Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All molnupiravir studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchMolnupiravirMolnupiravir (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   All Outcomes    Recent:   

The Tautomeric State of N4-Hydroxycytidine within Base-Paired RNA

Bessi et al., ACS Central Science, doi:10.1021/acscentsci.4c00146
Apr 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
In Vitro study showing that NHC, the active form of molnupiravir, can base pair with both G and A in two different tautomeric forms. This ambiguous base pairing enables NHC to induce mutations in the viral RNA. However, it raises the possibility that NHC could also be incorporated into host cell RNA and DNA, potentially causing unwanted mutations in human cells as well. The significant destabilization of RNA duplexes caused by NHC incorporation, especially the impact on neighboring base pairs, suggests it could disrupt the structure and function of not just viral RNA, but any RNA it gets incorporated into, including human cellular RNA involved in normal physiological processes. The fact that NHC:G pairs are more destabilizing than NHC:A pairs and slow down RNA polymerase more also hints that NHC could have complex, sequence-dependent effects that may be hard to predict and control when it comes to off-target incorporation in human cells.
Concerns have been raised that the mutagenic mechanism of action may create dangerous variants or cause cancer1-9. Multiple analyses have identified variants potentially created by molnupiravir10-13.
Bessi et al., 25 Apr 2024, peer-reviewed, 7 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperMolnupiravirAll
The Tautomeric State of N4-Hydroxycytidine within Base-Paired RNA
Irene Bessi, Carina Stiller, Till Schroeder, Benedikt Schäd, Matthias Grüne, Julia Dietzsch, Claudia Höbartner
ACS Central Science, doi:10.1021/acscentsci.4c00146
Antiviral nucleoside analogues (e.g., Molnupiravir, Remdesivir) played key roles in the treatment of COVID-19 by targeting SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). The nucleoside of Molnupiravir, N 4 -hydroxycytidine (NHC), exists in two tautomeric forms that pair either with G or A within the RdRp active site, causing an accumulation of viral RNA mutations during replication. Detailed insights into the tautomeric states within base pairs and the structural influence of NHC in RNA are still missing. In this study, we investigate the properties of NHC:G and NHC:A base pairs in a self-complementary RNA duplex by UV thermal melting and NMR spectroscopy using atom-specifically 15 N-labeled versions of NHC that were incorporated into oligonucleotides by solid-phase synthesis. NMR analysis revealed that NHC forms a Watson-Crick base pair with G via its amino form, whereas two equally populated conformations were detected for the NHC:A base pair: a weakly hydrogen-bonded Watson-Crick base pair with NHC in the imino form and another conformation with A shifted toward the minor groove. Moreover, we found a variable influence of NHC:G and NHC:A base pairs on the neighboring duplex environment. This study provides conclusive experimental evidence for the existence of two tautomeric forms of NHC within RNA base pairs.
Author Contributions ∥ I.B. and C.S. contributed equally. The manuscript was written through contributions of all authors. Notes The authors declare no competing financial interest.
References
Agostini, Pruijssers, Chappell, Gribble, Lu et al., Small-molecule antiviral β-D-N 4 -hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance, J. Virol, doi:10.1128/JVI.01348-19
Andersson, Carlsson, Nekoueishahraki, Brath, Erdelyi, Solvent effects on nitrogen chemical shifts, Annu. Rep. NMR Spectrosc, doi:10.1016/bs.arnmr.2015.04.002
Bereiter, Himmelstoss, Renard, Mairhofer, Egger et al., Impact of 3deazapurine nucleobases on RNA properties, Nucleic Acids Res, doi:10.1093/nar/gkab256
Bernal, Gomes Da Silva, Musungaie, Kovalchuk, Gonzalez et al., Study Group, Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients, N. Engl. J. Med, doi:10.1056/NEJMoa2116044
Brown, Hewlins, Schell, The tautomeric state of N 4hydroxy-and of N 4 -amino-cytosine derivatives, J. Chem. Soc. C, doi:10.1039/j39680001925
Butler, Hobbs, Gbinigie, Rahman, Hayward et al., Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): an open-label, platform-adaptive randomised controlled trial, Lancet, doi:10.1016/S0140-6736(22)02597-1
Cornish, Giedroc, Hennig, Dissecting noncanonical interactions in frameshift-stimulating mRNA pseudoknots, J. Biomol. NMR, doi:10.1007/s10858-006-9033-x
Cornish, Hennig, Giedroc, A loop 2 cytidinestem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated-1 ribosomal frameshifting, Proc. Natl. Acad. Sci. U. S. A, doi:10.1073/pnas.0506166102
Fazakerley, Gdaniec, Sowers, Base-pair induced shifts in the tautomeric equilibrium of a modified DNA base, J. Mol. Biol, doi:10.1006/jmbi.1993.1119
Gdaniec, Ban, Sowers, Fazakerley, Methoxyamine-induced mutagenesis of nucleic acids. A proton NMR study of oligonucleotides containing N 4 -methoxycytosine paired with adenine or guanine, Eur. J. Biochem, doi:10.1111/j.1432-1033.1996.0271r.x
Goddard, Kneller, Manual, None
Gordon, Tchesnokov, Schinazi, Götte, Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template, J. Biol. Chem, doi:10.1016/j.jbc.2021.100770
Hernandez-Santiago, Beltran, Stuyver, Chu, Schinazi, Metabolism of the anti-hepatitis C virus nucleoside β-D-N 4 -hydroxycytidine in different liver cells, Antimicrob. Agents Chemother, doi:10.1128/AAC.48.12.4636-4642.2004
Hwang, Shaka, Water suppression that works -Excitation sculpting using arbitrary wave-forms and pulsed-field gradients, J. Magn. Reson. A, doi:10.1006/jmra.1995.1047
Kabinger, Stiller, Schmitzova, Dienemann, Kokic et al., Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis, Nat. Struct. Mol. Biol, doi:10.1038/s41594-021-00651-0
Kierdaszuk, Stolarski, Shugar, Hydroxylamine mutagenesis: Observation of inverted Watson Crick base pairing between N 4 -methoxycytosine and adenine with the aid of natural abundance high resolution 15 N NMR Spectroscopy, Eur. J. Biochem, doi:10.1111/j.1432-1033.1983.tb07186.x
Kulinśka, Psoda, Shugar, Mechanism of hydroxylamine mutagenesis: an infrared study of the association in non-polar solutions of 5-methyl-N 4 -hydroxycytosines, Acta Biochim. Pol
Les, Adamowicz, Rode, Structure and conformation of N 4 -hydroxycytosine and N 4 -hydroxy-5-fluorocytosine. A theoretical ab initio study, Biochim. Biophys. Acta, doi:10.1016/0167-4781(93)90240-E
Li, Hilgenfeld, Whitley, De Clercq, Therapeutic strategies for COVID-19: progress and lessons learned, Nat. Rev. Drug Discov, doi:10.1038/s41573-023-00672-y
Lu, Li, Koo, Piccirilli, Efficient synthesis of N 4 -methyl-and N 4 -hydroxycytidine phosphoramidites, Synthesis, doi:10.1055/s-0030-1258170
Markowski, Sullivan, Roberts, Nitrogen-15 nuclear magnetic resonance spectroscopy of some nucleosides and nucleotides, J. Am. Chem. Soc, doi:10.1021/ja00445a009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
Micura, Pils, Höbartner, Grubmayr, Ebert et al., Methylation of the nucleobases in RNA oligonucleotides mediates duplex-hairpin conversion, Nucleic Acids Res, doi:10.1093/nar/29.19.3997
Nedderman, Stone, Williams, Lin, Brown, Molecular basis for methoxyamine-initiated mutagenesis: 1 H nuclear magnetic resonance studies of oligonucleotide duplexes containing base-modified cytosine residues, J. Mol. Biol, doi:10.1006/jmbi.1993.1219
Neuner, Santner, Kreutz, Micura, The ″Speedy″ Synthesis of Atom-Specific 15 N Imino/Amido-Labeled RNA, Chem.-Eur. J, doi:10.1002/chem.201501275
Nixon, Rangan, Kim, Rich, Hoffman et al., Solution structure of a luteoviral P1-P2 frameshifting mRNA pseudoknot, J. Mol. Biol, doi:10.1016/S0022-2836(02)00779-9
Oziminski, Bycul, Thermodynamic and kinetic characteristics of Molnupiravir tautomers and its complexes with RNA purine bases as an explanation of the possible mechanism of action of this novel antiviral medicine: A quantum-chemical study, J. Org. Chem, doi:10.1021/acs.joc.3c01580?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
Piotto, Saudek, Sklenar, Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous-solutions, J. Biomol. NMR, doi:10.1007/BF02192855
Rangadurai, Kremser, Shi, Kreutz, Al-Hashimi, Direct evidence for (G)O6•••H(2)-N4(C)(+) hydrogen bonding in transient G(syn)-C(+) and G(syn)-m 5 C(+) Hoogsteen base pairs in duplex DNA from cytosine amino nitrogen off-resonance R(1rho) relaxation dispersion measurements, J. Magn. Reson, doi:10.1016/j.jmr.2019.106589
Ruckriegel, Hohmann, Furtig, A Protonated Cytidine Stabilizes the Ligand-Binding Pocket in the PreQ(1) Riboswitch in Thermophilic Bacteria, ChemBioChem, doi:10.1002/cbic.202300228
Sanderson, Hisner, Donovan-Banfield, Hartman, Lochen et al., A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes, Nature, doi:10.1038/s41586-023-06649-6
Sheahan, Sims, Zhou, Graham, Pruijssers et al., An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice, Sci. Transl. Med, doi:10.1126/scitranslmed.abb5883
Shugar, Huber, Birnbaum, I Mechanism of hydroxylamine mutagenesis Crystal structure and conformation of 1,5-dimethyl-N 4 -hydroxycytosine, Biochim. Biophys. Acta-Nucleic Acids, doi:10.1016/0005-2787(76)90050-2
Shugar, Kierdaszuk, New light on tautomerism of purines and pyrimidines and its biological and genetic implications, J. Biosciences, doi:10.1007/BF02702764
Sklenar, Bax, Spin-Echo water suppression for the generation of pure-phase two-dimensional NMR spectra, J. Magn. Reson, doi:10.1016/0022-2364(87)90269-1
Spengler, Singer, Effect of tautomeric shift on mutation: N 4 -methoxycytidine forms hydrogen bonds with adenosine in polymers, Biochemistry, doi:10.1021/bi00528a037?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
Stone, Nedderman, Williams, Thoo Lin, Brown, Molecular basis for methoxyamine initiated mutagenesis: 1 H nuclear magnetic resonance studies of base-modified oligodeoxynucleotides, J. Mol. Biol, doi:10.1016/0022-2836(91)90507-3
Strebitzer, Rangadurai, Plangger, Kremser, Juen et al., 5-Oxyacetic acid modification destabilizes double helical stem structures and favors anionic Watson-Crick like cmo 5 U-G Base Pairs, Chem. Eur. J, doi:10.1002/chem.201805077
Ulrich, Akutsu, Doreleijers, Harano, Ioannidis et al., None, Nucleic Acids Res, doi:10.1093/nar/gkm957
Van Meervelt, Moore, Kong Thoo Lin, Brown, Kennard, Molecular and crystal structure of d (CGCGmo4CG): N 4 -methoxycytosine• guanine base-pairs in Z-DNA, J. Mol. Biol, doi:10.1016/0022-2836(90)90398-6
Yoon, Toots, Lee, Lee, Ludeke et al., Orally efficacious broad-spectrum ribonucleoside analog inhibitor of influenza and respiratory syncytial viruses, Antimicrob. Agents Chemother, doi:10.1128/AAC.00766-18
Zhou, Hill, Sarkar, Tse, Woodburn et al., beta-D-N 4 -hydroxycytidine inhibits SARS-CoV-2 through lethal mutagenesis but is also mutagenic to mammalian cells, J. Infect. Dis, doi:10.1093/infdis/jiab247
Zibat, Zhang, Dickmanns, Stegmann, Dobbelstein et al., N 4hydroxycytidine, the active compound of Molnupiravir, promotes SARS-CoV-2 mutagenesis and escape from a neutralizing nanobody, iScience, doi:10.1016/j.isci.2023.107786
{ 'indexed': {'date-parts': [[2024, 5, 23]], 'date-time': '2024-05-23T00:22:55Z', 'timestamp': 1716423775610}, 'reference-count': 42, 'publisher': 'American Chemical Society (ACS)', 'issue': '5', 'license': [ { 'start': { 'date-parts': [[2024, 4, 25]], 'date-time': '2024-04-25T00:00:00Z', 'timestamp': 1714003200000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0/'}], 'funder': [ { 'DOI': '10.13039/501100000781', 'name': 'European Research Council', 'doi-asserted-by': 'publisher', 'award': ['682586']}, { 'DOI': '10.13039/501100001659', 'name': 'Deutsche Forschungsgemeinschaft', 'doi-asserted-by': 'publisher', 'award': ['277312423', '46314961']}], 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'published-print': {'date-parts': [[2024, 5, 22]]}, 'DOI': '10.1021/acscentsci.4c00146', 'type': 'journal-article', 'created': {'date-parts': [[2024, 4, 25]], 'date-time': '2024-04-25T19:52:06Z', 'timestamp': 1714074726000}, 'page': '1084-1093', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'The Tautomeric State of <i>N</i><sup>4</sup>-Hydroxycytidine within Base-Paired RNA', 'prefix': '10.1021', 'volume': '10', 'author': [ { 'given': 'Irene', 'family': 'Bessi', 'sequence': 'first', 'affiliation': [ { 'name': 'Institute of Organic Chemistry, Julius-Maximilians-University ' 'Würzburg, Am Hubland, 97074 Würzburg, Bavaria, Germany'}]}, { 'given': 'Carina', 'family': 'Stiller', 'sequence': 'additional', 'affiliation': [ { 'name': 'Institute of Organic Chemistry, Julius-Maximilians-University ' 'Würzburg, Am Hubland, 97074 Würzburg, Bavaria, Germany'}]}, { 'ORCID': 'http://orcid.org/0009-0002-6943-9495', 'authenticated-orcid': True, 'given': 'Till', 'family': 'Schroeder', 'sequence': 'additional', 'affiliation': [ { 'name': 'Institute of Organic Chemistry, Julius-Maximilians-University ' 'Würzburg, Am Hubland, 97074 Würzburg, Bavaria, Germany'}]}, { 'given': 'Benedikt', 'family': 'Schäd', 'sequence': 'additional', 'affiliation': [ { 'name': 'Institute of Organic Chemistry, Julius-Maximilians-University ' 'Würzburg, Am Hubland, 97074 Würzburg, Bavaria, Germany'}]}, { 'ORCID': 'http://orcid.org/0000-0002-6543-5385', 'authenticated-orcid': True, 'given': 'Matthias', 'family': 'Grüne', 'sequence': 'additional', 'affiliation': [ { 'name': 'Institute of Organic Chemistry, Julius-Maximilians-University ' 'Würzburg, Am Hubland, 97074 Würzburg, Bavaria, Germany'}]}, { 'given': 'Julia', 'family': 'Dietzsch', 'sequence': 'additional', 'affiliation': [ { 'name': 'Institute of Organic Chemistry, Julius-Maximilians-University ' 'Würzburg, Am Hubland, 97074 Würzburg, Bavaria, Germany'}]}, { 'ORCID': 'http://orcid.org/0000-0002-4548-2299', 'authenticated-orcid': True, 'given': 'Claudia', 'family': 'Höbartner', 'sequence': 'additional', 'affiliation': [ { 'name': 'Institute of Organic Chemistry, Julius-Maximilians-University ' 'Würzburg, Am Hubland, 97074 Würzburg, Bavaria, Germany'}, { 'name': 'Center for Nanosystems Chemistry, Julius-Maximilians-University ' 'Würzburg, 97074 Würzburg, Bavaria, Germany'}]}], 'member': '316', 'published-online': {'date-parts': [[2024, 4, 25]]}, 'reference': [ {'key': 'ref1/cit1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41573-023-00672-y'}, {'key': 'ref2/cit2', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/AAC.00766-18'}, {'key': 'ref3/cit3', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.01348-19'}, { 'key': 'ref4/cit4', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/AAC.48.12.4636-4642.2004'}, {'key': 'ref5/cit5', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2116044'}, {'key': 'ref6/cit6', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0140-6736(22)02597-1'}, {'key': 'ref7/cit7', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/infdis/jiab247'}, {'key': 'ref8/cit8', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.isci.2023.107786'}, {'key': 'ref9/cit9', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-023-06649-6'}, {'key': 'ref10/cit10', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41594-021-00651-0'}, {'key': 'ref11/cit11', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jbc.2021.100770'}, { 'key': 'ref12/cit12', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/scitranslmed.abb5883'}, {'key': 'ref13/cit13', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/j39680001925'}, {'key': 'ref14/cit14', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/BF02702764'}, { 'key': 'ref15/cit15', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0005-2787(76)90050-2'}, { 'issue': '1', 'key': 'ref16/cit16', 'first-page': '57', 'volume': '27', 'author': 'Kulińska K.', 'year': '1980', 'journal-title': 'Acta Biochim. Pol.'}, { 'key': 'ref17/cit17', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/j.1432-1033.1983.tb07186.x'}, { 'key': 'ref18/cit18', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0167-4781(93)90240-E'}, {'key': 'ref19/cit19', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acs.joc.3c01580'}, { 'key': 'ref20/cit20', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0022-2836(90)90398-6'}, {'key': 'ref21/cit21', 'doi-asserted-by': 'publisher', 'DOI': '10.1006/jmbi.1993.1219'}, {'key': 'ref22/cit22', 'doi-asserted-by': 'publisher', 'DOI': '10.1006/jmbi.1993.1119'}, { 'key': 'ref23/cit23', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0022-2836(91)90507-3'}, {'key': 'ref24/cit24', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/bi00528a037'}, {'key': 'ref25/cit25', 'doi-asserted-by': 'publisher', 'DOI': '10.1055/s-0030-1258170'}, {'key': 'ref26/cit26', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/29.19.3997'}, {'key': 'ref27/cit27', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/cbic.202300228'}, {'key': 'ref28/cit28', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jmr.2019.106589'}, {'key': 'ref29/cit29', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/chem.201501275'}, {'key': 'ref30/cit30', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/ja00445a009'}, {'key': 'ref31/cit31', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkm957'}, { 'key': 'ref32/cit32', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0022-2836(02)00779-9'}, {'key': 'ref33/cit33', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.0506166102'}, {'key': 'ref34/cit34', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s10858-006-9033-x'}, { 'key': 'ref35/cit35', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/bs.arnmr.2015.04.002'}, { 'key': 'ref36/cit36', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/j.1432-1033.1996.0271r.x'}, { 'key': 'ref37/cit37', 'volume-title': 'SPARKY Manual', 'author': 'Goddard T.', 'year': '2001'}, { 'key': 'ref38/cit38', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0022-2364(87)90269-1'}, {'key': 'ref39/cit39', 'doi-asserted-by': 'publisher', 'DOI': '10.1006/jmra.1995.1047'}, {'key': 'ref40/cit40', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/BF02192855'}, {'key': 'ref41/cit41', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/chem.201805077'}, {'key': 'ref42/cit42', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkab256'}], 'container-title': 'ACS Central Science', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://pubs.acs.org/doi/pdf/10.1021/acscentsci.4c00146', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'unspecified'}, { 'URL': 'https://pubs.acs.org/doi/pdf/10.1021/acscentsci.4c00146', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 5, 22]], 'date-time': '2024-05-22T08:21:59Z', 'timestamp': 1716366119000}, 'score': 1, 'resource': {'primary': {'URL': 'https://pubs.acs.org/doi/10.1021/acscentsci.4c00146'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 4, 25]]}, 'references-count': 42, 'journal-issue': {'issue': '5', 'published-print': {'date-parts': [[2024, 5, 22]]}}, 'alternative-id': ['10.1021/acscentsci.4c00146'], 'URL': 'http://dx.doi.org/10.1021/acscentsci.4c00146', 'relation': {}, 'ISSN': ['2374-7943', '2374-7951'], 'subject': [], 'container-title-short': 'ACS Cent. Sci.', 'published': {'date-parts': [[2024, 4, 25]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit