Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Results
Abstract
All probiotics studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchProbioticsProbiotics (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   
0 0.5 1 1.5 2+ WHO score >1 60% Improvement Relative Risk Recovery time 21% PCFS ≥1, long COVID 68% Probiotics  Kolesnyk et al.  EARLY TREATMENT  DB RCT Is early treatment with probiotics beneficial for COVID-19? Double-blind RCT 73 patients in Ukraine (November 2021 - June 2022) Improved recovery (p=0.021) and lower PASC (p=0.0082) c19early.org Kolesnyk et al., BMC Nutrition, January 2024 Favors probiotics Favors control

The role of nutritional support with probiotics in outpatients with symptomatic acute respiratory tract infections: a multicenter, randomized, double-blind, placebo-controlled dietary study

Kolesnyk et al., BMC Nutrition, doi:10.1186/s40795-023-00816-8, NCT04907877
Jan 2024  
  Post
  Facebook
Share
  Source   PDF   All   Meta
Probiotics for COVID-19
17th treatment shown to reduce risk in March 2021
 
*, now known with p = 0.0000013 from 26 studies.
No treatment is 100% effective. Protocols combine complementary and synergistic treatments. * >10% efficacy in meta analysis with ≥3 clinical studies.
4,100+ studies for 60+ treatments. c19early.org
RCT 73 outpatients with mild COVID-19 showing improved recovery and increased RBD/spike antibody response with 28 days of a multi-strain probiotic (Bifidobacterium (B.) lactis BI040, B. longum BL020, Lactobacillus (L) rhamnosus LR110, L. casei LC130, L. acidophilus LA120, 5 billion CFU total).
The immune effects of probiotics are strain-specific.
WHO score >1, 60.3% lower, RR 0.40, p = 0.02, treatment 6 of 34 (17.6%), control 16 of 36 (44.4%), NNT 3.7.
recovery time, 21.4% lower, relative time 0.79, p = 0.04, treatment 34, control 36.
PCFS ≥1, 67.8% lower, RR 0.32, p = 0.008, treatment 5 of 34 (14.7%), control 16 of 35 (45.7%), NNT 3.2, long COVID, Supplementary Table 1.
Effect extraction follows pre-specified rules prioritizing more serious outcomes. Submit updates
Kolesnyk et al., 4 Jan 2024, Double Blind Randomized Controlled Trial, placebo-controlled, Ukraine, peer-reviewed, 10 authors, study period November 2021 - June 2022, trial NCT04907877 (history). Contact: mediana.statistics@gmail.com.
This PaperProbioticsAll
The role of nutritional support with probiotics in outpatients with symptomatic acute respiratory tract infections: a multicenter, randomized, double-blind, placebo-controlled dietary study
Pavlo O Kolesnyk, Iryna H Paliy, Larysa P Sydorchuk, Zoriana P Hoda, Nataliya O Ivanchenko, Oksana S Lych, Natalia R Huley, Oksana I Matsyura, Zoryana L Slyuzar, Sergiy V Gerasymov
BMC Nutrition, doi:10.1186/s40795-023-00816-8
Background A number of laboratory data and clinical studies have shown that probiotic bacteria may be beneficial in respiratory viral diseases. We investigated the role of probiotics in coronavirus disease-19 (COVID -19), post-disease symptoms, and humoral immune responses to viral antigens. Methods This was a randomized, double-blind, placebo-controlled, prospective, multicenter study. We included symptomatic patients aged 18-65 years without risk of severe disease, and positive antigen/PCR test for SARS-CoV-2. Patients received (Bifidobacterium (B.) lactis BI040, B. longum BL020, Lactobacillus (L) rhamnosus LR110, L. casei LC130, L. acidophilus LA120, 5 billion CFU total) or placebo 1 capsule a day for 28 days and recorded symptoms. Three months later patients completed Post-COVID-19 Questionnaire (PCQ-19). On days 0-5 and 28-35, blood was sampled for IgG to nucleocapsid protein (NCP) and receptor binding domain (RBD)/spike 1 (S1) protein. The primary outcome measure was a patient global symptom score on day 10 of observation. The difference between groups was assessed using the Mann-Whitney U test. Results Seventy-three patients were assessed for clinical endpoints and 44 patients were evaluated for antibody production. At day 10, the median global symptom score (interquartile range) was lower in the probiotic group (0.0 (0.0-2.0) vs. 2.0 (1.0-5.0), P < 0.05). The probiotic group had a shorter duration of fatigue and anxiety after COVID -19 (P < 0.05) and a greater change in IgG concentration on RBD/S1 (225.9 vs. 105.6 binding antibody units/mL, P < 0.05). Conclusions Use of probiotics alleviates acute and post-disease symptoms, and improves humoral immune response to viral antigens.
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s40795-023-00816-8. Additional file 1: Supplemental Table 1 . The Post-COVID-19 Questionnaire and Post-COVID-19 Functional Scale data after a 3-month follow-up. Authors' contributions POK, IHP, LPS, ZРH, OSL, NRH were responsible for the patient enrollment, data collection and reviewing the report. NOI, ZLS, OIM were responsible for the data collection and reviewing the report. SVG was responsible for designing and writing the protocol, extracting and analyzing data, interpreting results, creating tables and figures, writing the report. Funding The study was sponsored by Nordic Biotic Sp. z o.o. (Warsaw, Poland). The sponsor was not involved in the study hypothesis/design, implementation, analysis, and interpretation. The funding was transparent, acknowledged, and appropriately recognized throughout all stages of study. The study was conducted in a full academic independence to report and publish all the findings. Availability of data and materials The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request. Declarations Ethics approval and consent to participate Approvals were obtained from ethical committees at all study sites (Lviv Oblast Center for Disease Control and Prevention Ministry of Health of Ukraine, protocol #2 of 20 Apr 2021; Lviv Municipal Non-Profit Enterprise Third..
References
Bradley, Finsterbusch, Schnepf, Crotta, Microbiota-driven tonic interferon signals in lung stromal cells protect from influenza virus infection, Cell Rep, doi:10.1016/j.celrep.2019.05.105
Campbell, Archer, Laurenson-Schafer, Jinnai, Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021, Euro Surveill, doi:10.2807/1560-7917.ES.2021.26.24.2100509
Carfì, Bernabei, Landi, Persistent symptoms in patients after acute COVID-19, JAMA, doi:10.1001/jama.2020.12603
Chai, Burwinkel, Wang, Antiviral effects of a probiotic Enterococcusfaecium strain against transmissible gastroenteritis coronavirus, Arch Virol, doi:10.1007/s00705-012-1543-0
Daliri, Oh, Lee, Psychobiotics; a promise for neurodevelopmental therapy, J Probiotics Health
De Boeck, Cauwenberghs, Spacova, Gehrmann, Randomized, double-blind, placebo-controlled trial of a throat spray with selected lactobacilli in COVID-19 outpatients, Microbiol Spectr, doi:10.1128/spectrum.01682-22
De Weerth, Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis, Neurosci Biobehav Rev
Dinç, Demirci, Özdemir, Sirekbasan, Anti-SARS-CoV-2 IgG and neutralizing antibody levels in patients with past COVID-19 infection: a longitudinal study, Balkan Med J, doi:10.4274/balkanmedj.galenos.2022.2021-8-131
Endam, Tremblay, Filali, Desrosiers, Intranasal application of Lactococcuslactis W 136 bacteria early in SARS-Cov-2 infection may have a beneficial immunomodulatory effect: a proof-of-concept study, medRxiv, doi:10.1101/2021.04.18.21255699
Ettorre, Ceccarelli, Marazzato, Campagna, Challenges in the management of SARS-CoV2 infection: the role of oral bacteriotherapy as complementary therapeutic strategy to avoid the progression of COVID-19, Front Med, doi:10.3389/fmed.2020.00389
Fendrick, Saint, Brook, Jacobs, Diagnosis and treatment of upper respiratory tract infections in the primary care setting, Clin Ther, doi:10.1016/s0149-2918(01)80137-5
Flaherty, Immunogenicity and antigenicity
Fülling, Dinan, Cryan, Gut microbe to brain signaling: what happens in vagus, Neuron
Geva-Zatorsky, Sefik, Kua, Pasman, Mining the human gut microbiota for immunomodulatory organisms, Cell, doi:10.1016/j.cell.2017.01.022
Gutiérrez-Castrellón, Gandara-Martí, Abreu, Abreu, Nieto-Rufino, Probiotic improves symptomatic and viral clearance in Covid-19 outpatients: a randomized, quadruple-blinded, placebo-controlled trial, Gut Microbes, doi:10.1080/19490976.2021.2018899
He, Wang, Li, Shi, Main clinical features of COVID-19 and potential prognostic and therapeutic value of the microbiota in SARS-CoV-2 infections, Front Microbiol, doi:10.3389/fmicb.2020.01302
He, Wen, Yao, Xu, Gut-lung axis: the microbial contributions and clinical implications, Crit Rev Microbiol, doi:10.1080/1040841X.2016.1176988
Hori, Kiyoshima, Shida, Yasui, Augmentation of cellular immunity and reduction of influenza virus titer in aged mice fed Lactobacilluscasei strain Shirota, Clin Diagn Lab Immunol, doi:10.1128/cdli.9.1.105-108.2002.31
Huang, Wang, Li, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, doi:10.1016/S0140-6736(20)30183-5
Ichinohe, Pang, Kumamoto, Peaper, Microbiota regulates immune defense against respiratory tract influenza A virus infection, Proc Natl Acad Sci, doi:10.1073/pnas.1019378108
Incze, Grady, Gupta, I have a cold-what do i need to know?, JAMA Intern Med, doi:10.1001/jamainternmed.2018.2621
Jin, Ren, Li, Gao, Global burden of upper respiratory infections in 204 countries and territories, from 1990 to 2019, EClinicalMedicine, doi:10.1016/j.eclinm.2021.100986
Johnson, Xie, Bailey, Kalveram, Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis, Nature, doi:10.1038/s41586-021-03237-4
Klok, Boon, Barco, The post-COVID-19 functional status scale: a tool to measure functional status over time after COVID-19, Eur Respir J, doi:10.1183/13993003.01494-2020
Lee, Mazmanian, Has the microbiota played a critical role in the evolution of the adaptive immune system?, Science, doi:10.1126/science.1195568
Liu, Walsh, Sheehan, Prebiotics and probiotics for depression and anxiety: a systematic review and meta-analysis of controlled clinical trials, Neurosci Biobehav Rev, doi:10.1016/j.neubiorev.2019.03.023
Liu, Wang, Nair, Yu, Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike, Nature, doi:10.1038/s41586-020-2571-7
Maeda, Nakamura, Hirose, Murosaki, Oral administration of heat-killed Lactobacillusplantarum L-137 enhances protection against influenza virus infection by stimulation of type I interferon production in mice, Int Immunopharmacol, doi:10.1016/j.intimp.2009.04.015
Maffei, Montemiglio, Vitagliano, Fedele, The nuts and bolts of SARS-CoV-2 spike receptor-binding domain heterologous expression, Biomolecules, doi:10.3390/biom11121812
Navarro-Lopez, Hernandez-Belmonte, Perez, Ayo-Gonzalez, Oral intake of Kluyveromycesmarxianus B0399 plus Lactobacillusrhamnosus CECT 30579 to mitigate symptoms in COVID-19 patients: a randomized open label clinical trial, Med Microecol, doi:10.1016/j.medmic.2022.100061
Nyberg, Ferguson, Nash, Webster, Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study, Lancet, doi:10.1016/S0140-6736(22)00462-7
Olaimat, Aolymat, Holy, Ayyash, The potential application of probiotics and prebiotics for the prevention and treatment of COVID-19, NPJ Sci Food, doi:10.1038/s41538-020-00078-9
Pan, Mu, Yang, Sun, Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, crosssectional, multicenter study, Am J Gastroenterol, doi:10.14309/ajg.0000000000000620
Potenza, Siciliano, Petruzziello, COVID-19 pneumonia and gut inflammation: the role of a mix of three probiotic strains in reducing inflammatory markers and need for oxygen support, J Clin Med, doi:10.3390/jcm11133758
Premraj, Kannapadi, Briggs, Seal, Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: a meta-analysis, J Neurol Sci, doi:10.1016/j.jns.2022.120162
Reino-Gelardo, Palop-Cervera, Aparisi-Valero, Espinosa-San, Miguel, Effect of an immune-boosting, antioxidant and anti-inflammatory food supplement in hospitalized COVID-19 patients: a prospective randomized pilot study, Nutrients, doi:10.3390/nu15071736
Sampson, Mazmanian, Control of brain development, function, and behavior by the microbiome, Cell Host Microbe
Shida, Sato, Iizuka, Hoshi, Daily intake of fermented milk with Lactobacilluscasei strain Shirota reduces the incidence and duration of upper respiratory tract infections in healthy middle-aged office workers, Eur J Nutr, doi:10.1007/s00394-015-1056-1
Smyk, Janik, Portincasa, Milkiewicz, COVID-19: focus on the lungs but do not forget the gastrointestinal tract, Eur J Clin Invest, doi:10.1111/eci.13276
Tonetti, Clua, Fukuyama, Marcial, The ability of postimmunobiotics from L.rhamnosus CRL1505 to protect against respiratory syncytial virus and pneumococcal super-infection is a strain-dependent characteristic, Microorganisms, doi:10.3390/microorganisms10112185
Trompette, Gollwitzer, Pattaroni, Lopez-Mejia, Ic, Dietary fiber confers protection against flu by shaping Ly6c-patrolling monocyte hematopoiesis and CD8+ T cell metabolism, Immunity, doi:10.1016/j.immuni.2018.04.022
Vaezi, Ravanshad, Rad, Zarrinfar, Kabiri, The effect of synbiotic adjunct therapy on clinical and paraclinical outcomes in hospitalized COVID-19 patients: a randomized placebo-controlled trial, J Med Virol, doi:10.1002/jmv.28463
Van Tassell, Miller, Lactobacillus adhesion to mucus, Nutrients, doi:10.3390/nu3050613
Wang, Hu, Hu, Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China JAMA, doi:10.1001/jama.2020.1585
Wang, Wang, Lu, Qiu, The efficacy of probiotics in patients with severe COVID-19, Ann Palliat Med, doi:10.21037/apm-21-3373
Westermann, Gleinser, Corr, Riedel, A critical evaluation of bifidobacterial adhesion to the host tissue, Front Microbiol, doi:10.3389/fmicb.2016.01220
Winkler, De Vrese, Ch, Schrezenmeir, Effect of a dietary supplement containing probiotic bacteria plus vitamins and minerals on common cold infections and cellular immune parameters, Int J Clin Pharmacol Ther, doi:10.5414/cpp43318
Yang, Yu, Xu, Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a singlecentered, retrospective, observational study, Lancet Respir Med, doi:10.1016/S2213-2600(20)30079-5
Yeoh, Zuo, Lui, Zhang, Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19, Gut, doi:10.1136/gutjnl-2020-323020
Zeng, Liu, Ma, Zhao, Biochemical characterization of SARS-CoV-2 nucleocapsid protein, Biochem Biophys Res Commun, doi:10.1016/j.bbrc.2020.04.136
Zhang, Han, Li, Chen, Probiotics use is associated with improved clinical outcomes among hospitalized patients with COVID-19, Therap Adv Gastroenterol, doi:10.1177/17562848211035670
Zhang, Yeh, Ding, Prospective study of probiotic supplementation results in immune stimulation and improvement of upper respiratory infection rate, Synth Syst Biotechnol, doi:10.1016/j.synbio.2018.03.001
Zhao, Dong, Hao, Probiotics for preventing acute upper respiratory tract infections, Cochrane Database Syst Rev, doi:10.1002/14651858.CD006895.pub4
Zhou, Yu, Du, Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study, doi:10.1016/S0140-6736(20)30566-3
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit