, doi:10.1074/jbc.M900392200
Hangauer, Viswanathan, Ryan, Bole, Eaton et al., Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition, Nature, doi:10.1038/nature24297
Hansen, Saebø, Skjelbred, Nexø, Hagen et al., GPX Pro198Leu and OGG1 Ser326Cys polymorphisms and risk of development of colorectal adenomas and colorectal cancer, Cancer Lett, doi:10.1016/j.canlet.2005.04.019
Hanson, Wilson, Bailey, Pilbrow, Wedd, Multifrequency electron spin resonance of molybdenum (V) and tungsten (V) compounds, J. Am. Chem. Soc, doi:10.1021/ja00243a011
Happe, Roseboom, Pierik, Albracht, Bagley, Biological Activation of Hydrogen, Nature, doi:10.1038/385126a0
Harmer, Hakopian, Niks, Hille, Bernhardt, Redox Characterization of the Complex Molybdenum Enzyme Formate Dehydrogenase from Cupriavidus necator, J. Am. Chem. Soc, doi:10.1021/jacs.3c10199
Hartmann, Schwanhold, Leimkühler, Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria, Biochim. Biophys. Acta, doi:10.1016/j.bbapap.2014.12.006
Hatfield, Berry, Gladyshev, None
Hatfield, Carlson, Xu, Mix, Gladyshev, Selenocysteine Incorporation Machinery and the Role of Selenoproteins in Development and Health, Prog. Nucleic Acid Res. Mol. Biol
Hatfield, Gladyshev, How selenium has altered our understanding of the genetic code, Mol. Cell Biol, doi:10.1128/MCB.22.11.3565-3576.2002
Hati, Sudeep Bhattacharyya, Impact of Thiol-Disulfide Balance on the Binding of COVID-19 Spike Protein with Angiotensin-Converting Enzyme 2 Receptor, ACS Omega, doi:10.1021/acsomega.0c02125
Hawkes, Association of Glutathione Peroxidase Activity with Insulin Resistance and Dietary Fat Intake during Normal Pregnancy, J. Clin. Endocrinol. Metab, doi:10.1210/jc.2004-0316
He, Chen, You, Hu, Zheng et al., A cancer-targeted nanosystem for delivery of gold(III) complexes: Enhanced selectivity and apoptosis-inducing efficacy of a gold(III) porphyrin complex, Angew. Chem. Int. Ed. Engl, doi:10.1002/anie.201407143
He, Teixeira, Legall, Patil, Moura et al., EPR studies with 77Se-enriched (NiFeSe) hydrogenase of Desulfovibrio baculatus. Evidence for a selenium ligand to the active site nickel, J. Biol. Chem, doi:10.1016/S0021-9258(19)81667-8
Heirman, Ginneberge, Brigelius-Flohé, Hendrickx, Agostinis et al., Blocking tumor cell eicosanoid synthesis by GP x 4 impedes tumor growth and malignancy, Free Radic. Biol. Med, doi:10.1016/j.freeradbiomed.2005.08.033
Hemmann, Wagner, Shima, Vorholt, Methylofuran is a prosthetic group of the formyltransferase/hydrolase complex and shuttles one-carbon units between two active sites, Proc. Natl. Acad. Sci, doi:10.1073/pnas.1911595116
Herbette, Roeckel-Drevet, Drevet, Seleno-independent glutathione peroxidases. More than simple antioxidant scavengers, FEBS J, doi:10.1111/j.1742-4658.2007.05774.x
Higuchi, Yagi, Yasuoka, Unusual Ligand Structure in Ni-Fe Active Center and an Additional Mg Site in Hydrogenase Revealed by High Resolution X-Ray Structure Analysis, Structure, doi:10.1016/S0969-2126(97)00313-4
Hille, Hall, Basu, The Mononuclear Molybdenum Enzymes, Chem. Rev, doi:10.1021/cr400443z
Hille, Niks, Application of EPR and related methods to molybdenum-containing enzymes, Methods Enzymol
Hille, The mononuclear molybdenum enzymes, Chem. Rev, doi:10.1021/cr950061t
Hochheimer, Hedderich, Thauer, The formylmethanofuran dehydrogenase isozymes in Methanobacterium wolfeii and Methanobacterium terhmoautotrophicum: Induction of the molybdenum isozyme by molybdate and constitutive synthesis of the tungsten isozyme, Arch. Microbiol, doi:10.1007/s002030050658
Hogan, Perkins, Selenoproteins in the Human Placenta: How Essential Is Selenium to a Healthy Start to Life?, Nutrients, doi:10.3390/nu14030628
Holmgren, Björnstedt, Thioredoxin and thioredoxin reductase, Methods Enzymol
Hondal, Marino, Gladyshev, Selenocysteine in thiol/disulfide-like exchange reactions, Antioxid Redox Signal, doi:10.1089/ars.2012.5013
Hu, Diamond, Role of glutathione peroxidase 1 in breast cancer: Loss of heterozygosity and allelic differences in the response to selenium, Cancer Res, doi:10.1016/S0140-6736(11)61452-9
Hu, Zhou, Wang, Wang, GPX1 Pro198Leu polymorphism and breast cancer risk: A meta-analysis, Breast Cancer Res. Treat, doi:10.1007/s10549-010-0841-z
Huber, Criddle, Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs, Arch. Biochem. Biophys, doi:10.1016/0003-9861(67)90136-1
Hurwitz, Klaus, Llabre, Gonzalez, Lawrence et al., Suppression of human immunodeficiency virus type 1 viral load with selenium supplementation: A randomized controlled trial, Arch. Intern. Med, doi:10.1001/archinte.167.2.148
Hussain, Murtaza, Metwally, Kalhoro, Kalhoro et al., The Role of Oxidative Stress and Antioxidant Balance in Pregnancy, Mediat. Inflamm, doi:10.1155/2021/9962860
Imyanitov, Togo, Hanson, Searching for cancer-associated gene polymorphisms: Promises and obstacles, Cancer Lett, doi:10.1016/j.canlet.2003.09.026
Ingold, Berndt, Schmitt, Doll, Poschmann et al., Selenium Utilization by GPx4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis, Cell, doi:10.1016/j.cell.2017.11.048
Italiani, Boraschi, From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation, Front. Immunol, doi:10.3389/fimmu.2014.00514
Jablonska, Gromadzinska, Peplonska, Fendler, Reszka et al., Lipid peroxidation and glutathione peroxidase activity relationship in breast cancer depends on functional polymorphism of GPX1, BMC Cancer, doi:10.1186/s12885-015-1680-4
Jacob, Giles, Giles, Helmut Sies, Sulfur and Selenium: The Role of Oxidation State in Protein Structure and Function, Angew. Chem. Int. Ed, doi:10.1002/anie.200300573
Janowski, Scanu, Niessing, Madl, Crystal and solution structural studies of mouse phospholipid hydroperoxide glutathione peroxidase 4, Acta Crystallogr. Sect. F Struct. Biol. Commun, doi:10.1107/S2053230X16013686
Jetton, Lausier, Larock, Trotman, Larmie et al., Mechanisms of compensatory beta-cell growth in insulin-resistant rats: Roles of Akt kinase, Diabetes, doi:10.2337/diabetes.54.8.2294
Jia, Geng, Wang, Chen, Zeng, The role of thioredoxin system in cancer: Strategy for cancer therapy, Cancer Chemother. Pharmacol
Jiao, Wang, Guo, Wang, Glutathione peroxidases as oncotargets, Oncotarget, doi:10.18632/oncotarget.20278
Jin, Du, Xu, Deng, Liu et al., Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors, Nature, doi:10.1038/s41586-020-2223-y
Joan, Pleasants, Guo, Rabenstein, A comparative study of the kinetics of selenol/diselenide and thiol/disulfide exchange reactions, J. Am. Chem. Soc
Johnson, Rees, Adams, Tungstoenzymes, None, Chem. Rev, doi:10.1021/cr950063d
Jollie, Lipscomb, Formate dehydrogenase from Methylosinus trichosporium OB3b. Purification and spectroscopic characterization of the cofactors, J. Biol. Chem, doi:10.1016/S0021-9258(18)54716-5
Jormakka, Tornroth, Byrne, Iwata, Molecular basis of proton motive force generation: Structure of formate dehydrogenase-N, Science, doi:10.1126/science.1068186
Karplus, Schulz, Refined structure of glutathione reductase at 1.54 A resolution, J. Mol. Biol, doi:10.1016/0022-2836(87)90191-4
Karunakaran, Park, A systematic review of oxidative stress and safety of antioxidants in diabetes: Focus on islets and their defense, Diabetes Metab. J, doi:10.4093/dmj.2013.37.2.106
Kato, Formate dehydrogenase from methylotrophic yeasts, Methods Enzymol
Khangulov, Gladyshev, Dismukes, Stadtman, Selenium-containing formate dehydrogenase H from Escherichia coli: A molybdopterin enzyme that catalyzes formate oxidation without oxygen transfer, Biochemistry, doi:10.1021/bi972177k
Khera, Vanderlelie, Perkins, Selenium supplementation protects trophoblast cells from mitochondrial oxidative stress, Placenta, doi:10.1016/j.placenta.2013.04.010
Khomich, Kochetkov, Bartosch, Ivanov, Redox Biology of Respiratory Viral Infections, Viruses, doi:10.3390/v10080392
Kieliszek, Selenium-Fascinating Microelement, Properties and Sources in Food, Molecules, doi:10.3390/molecules24071298
Kim, Gao, Dang, Effects of hypoxia on tumor metabolism, Cancer Metastasis Rev, doi:10.1007/s10555-007-9060-4
Kirk, Hille, Spectroscopic Studies of Mononuclear Molybdenum Enzyme Centers, Molecules, doi:10.3390/molecules27154802
Koehrle, Auf'mkolk, Rokos, Hesch, Cody, Rat liver iodothyronine monodeiodinase. Evaluation of the iodothyronine ligand-binding site, J. Biol. Chem, doi:10.1016/S0021-9258(18)67287-4
Koken, Greijer, Verhoef, Van Wamel, Bukrinskaya et al., Intracellular analysis of in vitro modified HIV Tat protein, J. Biol. Chem, doi:10.1016/S0021-9258(17)37203-4
Korenaga, Wang, Li, Showalter, Chan et al., Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production, J. Biol. Chem, doi:10.1074/jbc.M506412200
Kraus, Foster, Ganther, Identification of selenocysteine in glutathione peroxidase by mass spectroscopy, Biochemistry, doi:10.1021/bi00294a026
Kryukov, Castellano, Novoselov, Lobanov, Zehtab et al., Characterization of mammalian selenoproteomes, Science, doi:10.1126/science.1083516
Kuiper, Kester, Peeters, Visser, Biochemical mechanisms of thyroid hormone deiodination, Thyroid, doi:10.1089/thy.2005.15.787
Kuppuswamy, Subramanian, Srinivasan, Chinnadurai, Multiple functional domains of Tat, the trans-activator of HIV-1, defined by mutational analysis, Nucleic Acids Res, doi:10.1093/nar/17.9.3551
Köhrle, Jakob, Contempré, Dumont, Selenium, the thyroid, and the endocrine system, Endocr. Rev, doi:10.1210/er.2001-0034
Köhrle, Local activation and inactivation of thyroid hormones: The deiodinase family, Mol. Cell Endocrinol, doi:10.1016/S0303-7207(99)00040-4
Labrecque, Fuglestad, Electrostatic Drivers of GPx4 Interactions with Membrane, Lipids, and DNA, Biochemistry, doi:10.1021/acs.biochem.1c00492
Labunskyy, Hatfield, Gladyshev, Selenoproteins: Molecular pathways and physiological roles, Physiol. Rev, doi:10.1152/physrev.00039.2013
Lan, Ge, Yu, Shan, Zhou et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature, doi:10.1038/s41586-020-2180-5
Larsen, Berry, Nutritional and hormonal regulation of thyroid hormone deiodinases, Annu. Rev. Nutr, doi:10.1146/
Lee, Bar-Noy, Kwon, Levine, Stadtman et al., Mammalian thioredoxin reductase: Oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity, Proc. Natl Acad. Sci, doi:10.1073/pnas.050579797
Lee, Kim, Kwon, Yoon, Levine et al., Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver, J. Biol. Chem, doi:10.1074/jbc.274.8.4722
Lee, Schneider-Stock, Mcchesney, Kuester, Roessner et al., Hypermethylation and Loss of Expression of Glutathione Peroxidase-3 in Barrett's Tumorigenesis1, Neoplasia, doi:10.1593/neo.05328
Legall, Ljungdahl, Moura, Peck, Jr et al., The presence of redox-sensitive nickel in the periplasmic hydrogenase from Desulfovibrio gigas, Biochem. Biophys. Res. Commun, doi:10.1016/0006-291X(82)91154-8
Leimkühler, Metal-Containing Formate Dehydrogenases, a Personal View, Molecules, doi:10.3390/molecules28145338
Lenzen, Drinkgern, Tiedge, Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues, Free Radic. Biol. Med, doi:10.1016/0891-5849(96)02051-5
Lespinat, Berlier, Fauque, Czechowski, Dimon et al., The pH dependence of proton-deuterium exchange, hydrogen production and uptake catalyzed by hydrogenases from sulfate-reducing bacteria, Biochimie, doi:10.1016/S0300-9084(86)81068-9
Li, Guan, Wu, Wang, Zhou et al., Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia, N. Engl. J. Med, doi:10.1056/NEJMoa2001316
Li, Hou, Meng, Ge, Ma et al., Selective Activation of a Prodrug by Thioredoxin Reductase Providing a Strategy to Target Cancer Cells, Angew. Chem. Int. Ed. Engl, doi:10.1002/anie.201801058
Li, Leier, Liu, Wang, Xiang et al., Procleave: Predicting Protease-specific Substrate Cleavage Sites by Combining Sequence and Structural Information, Genom. Proteom. Bioinform, doi:10.1016/j.gpb.2019.08.002
Liang, Zheng, Li, Zheng, Chen, Selenadiazole derivatives as potent thioredoxin reductase inhibitors that enhance the radiosensitivity of cancer cells, Eur. J. Med. Chem, doi:10.1016/j.ejmech.2014.07.032
Lincoln, Emadi, Tonissen, Clarke, The thioredoxin-thioredoxin reductase system: Over-expression in human cancer, Anticancer Res
Little, Olinescu, Reid, O'brien, Properties and Regulation of Glutathione peroxidase, J. Biol. Chem, doi:10.1016/S0021-9258(18)62973-4
Liu, Du, Zhang, Sun, Smith et al., Suppression of the malignant phenotype in pancreatic cancer by overexpression of phospholipid hydroperoxide glutathione peroxidase, Hum. Gene Ther, doi:10.1089/hum.2006.17.105
Loh, Deng, Fukushima, Cai, Boivin et al., Reactive oxygen species enhance insulin sensitivity, Cell Metab, doi:10.1016/j.cmet.2009.08.009
Lubitz, Ogata, Rüdiger, Reijerse, Hydrogenases, None, Chem. Rev, doi:10.1021/cr4005814
Lubos, Loscalzo, Handy, Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities, Antioxid. Redox Signal, doi:10.1089/ars.2010.3586
Lundberg, Mattsson, Reiser, Holmgren, Curbo, Inhibition of the thioredoxin system by PX-12 (1-methylpropyl 2-imidazolyl disulfide) impedes HIV-1 infection in TZM-bl cells, Sci. Rep, doi:10.1038/s41598-019-42068-2
Maden, Edward, Tetrahydrofolate and tetrahydromethanopterin compared: Functionally distinct carriers in C1 metabolism, Biochem. J, doi:10.1042/bj3500609
Maia, Fonseca, Moura, Moura, Reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase: A kinetic and mechanistic study, J. Am. Chem. Soc, doi:10.1021/jacs.6b03941
Maia, Moura, Moura, Carbon Dioxide Utilisation-The Formate Route
Maia, Moura, Moura, EPR spectroscopy on mononuclear molybdenum-containing enzymes
Maia, Moura, Moura, Molybdenum and tungsten-containing enzymes: An overview
Maia, Moura, Moura, Molybdenum and tungsten-containing formate dehydrogenases: Aiming to inspire a catalyst for carbon dioxide utilization, Inorg. Chim. Acta, doi:10.1016/j.ica.2016.07.010
Maia, Moura, Moura, Molybdenum and tungsten-dependent formate dehydrogenases, J. Biol. Inorg. Chem, doi:10.1007/s00775-014-1218-2
Maiti, Can Papain-like Protease Inhibitors Halt SARS-CoV-2 Replication?, ACS Pharmacol. Transl. Sci, doi:10.1021/acsptsci.0c00093
Maiti, Cross-talk Between (Hydrogen)Sulfite and Metalloproteins: Impact on Human Health, Chem.-A Eur. J, doi:10.1002/chem.202104342
Maiti, Potential Role of Peptide-Based Antiviral Therapy against SARS-CoV-2 Infection, ACS Pharmacol. Transl. Sci, doi:10.1021/acsptsci.0c00081
Mariotti, Ridge, Zhang, Lobanov, Pringle et al., Composition and evolution of the vertebrate and mammalian selenoproteomes, PLoS ONE, doi:10.1371/journal.pone.0033066
Markovic, Stantchev, Fields, Tiffany, Tomiç et al., Thiol/disulfide exchange is a prerequisite for CXCR4-tropic HIV-1 envelope-mediated T-cell fusion during viral entry, Blood, doi:10.1182/blood-2003-05-1390
Maroney, Hondal, Selenium Versus Sulfur: Reversibility of Chemical Reactions and Resistance to Permanent Oxidation in Proteins and Nucleic Acids, Free Radic. Biol. Med, doi:10.1016/j.freeradbiomed.2018.03.035
Marques, Coelho, De Lacey, Pereira, Matias, The Three-Dimensional Structure of [NiFeSe] Hydrogenase from Desulfovibrio vulgaris Hildenborough: A Hydrogenase without a Bridging Ligand in the Active Site in its Oxidised, "As-Isolated, State. J. Mol. Biol, doi:10.1016/j.jmb.2009.12.013
Marques, Tapia, Gutierrez-Sanz, Ramos, Keller et al., The Direct Role of Selenocysteine in [NiFeSe] Hydrogenase Maturation and Catalysis, Nat. Chem. Biol, doi:10.1038/nchembio.2335
Marsan, Bayse, A Halogen Bonding Perspective on Iodothyronine Deiodinase Activity, Molecules, doi:10.3390/molecules25061328
Masuda, Kimura, Karasaki, Sase, Goto, Modeling the Catalytic Cycle of Glutathione Peroxidase by Nuclear Magnetic Resonance Spectroscopic Analysis of Selenocysteine Selenenic Acids, J. Am. Chem. Soc, doi:10.1021/jacs.1c02383
Matthias, Azimi, Tabrett, Hogg, Reduced monomeric CD4 is the preferred receptor for HIV, J. Biol. Chem, doi:10.1074/jbc.M110.190579
Matthias, Yam, Jiang, Vandegraaff, Li et al., Disulfide exchange in domain 2 of CD4 is required for entry of HIV-1, Nat. Immunol, doi:10.1038/ni815
May, De Haën, Insulin-stimulated intracellular hydrogen peroxide production in rat epididymal fat cells, J. Biol. Chem, doi:10.1016/S0021-9258(17)30209-0
Mcclung, Roneker, Mu, Lisk, Langlais et al., Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase, Proc. Natl. Acad. Sci, doi:10.1073/pnas.0308096101
Medina, Claude Hatchikian, Cammack, Studies of Light-Induced Nickel EPR Signals in Hydrogenase: Comparison of Enzymes with and without Selenium, Biochim. Biophys. Acta, doi:10.1016/0005-2728(96)00007-2
Men, Zhang, Yang, Shen, Li et al., The rs1050450 C > T polymorphism of GPX1 is associated with the risk of bladder but not prostate cancer: Evidence from a meta-analysis, Tumor Biol, doi:10.1007/s13277-013-1035-1
Meneghello, Oliveira, Jacq-Bailly, Pereira, Léger et al., Formate Dehydrogenases Reduce CO2 Rather than HCO 3 -: An Electrochemical Demonstration, Angew. Chem, doi:10.1002/anie.202101167
Meneghello, Uzel, Broc, Manuel, Magalon et al., Electrochemical Kinetics Support a Second Coordination Sphere Mechanism in Metal-Based Formate Dehydrogenase, Angew. Chem, doi:10.1002/anie.202212224
Meng, Xu, Liang, Liu, Hua et al., GPx1 is involved in the induction of protective autophagy in pancreatic cancer cells in response to glucose deprivation, Cell Death Dis, doi:10.1038/s41419-018-1244-z
Metere, Frezzotti, Graves, Vergine, De Luca et al., A possible role for selenoprotein glutathione peroxidase (GPx1) and thioredoxin reductases (TrxR1) in thyroid cancer: Our experience in thyroid surgery, Cancer Cell Int, doi:10.1186/s12935-018-0504-4
Mills, Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown, J. Biol. Chem, doi:10.1016/S0021-9258(18)70608-X
Min, Kim, Jung, Jung, Jee et al., Prognostic significance of glutathione peroxidase 1 (GPX1) down-regulation and correlation with aberrant promoter methylation in human gastric cancer, Anticancer Res
Miranda-Vizuete, Damdimopoulos, Pedrajas, Gustafsson, Spyrou, Human mitochondrial thioredoxin reductase, Eur. J. Biochem, doi:10.1046/j.1432-1327.1999.00286.x
Moghaddam, Heller, Sun, Seelig, Cherkezov et al., Selenium Deficiency Is Associated with Mortality Risk from COVID-19, Nutrients, doi:10.3390/nu12072098
Molteni, Principi, Esposito, Reactive oxygen and nitrogen species during viral infections, Free Radic. Res, doi:10.3109/10715762.2014.945443
Moolla, Killick, Papathanasopoulos, Capovilla, Thioredoxin (Trx1) regulates CD4 membrane domain localization and is required for efficient CD4-dependent HIV-1 entry, Biochim. Biophys. Acta, doi:10.1016/j.bbagen.2016.05.030
Moosmayer, Hilpmann, Hoffmann, Schnirch, Zimmermann et al., Crystal structures of the selenoprotein glutathione peroxidase 4 in its apo form and in complex with the covalently bound inhibitor ML162, Acta Crystallogr. D Struct. Biol, doi:10.1107/S2059798320016125
Moura, Cordas, Moura, Direct electrochemistry study of the multiple redox centers of hydrogenase from Desulfovibrio gigas, Bioelectrochemistry
Moura, Moura, Huynh, Krüger, Teixeira et al., Unambiguous identification of the nickel EPR signal in 61 Ni-enriched Desulfovibrio gigas hydrogenase, J. Biochem. Biophys. Res. Commun, doi:10.1016/S0006-291X(82)80060-0
Moura, Moura, Maia, None
Moura, Teixeira, Moura, Legall, Ni-Fe] hydrogenases from sulfate reducing bacteria: Nickel catalytic and regulatory roles
Moura, Teixeira, Moura, The role of nickel and iron-sulfur centers in the bioproduction of hydrogen, Pure Appl. Chem, doi:10.1351/pac198961050915
Mullur, Liu, Brent, Thyroid hormone regulation of metabolism, Physiol. Rev, doi:10.1152/physrev.00030.2013
Mustacich, Powis, Thioredoxin reductase, Biochem. J, doi:10.1042/bj3460001
Nalkiran, Turan, Arikan, Kahraman, Acar et al., Determination of Gene Expression and Serum Levels of MnSOD and GPX1 in Colorectal Cancer, Anticancer Res
Nauser, Dockheer, Kissner, Koppenol, Catalysis of Electron Transfer by Selenocysteine, Biochemistry, doi:10.1021/bi0602260
Nauser, Steinmann, Grassi, Koppenol, Why selenocysteine replaces cysteine in thioredoxin reductase: A radical hypothesis, Biochemistry, doi:10.1021/bi5003376
Nauser, Steinmann, Koppenol, Why do proteins use selenocysteine instead of cysteine?, Amino Acids, doi:10.1007/s00726-010-0602-7
Nielsen, Lange, Meyer, Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO 2 utilization, Biotechnol. Adv, doi:10.1016/j.biotechadv.2019.06.007
Niks, Duvvuru, Escalona, Hille, Spectroscopic and Kinetic Properties of the Molybdenum-containing, NAD+dependent Formate Dehydrogenase from Ralstonia eutropha, J. Biol. Chem, doi:10.1074/jbc.M115.688457
Niks, Hille, Molybdenum-and tungsten-containing formate dehydrogenases and formylmethanofuran dehydrogenases: Structure, mechanism, and cofactor insertion, Prot. Sci, doi:10.1002/pro.3498
Niks, Hille, Reductive activation of CO 2 by formate dehydrogenases, Methods Enzymol
Nyengaard, Ido, Kilo, Williamson, Interactions Between Hyperglycemia and Hypoxia: Implications for Diabetic Retinopathy, Diabetes, doi:10.2337/diabetes.53.11.2931
Ogata, Nishikawa, Lubitz, Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase, Nature, doi:10.1038/nature14110
Olive, Olive, Hydrogenation catalysts: A synthetic hydrogenase model, J. Mol. Catal, doi:10.1016/0304-5102(76)80006-5
Oliveira, Mota, Klymanska, Biaso, Romão et al., Spectroscopic and Structural Characterization of Reduced Desulfovibrio vulgaris Hildenborough W-FdhAB Reveals Stable Metal Coordination during Catalysis, ACS Chem. Biol, doi:10.1021/acschembio.2c00336
Oliveira, Mota, Mourato, Domingos, Santos et al., Toward the mechanistic understanding of enzymatic CO2 reduction, ACS Catal, doi:10.1021/acscatal.0c00086
Onodera, Momose, Kawada, Potential Anticancer Activity of Auranofin, Chem. Pharm. Bull, doi:10.1248/cpb.c18-00767
Painter, The Chemistry and Toxicity of Selenium Compounds, with Special Reference to the Selenium Problem, Chem. Rev, doi:10.1021/cr60090a001
Parkin, Goldet, Cavazza, Fontecilla-Camps, Armstrong, The Difference a se Makes? Oxygen-Tolerant Hydrogen Production by the [NiFeSe]-Hydrogenase from Desulfomicrobium baculatum, J. Am. Chem. Soc, doi:10.1021/ja803657d
Patil, Moura, He, Teixeira, Prickril et al., EPRdetectable redox centers of the periplasmic hydrogenase from Desulfovibrio vulgaris, J. Biol. Chem, doi:10.1016/S0021-9258(18)37344-7
Pereira, Tavares, Moura, Moura, Huynh, Mössbauer characterization of the iron-sulfur clusters in Desulfovibrio vulgaris hydrogenase, J. Am. Chem. Soc, doi:10.1021/ja003176+
Polonikov, Endogenous Deficiency of Glutathione as the Most Likely Cause of Serious Manifestations and Death in COVID-19 Patients, ACS Infect. Dis, doi:10.1021/acsinfecdis.0c00288
Poole, The basics of thiols and cysteines in redox biology and chemistry, Free Radic. Biol. Med, doi:10.1016/j.freeradbiomed.2014.11.013
Popov, Lamzin, NAD (+)-dependent formate dehydrogenase, Biochem. J, doi:10.1042/bj3010625
Price, Ercal, Nakaoke, Banks, HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells, Brain Res, doi:10.1016/j.brainres.2005.03.031
Raaijmakers, Macieira, Dias, Teixeira, Bursakov et al., Gene sequence and the 1.8 Å crystal structure of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas, Structure, doi:10.1016/S0969-2126(02)00826-2
Raaijmakers, Teixeira, Dias, Almendra, Brondino et al., Tungsten-containing formate dehydrogenase from Desulfovibrio gigas: Metal identification and preliminary structural data by multi-wavelength crystallography, J. Biol. Inorg. Chem, doi:10.1007/s007750100215
Raaschou-Nielsen, Sørensen, Hansen, Frederiksen, Tjønneland et al., GPX1 Pro198Leu polymorphism, interactions with smoking and alcohol consumption, and risk for lung cancer, Cancer Lett, doi:10.1016/j.canlet.2006.05.006
Radon, Mittelstädt, Duffus, Burger, Hartmann et al., Cryo-EM structures reveal intricate Fe-S cluster arrangement and charging in Rhodobacter capsulatus formate dehydrogenase, Nat. Commun, doi:10.1038/s41467-020-15614-0
Rajapakshe, Snyder, Astashkin, Bernardson, Evans et al., Insights into the nature of Mo(V) species in solution: Modeling catalytic cycles for molybdenum enzymes, Inorg. Chim. Acta, doi:10.1016/j.ica.2009.05.040
Rajasekaran, Connell, Christians, Yan, Taylor et al., Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice, Cell, doi:10.1016/j.cell.2007.06.044
Raman, Reply to Comment on 'How a Formate Dehydrogenase Responds to Oxygen: Unexpected O 2 Insensitivity of an Enzyme Harboring Tungstopterin, Selenocysteine, and [4Fe-4S] Clusters, ACS Catal, doi:10.1021/acscatal.3c02319
Reich, Hondal, Why Nature Chose Selenium, ACS Chem. Biol, doi:10.1021/acschembio.6b00031
Reiser, François, Schols, Bergman, Jörnvall et al., Thioredoxin-1 and protein disulfide isomerase catalyze the reduction of similar disulfides in HIV gp120, Int. J. Biochem. Cell Biol, doi:10.1016/j.biocel.2011.12.015
Reiser, Mathys, Curbo, Pannecouque, Noppen et al., The Cellular Thioredoxin-1/Thioredoxin Reductase-1 Driven Oxidoreduction Represents a Chemotherapeutic Target for HIV-1 Entry Inhibition, PLoS ONE, doi:10.1371/journal.pone.0147773
Richard, Guiraud, Didier, Seve, Flores et al., Impairs Selenoglutathione Peroxidase Expression and Activity by a Mechanism Independent of Cellular Selenium Uptake: Consequences on Cellular Resistance to UV-A Radiation, Arch. Biochem. Biophys, doi:10.1006/abbi.2000.2197
Richardson, Bacterial respiration: A flexible process for a changing environment, Microbiology, doi:10.1099/00221287-146-3-551
Richardson, Sawers, Structural biology-PMF through the redox loop, Science, doi:10.1126/science.1070366
Rivas, González, Brondino, Moura, Moura, EPR characterization of the molybdenum (V) forms of formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774 upon formate reduction, J. Inorg. Biochem, doi:10.1016/j.jinorgbio.2007.04.011
Robertson, Harmon, Tran, Tanaka, Takahashi, Glucose toxicity in beta-cells: Type 2 diabetes, good radicals gone bad, and the glutathione connection, Diabetes, doi:10.2337/diabetes.52.3.581
Roman, Jitaru, Barbante, Selenium biochemistry and its role for human health, Metallomics, doi:10.1039/C3MT00185G
Rotruck, Pope, Ganther, Swanson, Hafeman et al., Selenium: Biochemical role as a component of glutathione peroxidase, Science, doi:10.1126/science.179.4073.588
Ruggles, Snider, Hondal, Chemical basis for the use of selenocysteine
Ryser, Flückiger, Progress in targeting HIV-1 entry, Drug Discov. Today, doi:10.1016/S1359-6446(05)03550-6
Ryser, Levy, Mandel, Disciullo, Inhibition of human immunodeficiency virus infection by agents that interfere with thiol-disulfide interchange upon virus-receptor interaction, Proc. Natl. Acad. Sci, doi:10.1006/jmbi.1999.3060
Rüdiger, Gutiérrez-Sánchez, Olea, Pereira, Vélez et al., Enzymatic Anodes for Hydrogen Fuel Cells Based on Covalent Attachment of Ni-Fe Hydrogenases and Direct Electron Transfer to SAM-Modified Gold Electrodes, Electroanalysis, doi:10.1002/elan.200880002
Samikkannu, Ranjith, Rao, Atluri, Pimentel et al., HIV-1 gp120 and morphine induced oxidative stress: Role in cell cycle regulation, Front. Microbiol, doi:10.3389/fmicb.2015.00614
Sandalova, Zhong, Lindqvist, Holmgren, Schneider, Three-dimensional structure of a mammalian thioredoxin reductase: Implications for mechanism and evolution of a selenocysteine-dependent enzyme, Proc. Natl Acad. Sci, doi:10.1073/pnas.171178698
Sasada, Nakamura, Ueda, Sato, Kitaoka et al., Possible involvement of thioredoxin reductase as well as thioredoxin in cellular sensitivity to cis-diamminedichloroplatinum (II), Free Radic. Biol. Med, doi:10.1016/S0891-5849(99)00101-X
Sawers, Formate and its role in hydrogen production in Escherichia coli, Biochem. Soc. Trans, doi:10.1042/BST0330042
Scaife, Simpson, Kurlak, Briggs, Gardner et al., Increased Placental Cell Senescence and Oxidative Stress in Women with Pre-Eclampsia and Normotensive Post-Term Pregnancies, Int. J. Mol. Sci, doi:10.3390/ijms22147295
Schoenmakers, Agostini, Mitchell, Schoenmakers, Papp et al., Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans, J. Clin. Investig, doi:10.1172/JCI43653
Schrapers, Hartmann, Kositzki, Dau, Reschke et al., Sulfido and cysteine ligation changes at the molybdenum cofactor during substrate conversion by formate dehydrogenase (FDH) from Rhodobacter capsulatus, Inorg. Chem, doi:10.1021/ic502880y
Schwarz, Foltz, Selenium as an integral part of factor 3 against dietary necrotic liver degeneration, J. Am. Chem. Soc, doi:10.1021/ja01569a087
Seet, Lee, Lim, Quek, Yeo et al., Oxidative damage in dengue fever, Free Radic. Biol. Med, doi:10.1016/j.freeradbiomed.2009.04.035
Shabalin, Polyakov, Tishkov, Popov, Atomic resolution crystal structure of nad+ dependent formate dehydrogenase from bacterium Moraxella sp. C-1, Acta Nat, doi:10.32607/actanaturae.10784
Shi, Zeida, Edwards, Mallory, Sastre et al., Thiol-based chemical probes exhibit antiviral activity against SARS-CoV-2 via allosteric disulfide disruption in the spike glycoprotein, Proc. Natl. Acad. Sci, doi:10.1073/pnas.2120419119
Short, Williams, Selenoproteins in Tumorigenesis and Cancer Progression, Adv. Cancer Res
Smart, Ortiz, Mattson, Bradbury, Bisht et al., Thioredoxin Reductase as a Potential Molecular Target for Anticancer Agents That Induce Oxidative Stress, Cancer Res, doi:10.1158/0008-5472.CAN-03-3990
Soria-Castro, Soto, Guarner-Lans, Rojas, Perezpeña-Diazconti et al., The kidnapping of mitochondrial function associated with the SARS-CoV-2 infection, Histol. Histopathol
Steinbrenner, Speckmann, Pinto, Sies, High selenium intake and increased diabetes risk: Experimental evidence for interplay between selenium and carbohydrate metabolism, J. Clin. Biochem. Nutr, doi:10.3164/jcbn.11-002FR
Stiefel, Proposed molecular mechanism for the action of molybedenum in enzymes: Coupled proton and electron transfer, Proc. Natl. Acad. Sci, doi:10.1073/pnas.70.4.988
Stiefel, The coordination and bioinorganic chemistry of molybdenum, Prog. Inorg. Chem
Stolwijk, Garje, Sieren, Buettner, Zakharia, Understanding the Redox Biology of Selenium in the Search of Targeted Cancer Therapies, Antioxidants, doi:10.3390/antiox9050420
Takahashi, Avissar, Whitin, Cohen, Purification and characterization of human plasma glutathione peroxidase: A selenoglycoprotein distinct from the known cellular enzyme, Arch. Biochem. Biophys, doi:10.1016/0003-9861(87)90624-2
Taurog, Hormone synthesis
Taylor, Radding, Understanding Selenium and Glutathione as Antiviral Factors in COVID-19: Does the Viral Mpro Protease Target Host Selenoproteins and Glutathione Synthesis?, Front. Nutr, doi:10.3389/fnut.2020.00143
Teixeira, Fauque, Moura, Lespinat, Berlier et al., Nickel-[iron-sulfur]-selenium-containing hydrogenases from Desulfovibrio baculatus (DSM 1743). Redox centers and catalytic properties, Eur. J. Biochem, doi:10.1111/j.1432-1033.1987.tb13302.x
Teixeira, Moura, Fauque, Czechowski, Berlier et al., Redox properties and activity studies on a nickel-containing hydrogenase isolated from a halophilic sulfate reducer Desulfovibrio salexigens, Biochimie
Teixeira, Moura, Fauque, Dervartanian, Legall et al., The iron-sulfur centers of the soluble [NiFeSe] hydrogenase, from Desulfovibrio baculatus (DSM 1743). EPR and Mossbauer Characterization, Eur. J. Biochem, doi:10.1111/j.1432-1033.1990.tb15499.x
Teixeira, Moura, Xavier, Huynh, Dervartanian et al., Electron paramagnetic resonance studies on the mechanism of activation and the catalytic cycle of the nickel-containing hydrogenase from Desulfovibrio gigas, J. Biol. Chem, doi:10.1016/S0021-9258(17)39440-1
Teixeira, Moura, Xavier, Moura, Legall et al., Redox intermediates of Desulfovibrio gigas [NiFe] hydrogenase generated under hydrogen. Mössbauer and EPR characterization of the metal centers, J. Biol. Chem, doi:10.1016/S0021-9258(19)84725-7
Thauer, Fuchs, Jungermann, Role of iron-sulfur proteins in formate metabolism
Tibodeau, Benson, Isham, Owen, Bible, The Anticancer Agent Chaetocin Is a Competitive Substrate and Inhibitor of Thioredoxin Reductase, Antioxid. Redox Signal, doi:10.1089/ars.2008.2318
Tilton, Diabetic vascular dysfunction: Links to glucose-induced reductive stress and VEGF, Microsc. Res. Technol, doi:10.1002/jemt.10092
Tomo, Saikiran, Banerjee, Paul, Selenium to selenoproteins-Role in COVID-19, EXCLI J
Toppo, Vanin, Bosello, Tosatto, Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily, Antioxid. Redox Signal, doi:10.1089/ars.2008.2057
Tosatto, Bosello, Fogolari, Mauri, Roveri et al., The Catalytic Site of Glutathione Peroxidases, Antioxid. Redox Signal, doi:10.1089/ars.2008.2055
Trenz, Delaix, Turchetto-Zolet, Zamocky, Lazzarotto et al., Going Forward and Back: The Complex Evolutionary History of the GPx, Biology, doi:10.3390/biology10111165
Turanov, Su, Gladyshev, Characterization of alternative cytosolic forms and cellular targets of mouse mitochondrial thioredoxin reductase, J. Biol. Chem, doi:10.1074/jbc.M604326200
Unden, Bongaerts, Alternative respiratory pathways of Escherichia coli: Energetics and transcriptional regulation in response to electron acceptors, Biochim. Biophys. Acta, doi:10.1016/S0005-2728(97)00034-0
Valente, Oliveira, Gnadt, Pacheco, Coelho et al., Hydrogenases in Desulfovibrio vulgaris Hildenborough: Structural and Physiologic Characterisation of the Membrane-Bound [NiFeSe] Hydrogenase, J. Biol. Inorg. Chem, doi:10.1007/s00775-005-0022-4
Van Der Zwaan, Albracht, Fontijn, Slater, Monovalent nickel in hydrogenase from Chromatium vinosum, FEBS Lett, doi:10.1016/0014-5793(85)80533-0
Vilela-Alves, Manuel, Oliveira, Pereira, Romão et al., Cotranslational insertion of selenocysteine into formate dehydrogenase from Escherichia coli directed by a UGA codon, Proc. Natl. Acad. Sci, doi:10.1073/pnas.84.10.3156
Vinals, Depiereux, Feytmans, Prediction of structurally conserved regions of D-specific hydroxy acid dehydrogenases by multiple alignment with formate dehydrogenase, Biochem. Biophys. Res. Commun, doi:10.1006/bbrc.1993.1398
Visser, Schoenmakers, Characteristics of type III iodothyronine deiodinase, Acta Med. Austriaca
Viswanathan, Ryan, Dhruv, Gill, Eichhoff et al., Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway, Nature, doi:10.1038/nature23007
Volbeda, Garcin, Piras, Delacey, Fernandez et al., Structure of the [NiFe] Hydrogenase Active Site: Evidence for Biologically Uncommon Fe Ligands, J. Am. Chem. Soc, doi:10.1021/ja962270g
Vorholt, Thauer, Molybdenum and tungsten enzymes in C1 metabolism, Met. Biol. Sys
Wagner, Ermler, Shima, The methanogenic CO 2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters, Science, doi:10.1126/science.aaf9284
Wang, Vatamaniuk, Wang, Roneker, Simmons et al., Molecular mechanisms for hyperinsulinaemia induced by overproduction of selenium-dependent glutathione peroxidase-1 in mice, Diabetologia, doi:10.1007/s00125-008-1055-3
Wang, Zhu, He, Zhenqin Zhang, Zhou et al., Restraining Cancer Cells by Dual Metabolic Inhibition with a Mitochondrion-Targeted Platinum(II) Complex, Angew. Chem. Int. Ed. Engl, doi:10.1002/anie.201900387
Weaver, Skouta, The Selenoprotein Glutathione Peroxidase 4: From Molecular Mechanisms to Novel Therapeutic Opportunities, Biomedicines, doi:10.3390/biomedicines10040891
Weekley, Harris, Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease, Chem. Soc. Rev, doi:10.1039/c3cs60272a
Wessjohann, Schneider, Abbas, Brandt, Selenium in chemistry and biochemistry in comparison to sulfur, Biol. Chem, doi:10.1515/BC.2007.138
Weïwer, Bittker, Lewis, Shimada, Yang et al., Development of small-molecule probes that selectively kill cells induced to express mutant RAS, Bioorg. Med. Chem. Lett, doi:10.1016/j.bmcl.2011.09.047
Williams, Arscott, Müller, Lennon, Ludwig et al., Thioredoxin reductase two modes of catalysis have evolved, Eur. J. Biochem, doi:10.1046/j.1432-1327.2000.01702.x
Williams, Jr, Chemistry and Biochemistry of Flavoenzymes
Williams, Jr, Mechanism and structure of thioredoxin reductase from Escherichia coli, FASEB J, doi:10.1096/fasebj.9.13.7557016
Woenckhaus, Klein-Hitpass, Grepmeier, Merk, Pfeifer et al., Smoking and cancer-related gene expression in bronchial epithelium and non-small-cell lung cancers, J. Pathol, doi:10.1002/path.2039
Wombwell, Caputo, Reisner, NiFeSe]-Hydrogenase Chemistry, Acc. Chem. Res, doi:10.1021/acs.accounts.5b00326
Wu, Zhao, Yu, Chen, Wang et al., A new coronavirus associated with human respiratory disease in China, Nature, doi:10.1038/s41586-020-2008-3
Yang, Darensbourg, The roles of chalcogenides in O 2 protection of H 2 ase active sites, Chem. Sci, doi:10.1039/D0SC02584D
Yang, Lai, SARS-CoV-2 infection: Can ferroptosis be a potential treatment target for multiple organ involvement?, Cell Death Discov, doi:10.1038/s41420-020-00369-w
Yang, Sriramaratnam, Welsch, Shimada, Skouta et al., Regulation of ferroptotic cancer cell death by GPX4, Cell, doi:10.1016/j.cell.2013.12.010
Yang, Stockwell, Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells, Chem. Biol, doi:10.1016/j.chembiol.2008.02.010
Yoshikawa, Makino, Miyata, Suzuki, Tanaka et al., Multiple electron transfer pathways of tungsten-containing formate dehydrogenase in direct electron transfer-type bioelectrocatalysis, Chem. Commun, doi:10.1039/D2CC01541B
Yoshizawa, Böck, The Many Levels of Control on Bacterial Selenoprotein Synthesis, Biochim. Biophys. Acta Gen. Subj, doi:10.1016/j.bbagen.2009.03.010
Young, Niks, Hakopian, Tam, Yu et al., Crystallographic and kinetic analyses of the FdsBG subcomplex of the cytosolic formate dehydrogenase FdsABG from Cupriavidus necator, J. Biol. Chem, doi:10.1074/jbc.RA120.013264
Yu, Niks, Mulchandani, Hille, Efficient reduction of CO 2 by the molybdenum-containing formate dehydrogenase from Cupriavidus necator (Ralstonia eutropha), J. Biol. Chem, doi:10.1074/jbc.M117.785576
Yu, Yu, Tseng, Cieply, Nelson et al., Glutathione peroxidase 3, deleted or methylated in prostate cancer, suppresses prostate cancer growth and metastasis, Cancer Res, doi:10.1158/0008-5472.CAN-07-0648
Yukio Sugiura, Hojo, Tamai, Hisashi Tanaka, Selenium protection against mercury toxicity. Binding of methylmercury by the selenohydryl-containing ligand, J. Am. Chem. Soc, doi:10.1021/ja00424a059
Zacarias, Vélez, Pita, De Lacey, Matias et al., Characterization of the [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough, Methods Enzymol
Zachary Bloomgarden, Evolution of type 2 diabetes mellitus treatment approaches: 2, J. Diabetes Res, doi:10.1111/1753-0407.12854
Zhang, Li, Han, Liu, Fang, Targeting the Thioredoxin System for Cancer Therapy, Trends Pharmacol. Sci, doi:10.1016/
Zhang, Lin, Sun, Curth, Drosten et al., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors, Science, doi:10.1126/science.abb3405
Zhang, Romero, Salinas, Gladyshev, Dynamic evolution of selenocysteine utilization in bacteria: A balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues, Genome Biol
Zhang, Saad, Taylor, Rayman, Selenium and selenoproteins in viral infection with potential relevance to COVID-19, Redox Biol, doi:10.1016/j.redox.2020.101715
Zhang, Taylor, Bennett, Saad, Rayman, Association between regional selenium status and reported outcome of COVID-19 cases in China, Am. J. Clin. Nutr, doi:10.1093/ajcn/nqaa095
Zhang, Wu, Chen, Xu, Ye et al., Involvement of glutathione peroxidases in the occurrence and development of breast cancers, J. Transl. Med, doi:10.1186/s12967-020-02420-x
Zhang, Zhang, Peng, Liu, Li et al., Thioredoxin reductase inhibitors: A patent review, Expert Opin. Ther. Pat, doi:10.1080/13543776.2017.1272576
Zhong, Arnér, Holmgren, Structure and mechanism of mammalian thioredoxin reductase: The active site is a redoxactive selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence, Proc. Natl. Acad. Sci, doi:10.1073/pnas.100114897
Zhong, Arnér, Ljung, Aslund, Holmgren, Rat and calf thioredoxin reductase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue, J. Biol. Chem, doi:10.1074/jbc.273.15.8581
Zinoni, Birkmann, Stadtman, Böck, Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli, Proc. Natl. Acad. Sci, doi:10.1073/pnas.83.13.4650
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop