In Vitro Evaluation and Mitigation of Niclosamide’s Liabilities as a COVID-19 Treatment
Jesse W Wotring, Sean M Mccarty, Khadija Shafiq, Charles J Zhang, Theophilus Nguyen, Sophia R Meyer, Reid Fursmidt, Carmen Mirabelli, Martin C Clasby, Christiane E Wobus, Matthew J O’meara, Jonathan Z Sexton
Vaccines, doi:10.3390/vaccines10081284
Niclosamide, an FDA-approved oral anthelmintic drug, has broad biological activity including anticancer, antibacterial, and antiviral properties. Niclosamide has also been identified as a potent inhibitor of SARS-CoV-2 infection in vitro, generating interest in its use for the treatment or prevention of COVID-19. Unfortunately, there are several potential issues with using niclosamide for COVID-19, including low bioavailability, significant polypharmacology, high cellular toxicity, and unknown efficacy against emerging SARS-CoV-2 variants of concern. In this study, we used high-content imaging-based immunofluorescence assays in two different cell models to assess these limitations and evaluate the potential for using niclosamide as a COVID-19 antiviral. We show that despite promising preliminary reports, the antiviral efficacy of niclosamide overlaps with its cytotoxicity giving it a poor in vitro selectivity index for anti-SARS-CoV-2 inhibition. We also show that niclosamide has significantly variable potency against the different SARS-CoV-2 variants of concern and is most potent against variants with enhanced cell-to-cell spread including the B.1.1.7 (alpha) variant. Finally, we report the activity of 33 niclosamide analogs, several of which have reduced cytotoxicity and increased potency relative to niclosamide. A preliminary structure-activity relationship analysis reveals dependence on a protonophore for antiviral efficacy, which implicates nonspecific endolysosomal neutralization as a dominant mechanism of action. Further single-cell morphological profiling suggests niclosamide also inhibits viral entry and cell-to-cell spread by syncytia. Altogether, our results suggest that niclosamide is not an ideal candidate for the treatment of COVID-19, but that there is potential for developing improved analogs with higher clinical translational potential in the future.
Supplementary Materials: The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/vaccines10081284/s1 , Supplementary Figure S1 : Control data for VeroE6 and H1437 SARS-CoV-2 long-term exposure bioassays; Supplementary Figure S2: Niclosamide analog structures; Supplementary Figure S3 : Some niclosamide analogs cause dose-dependent exacerbation of infection in H1437. Author Contributions: Conceptualization, J.W.W., S.M.M., J.Z.S. and M.J.O.; methodology, J.W.W., S.M.M. and C.M.; formal analysis, J.W.W., S.M.M., M.C.C. and J.Z.S., writing-original draft preparation, J.W.W., S.M.M., K.S. and J.Z.S.; writing-review and editing, J.W.W., S.M.M., K.S., C.J.Z., T.N., S.R.M., R.F., C.M., M.C.C., C.E.W., M.J.O. and J.Z.S.; visualization, J.W.W., S.M.M. and J.Z.S.; supervision, J.Z.S., M.C.C., C.E.W. and M.J.O.; project administration, J.Z.S.; funding acquisition, J.Z.S. All authors have read and agreed to the published version of the manuscript. Funding: This research was funded by the National Center for Advancing Translational Science grant number UL1TR002240. The APC was funded by the same grant. Institutional Review Board Statement: This work was performed under the approval of the University of Michigan Institutional Biosafety Committee under protocol IBCA00001528.
Informed Consent Statement: Not applicable. Data Availability Statement: All relevant data are within the paper and its Supplementary Materials files.
Conflicts of..
References
Aslan, Aslan, Zolbanin, Jafari, Acute respiratory distress syndrome in COVID-19: Possible mechanisms and therapeutic management, Pneumonia
Backer, Sjöbring, Sonne, Weiss, Hostrup et al., A randomized, double-blind, placebo-controlled phase 1 trial of inhaled and intranasal niclosamide: A broad spectrum antiviral candidate for treatment of COVID-19, Lancet Reg. Health-Eur,
doi:10.1016/j.lanepe.2021.100084
Berthold, Cebron, Dill, Gabriel, Kötter et al., KNIME: The Konstanz information miner, ACM SIGKDD Explor. Newsl,
doi:10.1145/1656274.1656280
Bhagat, Compton, Musso, Laudeman, Jackson et al., N-substituted phenylbenzamides of the niclosamide chemotype attenuate obesity related changes in high fat diet fed mice, PLoS ONE,
doi:10.1371/journal.pone.0204605
Blaikie, Brown, Samuelsson, Brand, Smith et al., Targeting dinitrophenol to mitochondria: Limitations to the development of a self-limiting mitochondrial protonophore, Biosci Rep,
doi:10.1007/s10540-006-9018-8
Blake, Shaabani, Eubanks, Maruyama, Manning et al., Salicylanilides Reduce SARS-CoV-2 Replication and Suppress Induction of Inflammatory Cytokines in a Rodent Model, ACS Infect. Dis,
doi:10.1021/acsinfecdis.1c00253
Braga, Ali, Secco, Chiavacci, Neves et al., Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia, Nature,
doi:10.1038/s41586-021-03491-6
Bussani, Schneider, Zentilin, Collesi, Ali et al., Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology, EBioMedicine,
doi:10.1016/j.ebiom.2020.103104
Cairns, Dulko, Griffiths, Golan, Cohen et al., Efficacy of Niclosamide vs Placebo in SARS-CoV-2 Respiratory Viral Clearance, Viral Shedding, and Duration of Symptoms Among Patients with Mild to Moderate COVID-19: A Phase 2 Randomized Clinical Trial, JAMA Netw. Open,
doi:10.1001/jamanetworkopen.2021.44942
Chang, Yeh, Lin, Chen, Yao et al., Pharmacokinetics of anti-SARS-CoV agent niclosamide and its analogs in rats, J. Food Drug Anal,
doi:10.38212/2224-6614.2464
Chen, Zhang, Case, Winkler, Liu et al., Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies, Nat. Med,
doi:10.1038/s41591-021-01294-w
Drayman, Demarco, Jones, Azizi, Froggatt et al., Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2, Science,
doi:10.1126/science.abg5827
Fan, Li, Ding, Zhang, Contributions of Hepatic and Intestinal Metabolism to the Disposition of Niclosamide, a Repurposed Drug with Poor Bioavailability, Drug Metab. Dispos,
doi:10.1124/dmd.119.086678
Feinmann, COVID-19: Global vaccine production is a mess and shortages are down to more than just hoarding, BMJ,
doi:10.1136/bmj.n2375
Fonseca, Diering, Bidinosti, Dalal, Alain et al., Structure-activity analysis of niclosamide reveals potential role for cytoplasmic pH in control of mammalian target of rapamycin complex 1 (mTORC1) signaling, J. Biol. Chem,
doi:10.1074/jbc.M112.359638
Gassen, Niemeyer, Muth, Corman, Martinelli et al., SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals, Nat. Commun,
doi:10.1038/s41467-021-24007-w
Gottlieb, Vaca, Paredes, Mera, Webb et al., Early Remdesivir to Prevent Progression to Severe COVID-19 in Outpatients, N. Engl. J. Med,
doi:10.1056/NEJMoa2116846
Hamdoun, Jung, Efferth, Drug repurposing of the anthelmintic niclosamide to treat multidrug-resistant leukemia, Front. Pharmacol,
doi:10.3389/fphar.2017.00110
Hammond, Leister-Tebbe, Gardner, Abreu, Bao et al., Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with COVID-19, N. Engl. J. Med,
doi:10.1056/NEJMoa2118542
Harvey, Carabelli, Jackson, Gupta, Thomson et al., SARS-CoV-2 variants, spike mutations and immune escape, Nat. Rev. Microbiol,
doi:10.1038/s41579-021-00573-0
Jeon, Ko, Lee, Choi, Byun et al., Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs, Antimicrob. Agents Chemother,
doi:10.1128/AAC.00819-20
Jurgeit, Mcdowell, Moese, Meldrum, Schwendener et al., Niclosamide Is a Proton Carrier and Targets Acidic Endosomes with Broad Antiviral Effects, PLoS Pathog,
doi:10.1371/journal.ppat.1002976
Kotova, Antonenko, Fifty Years of Research on Protonophores: Mitochondrial Uncoupling as a Basis for Therapeutic Action, Acta Nat,
doi:10.32607/actanaturae.11610
Kumar, Coronel, Somalanka, Raju, Aning et al., Mitochondrial uncoupling reveals a novel therapeutic opportunity for p53-defective cancers, Nat. Commun,
doi:10.1038/s41467-018-05805-1
Kyriakidis, López-Cortés, González, Grimaldos, Prado, SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates, Nat. Rev. Microbiol,
doi:10.1038/s41541-021-00292-w
Lin, Bai, Hu, Wang, Chao et al., Preclinical evaluation of a nanoformulated antihelminthic, niclosamide, in ovarian cancer, Oncotarget,
doi:10.18632/oncotarget.7113
Lin, Li, Wang, Shi, Syncytia formation during SARS-CoV-2 lung infection: A disastrous unity to eliminate lymphocytes, Cell Death Differ,
doi:10.1038/s41418-021-00795-y
Liu, Wei, Kappler, Marrack, Zhang, SARS-CoV-2 Variants of Concern and Variants of Interest Receptor Binding Domain Mutations and Virus Infectivity, Front. Immunol,
doi:10.3389/fimmu.2022.825256
Mcquin, Goodman, Chernyshev, Kamentsky, Cimini et al., CellProfiler 3.0: Next-generation image processing for biology, PLoS Biol,
doi:10.1371/journal.pbio.2005970
Mirabelli, Wotring, Zhang, Mccarty, Fursmidt et al., Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19, Proc. Natl. Acad. Sci,
doi:10.1073/pnas.2105815118
Parikh, Liu, Wu, Evans, Dall'era et al., Phase Ib trial of reformulated niclosamide with abiraterone/prednisone in men with castration-resistant prostate cancer, Sci. Rep,
doi:10.1038/s41598-021-85969-x
Park, Jo, Pak, Bae, Rhim et al., FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells, Pflug. Arch,
doi:10.1007/s004240100703
Prabhakara, Godbole, Sil, Jahnavi, Gulzar et al., Strategies to target SARS-CoV-2 entry and infection using dual mechanisms of inhibition by acidification inhibitors, PLoS Pathog,
doi:10.1371/journal.ppat.1009706
Pushpakom, Iorio, Eyers, Escott, Hopper et al., Drug repurposing: Progress, challenges and recommendations, Nat. Rev. Drug Discov,
doi:10.1038/nrd.2018.168
Qomara, Primanissa, Amalia, Purwadi, Zakiyah, Effectiveness of Remdesivir, Lopinavir/Ritonavir, and Favipiravir for COVID-19 Treatment: A Systematic Review, Int. J. Gen. Med,
doi:10.2147/IJGM.S332458
Rajah, Bernier, Buchrieser, Schwartz, The Mechanism and Consequences of SARS-CoV-2 Spike-Mediated Fusion and Syncytia Formation, J. Mol. Biol,
doi:10.1016/j.jmb.2021.167280
Rajah, Hubert, Bishop, Saunders, Robinot et al., SARS-CoV-2 Alpha, Beta, and Delta variants display enhanced Spike-mediated syncytia formation, EMBO J,
doi:10.15252/embj.2021108944
Reddy, Zhang, Polypharmacology: Drug discovery for the future, Expert Rev. Clin. Pharmacol,
doi:10.1586/ecp.12.74
Saito, Irie, Suzuki, Maemura, Nasser et al., Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation, Nature,
doi:10.1038/s41586-021-04266-9
Takashita, Kinoshita, Yamayoshi, Sakai-Tagawa, Fujisaki et al., Efficacy of Antiviral Agents against the SARS-CoV-2 Omicron Subvariant BA.2, N. Engl. J. Med,
doi:10.1056/NEJMc2201933
Touret, Gilles, Barral, Nougairède, Van Helden et al., In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication, Sci. Rep,
doi:10.1038/s41598-020-70143-6
Weiss, Touret, Baronti, Gilles, Hoen et al., Niclosamide shows strong antiviral activity in a human airway model of SARS-CoV-2 infection and a conserved potency against the Alpha (B.1.1.7), Beta (B.1.351) and Delta variant (B.1.617, PLoS ONE,
doi:10.1371/journal.pone.0260958
Whitley, Molnupiravir-A Step toward Orally Bioavailable Therapies for COVID-19, N. Engl. J. Med,
doi:10.1056/NEJMe2117814
Wotring, Fursmidt, Ward, Sexton, Evaluating the in vitro efficacy of bovine lactoferrin products against SARS-CoV-2 variants of concern, J. Dairy Sci,
doi:10.3168/jds.2021-21247
Wu, Jan, Chen, Hsieh, Hwang et al., Inhibition of Severe Acute Respiratory Syndrome Coronavirus Replication by Niclosamide, Antimicrob. Agents Chemother,
doi:10.1128/AAC.48.7.2693-2696.2004
Xiao, Wang, Chang, Wang, Dong et al., Identification of Potent and Safe Antiviral Therapeutic Candidates Against SARS-CoV-2, Front. Immunol,
doi:10.3389/fimmu.2020.586572
Zhang, Zhang, Fang, Liu, Ye et al., SARS-CoV-2 spike L452R mutation increases Omicron variant fusogenicity and infectivity as well as host glycolysis, Signal Transduct. Target. Ther,
doi:10.1038/s41392-022-00941-z
DOI record:
{
"DOI": "10.3390/vaccines10081284",
"ISSN": [
"2076-393X"
],
"URL": "http://dx.doi.org/10.3390/vaccines10081284",
"abstract": "<jats:p>Niclosamide, an FDA-approved oral anthelmintic drug, has broad biological activity including anticancer, antibacterial, and antiviral properties. Niclosamide has also been identified as a potent inhibitor of SARS-CoV-2 infection in vitro, generating interest in its use for the treatment or prevention of COVID-19. Unfortunately, there are several potential issues with using niclosamide for COVID-19, including low bioavailability, significant polypharmacology, high cellular toxicity, and unknown efficacy against emerging SARS-CoV-2 variants of concern. In this study, we used high-content imaging-based immunofluorescence assays in two different cell models to assess these limitations and evaluate the potential for using niclosamide as a COVID-19 antiviral. We show that despite promising preliminary reports, the antiviral efficacy of niclosamide overlaps with its cytotoxicity giving it a poor in vitro selectivity index for anti-SARS-CoV-2 inhibition. We also show that niclosamide has significantly variable potency against the different SARS-CoV-2 variants of concern and is most potent against variants with enhanced cell-to-cell spread including the B.1.1.7 (alpha) variant. Finally, we report the activity of 33 niclosamide analogs, several of which have reduced cytotoxicity and increased potency relative to niclosamide. A preliminary structure–activity relationship analysis reveals dependence on a protonophore for antiviral efficacy, which implicates nonspecific endolysosomal neutralization as a dominant mechanism of action. Further single-cell morphological profiling suggests niclosamide also inhibits viral entry and cell-to-cell spread by syncytia. Altogether, our results suggest that niclosamide is not an ideal candidate for the treatment of COVID-19, but that there is potential for developing improved analogs with higher clinical translational potential in the future.</jats:p>",
"alternative-id": [
"vaccines10081284"
],
"author": [
{
"affiliation": [
{
"name": "Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA"
}
],
"family": "Wotring",
"given": "Jesse W.",
"sequence": "first"
},
{
"affiliation": [
{
"name": "Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA"
}
],
"family": "McCarty",
"given": "Sean M.",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA"
}
],
"family": "Shafiq",
"given": "Khadija",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0003-0300-849X",
"affiliation": [
{
"name": "Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA"
}
],
"authenticated-orcid": false,
"family": "Zhang",
"given": "Charles J.",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA"
}
],
"family": "Nguyen",
"given": "Theophilus",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA"
}
],
"family": "Meyer",
"given": "Sophia R.",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA"
}
],
"family": "Fursmidt",
"given": "Reid",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0002-4785-5482",
"affiliation": [
{
"name": "Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA"
}
],
"authenticated-orcid": false,
"family": "Mirabelli",
"given": "Carmen",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA"
}
],
"family": "Clasby",
"given": "Martin C.",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0001-5286-0924",
"affiliation": [
{
"name": "Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA"
}
],
"authenticated-orcid": false,
"family": "Wobus",
"given": "Christiane E.",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0002-3128-5331",
"affiliation": [
{
"name": "Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA"
}
],
"authenticated-orcid": false,
"family": "O’Meara",
"given": "Matthew J.",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA"
},
{
"name": "Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA"
},
{
"name": "U-M Center for Drug Repurposing, University of Michigan, Ann Arbor, MI 48109, USA"
}
],
"family": "Sexton",
"given": "Jonathan Z.",
"sequence": "additional"
}
],
"container-title": "Vaccines",
"container-title-short": "Vaccines",
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2022,
8,
10
]
],
"date-time": "2022-08-10T13:47:06Z",
"timestamp": 1660139226000
},
"deposited": {
"date-parts": [
[
2024,
8,
3
]
],
"date-time": "2024-08-03T17:13:13Z",
"timestamp": 1722705193000
},
"funder": [
{
"DOI": "10.13039/100006108",
"award": [
"UL1TR002240"
],
"doi-asserted-by": "publisher",
"id": [
{
"asserted-by": "publisher",
"id": "10.13039/100006108",
"id-type": "DOI"
}
],
"name": "National Center for Advancing Translational Science"
}
],
"indexed": {
"date-parts": [
[
2024,
8,
4
]
],
"date-time": "2024-08-04T00:11:56Z",
"timestamp": 1722730316733
},
"is-referenced-by-count": 2,
"issue": "8",
"issued": {
"date-parts": [
[
2022,
8,
9
]
]
},
"journal-issue": {
"issue": "8",
"published-online": {
"date-parts": [
[
2022,
8
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2022,
8,
9
]
],
"date-time": "2022-08-09T00:00:00Z",
"timestamp": 1660003200000
}
}
],
"link": [
{
"URL": "https://www.mdpi.com/2076-393X/10/8/1284/pdf",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "1968",
"original-title": [],
"page": "1284",
"prefix": "10.3390",
"published": {
"date-parts": [
[
2022,
8,
9
]
]
},
"published-online": {
"date-parts": [
[
2022,
8,
9
]
]
},
"publisher": "MDPI AG",
"reference": [
{
"DOI": "10.1038/s41579-020-00459-7",
"article-title": "Characteristics of SARS-CoV-2 and COVID-19",
"author": "Hu",
"doi-asserted-by": "crossref",
"first-page": "141",
"journal-title": "Nat. Rev. Microbiol.",
"key": "ref_1",
"volume": "19",
"year": "2021"
},
{
"DOI": "10.1186/s41479-021-00092-9",
"article-title": "Acute respiratory distress syndrome in COVID-19: Possible mechanisms and therapeutic management",
"author": "Aslan",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Pneumonia",
"key": "ref_2",
"volume": "13",
"year": "2021"
},
{
"DOI": "10.1038/s41467-020-20053-y",
"article-title": "Longitudinal symptom dynamics of COVID-19 infection",
"author": "Mizrahi",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Nat. Commun.",
"key": "ref_3",
"volume": "11",
"year": "2020"
},
{
"DOI": "10.1016/S1473-3099(20)30120-1",
"article-title": "An interactive web-based dashboard to track COVID-19 in real time",
"author": "Dong",
"doi-asserted-by": "crossref",
"first-page": "533",
"journal-title": "Lancet Infect. Dis.",
"key": "ref_4",
"volume": "20",
"year": "2020"
},
{
"DOI": "10.1038/s41579-021-00573-0",
"article-title": "SARS-CoV-2 variants, spike mutations and immune escape",
"author": "Harvey",
"doi-asserted-by": "crossref",
"first-page": "409",
"journal-title": "Nat. Rev. Microbiol.",
"key": "ref_5",
"volume": "19",
"year": "2021"
},
{
"article-title": "SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates",
"author": "Kyriakidis",
"first-page": "1",
"journal-title": "Nat. Rev. Microbiol.",
"key": "ref_6",
"volume": "6",
"year": "2021"
},
{
"DOI": "10.1038/d41573-021-00202-8",
"article-title": "A tale of two antiviral targets-and the COVID-19 drugs that bind them",
"author": "Cully",
"doi-asserted-by": "crossref",
"first-page": "3",
"journal-title": "Nat. Rev. Drug Discov.",
"key": "ref_7",
"volume": "21",
"year": "2022"
},
{
"DOI": "10.1056/NEJMe2117814",
"article-title": "Molnupiravir—A Step toward Orally Bioavailable Therapies for COVID-19",
"author": "Whitley",
"doi-asserted-by": "crossref",
"first-page": "592",
"journal-title": "N. Engl. J. Med.",
"key": "ref_8",
"volume": "386",
"year": "2022"
},
{
"DOI": "10.1056/NEJMoa2118542",
"article-title": "Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with COVID-19",
"author": "Hammond",
"doi-asserted-by": "crossref",
"first-page": "1397",
"journal-title": "N. Engl. J. Med.",
"key": "ref_9",
"volume": "386",
"year": "2022"
},
{
"DOI": "10.1136/bmj.n2375",
"article-title": "COVID-19: Global vaccine production is a mess and shortages are down to more than just hoarding",
"author": "Feinmann",
"doi-asserted-by": "crossref",
"first-page": "n2375",
"journal-title": "BMJ",
"key": "ref_10",
"volume": "375",
"year": "2021"
},
{
"DOI": "10.2147/IJGM.S332458",
"article-title": "Effectiveness of Remdesivir, Lopinavir/Ritonavir, and Favipiravir for COVID-19 Treatment: A Systematic Review",
"author": "Qomara",
"doi-asserted-by": "crossref",
"first-page": "8557",
"journal-title": "Int. J. Gen. Med.",
"key": "ref_11",
"volume": "14",
"year": "2021"
},
{
"DOI": "10.1056/NEJMoa2116846",
"article-title": "Early Remdesivir to Prevent Progression to Severe COVID-19 in Outpatients",
"author": "Gottlieb",
"doi-asserted-by": "crossref",
"first-page": "305",
"journal-title": "N. Engl. J. Med.",
"key": "ref_12",
"volume": "386",
"year": "2022"
},
{
"DOI": "10.1038/s41591-021-01294-w",
"article-title": "Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies",
"author": "Chen",
"doi-asserted-by": "crossref",
"first-page": "717",
"journal-title": "Nat. Med.",
"key": "ref_13",
"volume": "27",
"year": "2021"
},
{
"DOI": "10.1056/NEJMc2201933",
"article-title": "Efficacy of Antiviral Agents against the SARS-CoV-2 Omicron Subvariant BA.2",
"author": "Takashita",
"doi-asserted-by": "crossref",
"first-page": "1475",
"journal-title": "N. Engl. J. Med.",
"key": "ref_14",
"volume": "386",
"year": "2022"
},
{
"DOI": "10.1038/nrd.2018.168",
"article-title": "Drug repurposing: Progress, challenges and recommendations",
"author": "Pushpakom",
"doi-asserted-by": "crossref",
"first-page": "41",
"journal-title": "Nat. Rev. Drug Discov.",
"key": "ref_15",
"volume": "18",
"year": "2018"
},
{
"DOI": "10.1126/science.abg5827",
"article-title": "Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2",
"author": "Drayman",
"doi-asserted-by": "crossref",
"first-page": "931",
"journal-title": "Science",
"key": "ref_16",
"volume": "373",
"year": "2021"
},
{
"DOI": "10.1073/pnas.2105815118",
"article-title": "Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19",
"author": "Mirabelli",
"doi-asserted-by": "crossref",
"first-page": "e2105815118",
"journal-title": "Proc. Natl. Acad. Sci. USA",
"key": "ref_17",
"volume": "118",
"year": "2021"
},
{
"DOI": "10.1038/s41598-020-70143-6",
"article-title": "In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication",
"author": "Touret",
"doi-asserted-by": "crossref",
"first-page": "13093",
"journal-title": "Sci. Rep.",
"key": "ref_18",
"volume": "10",
"year": "2020"
},
{
"DOI": "10.3389/fimmu.2020.586572",
"article-title": "Identification of Potent and Safe Antiviral Therapeutic Candidates Against SARS-CoV-2",
"author": "Xiao",
"doi-asserted-by": "crossref",
"first-page": "586572",
"journal-title": "Front. Immunol.",
"key": "ref_19",
"volume": "11",
"year": "2020"
},
{
"DOI": "10.1128/AAC.00819-20",
"article-title": "Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs",
"author": "Jeon",
"doi-asserted-by": "crossref",
"first-page": "e00819-20",
"journal-title": "Antimicrob. Agents Chemother.",
"key": "ref_20",
"volume": "64",
"year": "2020"
},
{
"DOI": "10.1016/j.cellsig.2017.04.001",
"article-title": "Niclosamide: Beyond an antihelminthic drug",
"author": "Chen",
"doi-asserted-by": "crossref",
"first-page": "89",
"journal-title": "Cell. Signal.",
"key": "ref_21",
"volume": "41",
"year": "2018"
},
{
"DOI": "10.1074/jbc.M112.359638",
"article-title": "Structure-activity analysis of niclosamide reveals potential role for cytoplasmic pH in control of mammalian target of rapamycin complex 1 (mTORC1) signaling",
"author": "Fonseca",
"doi-asserted-by": "crossref",
"first-page": "17530",
"journal-title": "J. Biol. Chem.",
"key": "ref_22",
"volume": "287",
"year": "2012"
},
{
"DOI": "10.1038/s41467-018-05805-1",
"article-title": "Mitochondrial uncoupling reveals a novel therapeutic opportunity for p53-defective cancers",
"author": "Kumar",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Nat. Commun.",
"key": "ref_23",
"volume": "9",
"year": "2018"
},
{
"DOI": "10.1371/journal.ppat.1002976",
"doi-asserted-by": "crossref",
"key": "ref_24",
"unstructured": "Jurgeit, A., McDowell, R., Moese, S., Meldrum, E., Schwendener, R., and Greber, U.F. (2012). Niclosamide Is a Proton Carrier and Targets Acidic Endosomes with Broad Antiviral Effects. PLoS Pathog., 8."
},
{
"DOI": "10.1128/AAC.48.7.2693-2696.2004",
"article-title": "Inhibition of Severe Acute Respiratory Syndrome Coronavirus Replication by Niclosamide",
"author": "Wu",
"doi-asserted-by": "crossref",
"first-page": "2693",
"journal-title": "Antimicrob. Agents Chemother.",
"key": "ref_25",
"volume": "48",
"year": "2004"
},
{
"DOI": "10.1371/journal.ppat.1009706",
"doi-asserted-by": "crossref",
"key": "ref_26",
"unstructured": "Prabhakara, C., Godbole, R., Sil, P., Jahnavi, S., Gulzar, S.J., van Zanten, T.S., Sheth, D., Subhash, N., Chandra, A., and Shivaraj, A. (2021). Strategies to target SARS-CoV-2 entry and infection using dual mechanisms of inhibition by acidification inhibitors. PLoS Pathog., 17."
},
{
"DOI": "10.1038/s41467-021-24007-w",
"article-title": "SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals",
"author": "Gassen",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Nat. Commun.",
"key": "ref_27",
"volume": "12",
"year": "2021"
},
{
"DOI": "10.1038/s41586-021-03491-6",
"article-title": "Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia",
"author": "Braga",
"doi-asserted-by": "crossref",
"first-page": "88",
"journal-title": "Nature",
"key": "ref_28",
"volume": "594",
"year": "2021"
},
{
"DOI": "10.18632/oncotarget.7113",
"article-title": "Preclinical evaluation of a nanoformulated antihelminthic, niclosamide, in ovarian cancer",
"author": "Lin",
"doi-asserted-by": "crossref",
"first-page": "8993",
"journal-title": "Oncotarget",
"key": "ref_29",
"volume": "7",
"year": "2016"
},
{
"DOI": "10.1124/dmd.119.086678",
"article-title": "Contributions of Hepatic and Intestinal Metabolism to the Disposition of Niclosamide, a Repurposed Drug with Poor Bioavailability",
"author": "Fan",
"doi-asserted-by": "crossref",
"first-page": "756",
"journal-title": "Drug Metab. Dispos.",
"key": "ref_30",
"volume": "47",
"year": "2019"
},
{
"article-title": "Pharmacokinetics of anti-SARS-CoV agent niclosamide and its analogs in rats",
"author": "Chang",
"first-page": "15",
"journal-title": "J. Food Drug Anal.",
"key": "ref_31",
"volume": "14",
"year": "2020"
},
{
"DOI": "10.1586/ecp.12.74",
"article-title": "Polypharmacology: Drug discovery for the future",
"author": "Reddy",
"doi-asserted-by": "crossref",
"first-page": "41",
"journal-title": "Expert Rev. Clin. Pharmacol.",
"key": "ref_32",
"volume": "6",
"year": "2013"
},
{
"DOI": "10.1158/1078-0432.CCR-12-2895",
"article-title": "Anticancer effects of niclosamide in human glioblastoma",
"author": "Wieland",
"doi-asserted-by": "crossref",
"first-page": "4124",
"journal-title": "Clin. Cancer Res.",
"key": "ref_33",
"volume": "19",
"year": "2013"
},
{
"DOI": "10.3389/fphar.2017.00110",
"article-title": "Drug repurposing of the anthelmintic niclosamide to treat multidrug-resistant leukemia",
"author": "Hamdoun",
"doi-asserted-by": "crossref",
"first-page": "110",
"journal-title": "Front. Pharmacol.",
"key": "ref_34",
"volume": "8",
"year": "2017"
},
{
"DOI": "10.15252/embj.2021108944",
"article-title": "SARS-CoV-2 Alpha, Beta, and Delta variants display enhanced Spike-mediated syncytia formation",
"author": "Rajah",
"doi-asserted-by": "crossref",
"first-page": "e108944",
"journal-title": "EMBO J.",
"key": "ref_35",
"volume": "40",
"year": "2021"
},
{
"DOI": "10.1038/s41586-021-04266-9",
"article-title": "Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation",
"author": "Saito",
"doi-asserted-by": "crossref",
"first-page": "300",
"journal-title": "Nature",
"key": "ref_36",
"volume": "602",
"year": "2022"
},
{
"article-title": "SARS-CoV-2 spike L452R mutation increases Omicron variant fusogenicity and infectivity as well as host glycolysis",
"author": "Zhang",
"first-page": "1",
"journal-title": "Signal Transduct. Target. Ther.",
"key": "ref_37",
"volume": "7",
"year": "2022"
},
{
"DOI": "10.1371/journal.pone.0204605",
"doi-asserted-by": "crossref",
"key": "ref_38",
"unstructured": "Bhagat, H.A., Compton, S.A., Musso, D.L., Laudeman, C.P., Jackson, K.M., Yi, N.Y., Nierobisz, L.S., Forsberg, L., Brenman, J.E., and Sexton, J.Z. (2018). N-substituted phenylbenzamides of the niclosamide chemotype attenuate obesity related changes in high fat diet fed mice. PLoS ONE, 13."
},
{
"DOI": "10.1007/s004240100703",
"article-title": "FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells",
"author": "Park",
"doi-asserted-by": "crossref",
"first-page": "344",
"journal-title": "Pflug. Arch.",
"key": "ref_39",
"volume": "443",
"year": "2002"
},
{
"DOI": "10.1007/s10540-006-9018-8",
"article-title": "Targeting dinitrophenol to mitochondria: Limitations to the development of a self-limiting mitochondrial protonophore",
"author": "Blaikie",
"doi-asserted-by": "crossref",
"first-page": "231",
"journal-title": "Biosci Rep.",
"key": "ref_40",
"volume": "26",
"year": "2006"
},
{
"DOI": "10.1016/j.molmet.2021.101222",
"article-title": "Exploring the therapeutic potential of mitochondrial uncouplers in cancer",
"author": "Shrestha",
"doi-asserted-by": "crossref",
"first-page": "101222",
"journal-title": "Mol. Metab.",
"key": "ref_41",
"volume": "51",
"year": "2021"
},
{
"DOI": "10.32607/actanaturae.11610",
"article-title": "Fifty Years of Research on Protonophores: Mitochondrial Uncoupling as a Basis for Therapeutic Action",
"author": "Kotova",
"doi-asserted-by": "crossref",
"first-page": "4",
"journal-title": "Acta Nat.",
"key": "ref_42",
"volume": "14",
"year": "2022"
},
{
"DOI": "10.1021/acsinfecdis.1c00253",
"article-title": "Salicylanilides Reduce SARS-CoV-2 Replication and Suppress Induction of Inflammatory Cytokines in a Rodent Model",
"author": "Blake",
"doi-asserted-by": "crossref",
"first-page": "2229",
"journal-title": "ACS Infect. Dis.",
"key": "ref_43",
"volume": "7",
"year": "2021"
},
{
"DOI": "10.1001/jamanetworkopen.2021.44942",
"article-title": "Efficacy of Niclosamide vs Placebo in SARS-CoV-2 Respiratory Viral Clearance, Viral Shedding, and Duration of Symptoms Among Patients with Mild to Moderate COVID-19: A Phase 2 Randomized Clinical Trial",
"author": "Cairns",
"doi-asserted-by": "crossref",
"first-page": "e2144942",
"journal-title": "JAMA Netw. Open",
"key": "ref_44",
"volume": "5",
"year": "2022"
},
{
"DOI": "10.1038/s41598-021-85969-x",
"article-title": "Phase Ib trial of reformulated niclosamide with abiraterone/prednisone in men with castration-resistant prostate cancer",
"author": "Parikh",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Sci. Rep.",
"key": "ref_45",
"volume": "11",
"year": "2021"
},
{
"article-title": "A randomized, double-blind, placebo-controlled phase 1 trial of inhaled and intranasal niclosamide: A broad spectrum antiviral candidate for treatment of COVID-19",
"author": "Backer",
"first-page": "100084",
"journal-title": "Lancet Reg. Health-Eur.",
"key": "ref_46",
"volume": "4",
"year": "2021"
},
{
"article-title": "SARS-CoV-2 Variants of Concern and Variants of Interest Receptor Binding Domain Mutations and Virus Infectivity",
"author": "Liu",
"first-page": "50",
"journal-title": "Front. Immunol.",
"key": "ref_47",
"volume": "13",
"year": "2022"
},
{
"DOI": "10.1371/journal.pone.0260958",
"doi-asserted-by": "crossref",
"key": "ref_48",
"unstructured": "Weiss, A., Touret, F., Baronti, C., Gilles, M., Hoen, B., Nougairède, A., de Lamballerie, X., and Sommer, M.O. (2021). Niclosamide shows strong antiviral activity in a human airway model of SARS-CoV-2 infection and a conserved potency against the Alpha (B.1.1.7), Beta (B.1.351) and Delta variant (B.1.617.2). PLoS ONE, 16."
},
{
"DOI": "10.1016/j.ebiom.2020.103104",
"article-title": "Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology",
"author": "Bussani",
"doi-asserted-by": "crossref",
"first-page": "103104",
"journal-title": "EBioMedicine",
"key": "ref_49",
"volume": "61",
"year": "2020"
},
{
"DOI": "10.1038/s41418-021-00795-y",
"article-title": "Syncytia formation during SARS-CoV-2 lung infection: A disastrous unity to eliminate lymphocytes",
"author": "Lin",
"doi-asserted-by": "crossref",
"first-page": "2019",
"journal-title": "Cell Death Differ.",
"key": "ref_50",
"volume": "28",
"year": "2021"
},
{
"DOI": "10.1016/j.jmb.2021.167280",
"article-title": "The Mechanism and Consequences of SARS-CoV-2 Spike-Mediated Fusion and Syncytia Formation",
"author": "Rajah",
"doi-asserted-by": "crossref",
"first-page": "167280",
"journal-title": "J. Mol. Biol.",
"key": "ref_51",
"volume": "434",
"year": "2022"
},
{
"DOI": "10.1093/oxfordjournals.aje.a118408",
"article-title": "A simple method of estimating fifty per cent endpoints",
"author": "Reed",
"doi-asserted-by": "crossref",
"first-page": "493",
"journal-title": "Am. J. Epidemiol.",
"key": "ref_52",
"volume": "27",
"year": "1938"
},
{
"DOI": "10.3168/jds.2021-21247",
"article-title": "Evaluating the in vitro efficacy of bovine lactoferrin products against SARS-CoV-2 variants of concern",
"author": "Wotring",
"doi-asserted-by": "crossref",
"first-page": "2791",
"journal-title": "J. Dairy Sci.",
"key": "ref_53",
"volume": "105",
"year": "2022"
},
{
"DOI": "10.1371/journal.pbio.2005970",
"doi-asserted-by": "crossref",
"key": "ref_54",
"unstructured": "McQuin, C., Goodman, A., Chernyshev, V., Kamentsky, L., Cimini, B.A., Karhohs, K.W., Doan, M., Ding, L., Rafelski, S.M., and Thirstrup, D. (2018). CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol., 16."
},
{
"DOI": "10.1145/1656274.1656280",
"article-title": "KNIME: The Konstanz information miner",
"author": "Berthold",
"doi-asserted-by": "crossref",
"first-page": "58",
"journal-title": "ACM SIGKDD Explor. Newsl.",
"key": "ref_55",
"volume": "11",
"year": "2009"
}
],
"reference-count": 55,
"references-count": 55,
"relation": {
"has-preprint": [
{
"asserted-by": "object",
"id": "10.1101/2022.06.24.497526",
"id-type": "doi"
}
]
},
"resource": {
"primary": {
"URL": "https://www.mdpi.com/2076-393X/10/8/1284"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "In Vitro Evaluation and Mitigation of Niclosamide’s Liabilities as a COVID-19 Treatment",
"type": "journal-article",
"volume": "10"
}