Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchNiclosamideNiclosamide (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

A pseudovirus-based method to dynamically mimic SARS-CoV-2-associated cell-to-cell fusion and transmission

Sheng et al., Acta Biochimica et Biophysica Sinica, doi:10.3724/abbs.2023129
Jul 2023  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
In Vitro study showing that niclosamide dramatically blocked the formation of syncytia mediated by SARS-CoV-2 spike protein pseudovirus-producing 293FT cells when cocultured with hACE2-expressing 293T cells at 1μM concentration. Authors developed a novel pseudovirus-based method to dynamically investigate cell fusion and cell-to-cell transmission of SARS-CoV-2. The method was used to test the effects of several compounds, with niclosamide, salinomycin and thapsigargin significantly inhibiting syncytia formation, while cyclopiazonic acid showed a weaker effect.
9 preclinical studies support the efficacy of niclosamide for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2 with niclosamide or metabolites via binding to the spikeA,1, MproB,1, RNA-dependent RNA polymeraseC,1, PLproD,1, nucleocapsidE,1, and helicaseF,1 proteins. Niclosamide inhibits endolysosomal acidification and suppresses TLR3-mediated pro-inflammatory signaling in human small airway epithelial cells stimulated with TLR3 agonists mimicking viral RNA2, modulates host lipid metabolism and reduces infectious SARS-CoV-2 virion production in Vero E6 cells4, reduces CD147 protein levels and inhibits SARS-CoV-2-induced upregulation of CD147 in A549-ACE2 cells, including the highly glycosylated form of CD147 which has been implicated in COVID-19 disease progression and post-COVID-19 cardiac complications5, blocked the formation of syncytia mediated by SARS-CoV-2 spike protein pseudovirus-producing cells6, may reduce inflammation, NLRP3 formation, and caspase-1 activity9, may inhibit viral uncoating, replication, and assembly via disruption of pH gradients and reduced ATP production in host cells8, and shows strong synergy when combined with ivermectin7.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
f. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
Sheng et al., 1 Jul 2023, peer-reviewed, 6 authors. Contact: coryhu@sibcb.ac.cn, shengxiangpeng@ucas.ac.cn.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperNiclosamideAll
Abstract: Acta Biochim Biophys Sin 2023, 55(11): 1840–1843 https://doi.org/10.3724/abbs.2023129 Advance Access Publication Date: 6 July 2023 Lab Note Lab Note A pseudovirus-based method to dynamically mimic SARS-CoV-2-associated cell-to-cell fusion and transmission Xiangpeng Sheng1,2,3,†,*, Yi Yang4,†, Fang Zhu5,†, Fan Yang2,†, Honghua Wang1, and Ronggui Hu1,2,* 1Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China, 2State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, 3State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China, 4Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China, and 5School of Medicine, Guizhou University, Guiyang 550025, China †These authors contributed equally to this work. *Correspondence address. Tel: +86-17717541320; E-mail: coryhu@sibcb.ac.cn (R.H.) / Tel: +86-13701790678; E-mail: shengxiangpeng@ucas.ac.cn (X.S.) Received 8 June 2023 Accepted 25 June 2023 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, has caused tremendous global loss and continues to evolve to generate variants. Entry of SARS-CoV-2 into target host cells is primarily mediated by spike (S), which binds to the host receptor hACE2 and initiates virus-cell membrane fusion [1]. Most COVID-19 patients show pneumocyte syncytia in the lungs [2]. Cell fusion contributes to viral entry, cellto-cell transmission and tissue damage, and thus attracts much attention. Because authentic SARS-CoV-2 live virions can only be handled in biosafety level-3 (BSL-3) facilities, many researchers have developed different assays to study cell fusion in BSL-1/2 by directly expressing S and hACE2 on mammalian cells [2‒5]. Briefly, in regular cell fusion assays, S-expressing cells and hACE2-positive cells are cocultured at approximately a 1:1 ratio, which induces cellcell fusion and usually activates a fusion reporter. Although these strategies are useful, they cannot efficiently simulate cell-cell fusion and transmission in SARS-CoV-2 infection, in which virions from one target cell are transmitted to neighboring cells, resulting in syncytia. Here, we design a pseudovirus-based method to dynamically and highly mimic cell-to-cell fusion and virus transmission of SARS-CoV-2. First, we generated spike-pseudotyped virions (S pseudovirions) in HEK293FT cells by co-transfecting three plasmids, including psPAX2, pCDH-sfGFP, and a plasmid expressing SARS-CoV-2 S into cells (Figure 1A), and collected the viral supernatant, which is similar to a previous report [6]. S pseudovirus was found to efficiently infect hACE2-positive 293T cells (293T-hACE2) but not the control 293T or 293FT cell lines (Supplementary Figure S1A,B), suggesting that S indeed envelops the pseudovirions. However, fluorescence microscopy revealed that the infection of 293T-hACE2 cells by pseudovirus supernatant could not trigger cell-cell membrane fusion events (Supplementary Figure S1C). Given that the authentic SARS-CoV-2-infected host cells can continue to generate live virions to..
{ 'indexed': {'date-parts': [[2023, 7, 7]], 'date-time': '2023-07-07T04:20:01Z', 'timestamp': 1688703601422}, 'reference-count': 9, 'publisher': 'China Science Publishing & Media Ltd.', 'content-domain': {'domain': ['engine.scichina.com'], 'crossmark-restriction': False}, 'published-print': {'date-parts': [[2023, 7, 1]]}, 'DOI': '10.3724/abbs.2023129', 'type': 'journal-article', 'created': {'date-parts': [[2023, 7, 3]], 'date-time': '2023-07-03T02:15:48Z', 'timestamp': 1688350548000}, 'update-policy': 'http://dx.doi.org/10.1360/scp-crossmark-policy-page', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'A pseudovirus-based method to dynamically mimic SARS-CoV-2-associated cell-to-cell fusion and ' 'transmission', 'prefix': '10.3724', 'author': [ {'given': 'Xiangpeng', 'family': 'Sheng', 'sequence': 'first', 'affiliation': []}, {'given': 'Yi', 'family': 'Yang', 'sequence': 'additional', 'affiliation': []}, {'given': 'Fang', 'family': 'Zhu', 'sequence': 'additional', 'affiliation': []}, {'given': 'Fan', 'family': 'Yang', 'sequence': 'additional', 'affiliation': []}, {'given': 'Honghua', 'family': 'Wang', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ronggui', 'family': 'Hu', 'sequence': 'additional', 'affiliation': []}], 'member': '2026', 'published-online': {'date-parts': [[2023, 7, 6]]}, 'reference': [ { 'key': 'CITATION1', 'doi-asserted-by': 'publisher', 'first-page': '894', 'DOI': '10.1016/j.cell.2020.03.045', 'volume': '181', 'author': 'Wang Q', 'year': '2020', 'unstructured': 'Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G. Structural and ' 'functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 2020, ' '181: 894-904.', 'journal-title': 'Cell'}, { 'key': 'CITATION2', 'doi-asserted-by': 'publisher', 'first-page': '88', 'DOI': '10.1038/s41586-021-03491-6', 'volume': '594', 'author': 'Braga L', 'year': '2021', 'unstructured': 'Braga L, Ali H, Secco I, Chiavacci E, Neves G, Goldhill D, Penn R. Drugs ' 'that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia. ' 'Nature, 2021, 594: 88-93.', 'journal-title': 'Nature'}, { 'key': 'CITATION3', 'doi-asserted-by': 'crossref', 'unstructured': 'Papa G, Mallery DL, Albecka A, Welch LG, Cattin-Ortolá J, Luptak J, Paul ' 'D, et al. Furin cleavage of SARS-CoV-2 Spike ' 'promotes but is not essential for infection and cell-cell ' 'fusion. PLoS ' 'Pathogens 2021, 17: e1009246.', 'DOI': '10.1371/journal.ppat.1009246'}, { 'key': 'CITATION4', 'doi-asserted-by': 'publisher', 'first-page': 'e106267', 'DOI': '10.15252/embj.2020106267', 'volume': '39', 'author': 'Buchrieser J', 'year': '2020', 'unstructured': 'Buchrieser J, Dufloo J, Hubert M, Monel B, Planas D, Rajah MM, Planchais ' 'C. Syncytia formation by SARS‐CoV‐2‐infected cells. EMBO J, 2020, 39:', 'journal-title': 'EMBO J'}, { 'key': 'CITATION5', 'doi-asserted-by': 'publisher', 'first-page': 'e2111400119', 'DOI': '10.1073/pnas.2111400119', 'volume': '119', 'author': 'Zeng C', 'year': '2022', 'unstructured': 'Zeng C, Evans JP, King T, Zheng YM, Oltz EM, Whelan SPJ, Saif LJ. ' 'SARS-CoV-2 spreads through cell-to-cell transmission. Proc Natl Acad Sci ' 'USA, 2022, 119:', 'journal-title': 'Proc Natl Acad Sci USA'}, { 'key': 'CITATION6', 'doi-asserted-by': 'publisher', 'first-page': '1620', 'DOI': '10.1038/s41467-020-15562-9', 'volume': '11', 'author': 'Ou X', 'year': '2020', 'unstructured': 'Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L. Characterization of spike ' 'glycoprotein of SARS-CoV-2 on virus entry and its immune ' 'cross-reactivity with SARS-CoV. Nat Commun, 2020, 11:', 'journal-title': 'Nat Commun'}, { 'key': 'CITATION7', 'doi-asserted-by': 'publisher', 'first-page': '162', 'DOI': '10.1038/s41579-022-00841-7', 'volume': '21', 'author': 'Carabelli AM', 'year': '2023', 'unstructured': 'Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, de Silva TI, ' 'Peacock SJ. SARS-CoV-2 variant biology: immune escape, transmission and ' 'fitness. Nat Rev Microbiol, 2023, 21: 162-177.', 'journal-title': 'Nat Rev Microbiol'}, { 'key': 'CITATION8', 'doi-asserted-by': 'publisher', 'first-page': '693', 'DOI': '10.1038/s41586-022-04442-5', 'volume': '603', 'author': 'Shuai H', 'year': '2022', 'unstructured': 'Shuai H, Chan JFW, Hu B, Chai Y, Yuen TTT, Yin F, Huang X. Attenuated ' 'replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature, ' '2022, 603: 693-699.', 'journal-title': 'Nature'}, { 'key': 'CITATION9', 'doi-asserted-by': 'publisher', 'first-page': '1161', 'DOI': '10.1038/s41564-022-01143-7', 'volume': '7', 'author': 'Willett BJ', 'year': '2022', 'unstructured': 'Willett BJ, Grove J, MacLean OA, Wilkie C, De Lorenzo G, Furnon W, ' 'Cantoni D. SARS-CoV-2 Omicron is an immune escape variant with an ' 'altered cell entry pathway. Nat Microbiol, 2022, 7: 1161-1179.', 'journal-title': 'Nat Microbiol'}], 'container-title': 'Acta Biochimica et Biophysica Sinica', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://engine.scichina.com/doi/pdf/C0B6CFF296134A179C6D9C2CC6DD07D6', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://engine.scichina.com/doi/10.3724/abbs.2023129', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://engine.scichina.com/doi/pdf/C0B6CFF296134A179C6D9C2CC6DD07D6', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2023, 7, 7]], 'date-time': '2023-07-07T01:44:54Z', 'timestamp': 1688694294000}, 'score': 1, 'resource': {'primary': {'URL': 'https://engine.scichina.com/doi/10.3724/abbs.2023129'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2023, 7, 1]]}, 'references-count': 9, 'URL': 'http://dx.doi.org/10.3724/abbs.2023129', 'relation': {}, 'ISSN': ['1672-9145'], 'subject': ['General Medicine', 'Biochemistry', 'Biophysics', 'Molecular Biology'], 'container-title-short': 'ABBS', 'published': {'date-parts': [[2023, 7, 1]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit