All-Trans Retinoic Acid Exhibits Antiviral Effect against SARS-CoV-2 by Inhibiting 3CLpro Activity
Takeshi Morita, Kei Miyakawa, Sundararaj Stanleyraj Jeremiah, Yutaro Yamaoka, Mitsuru Sada, Tomoko Kuniyoshi, Jinwei Yang, Hirokazu Kimura, Akihide Ryo
Viruses, doi:10.3390/v13081669
The pandemic of COVID-19 caused by SARS-CoV-2 continues to spread despite the global efforts taken to control it. The 3C-like protease (3CLpro), the major protease of SARS-CoV-2, is one of the most interesting targets for antiviral drug development because it is highly conserved among SARS-CoVs and plays an important role in viral replication. Herein, we developed high throughput screening for SARS-CoV-2 3CLpro inhibitor based on AlphaScreen. We screened 91 natural product compounds and found that all-trans retinoic acid (ATRA), an FDA-approved drug, inhibited 3CLpro activity. The 3CLpro inhibitory effect of ATRA was confirmed in vitro by both immunoblotting and AlphaScreen with a 50% inhibition concentration (IC 50 ) of 24.7 ± 1.65 µM. ATRA inhibited the replication of SARS-CoV-2 in VeroE6/TMPRSS2 and Calu-3 cells, with IC 50 = 2.69 ± 0.09 µM in the former and 0.82 ± 0.01 µM in the latter. Further, we showed the anti-SARS-CoV-2 effect of ATRA on the currently circulating variants of concern (VOC); alpha, beta, gamma, and delta. These results suggest that ATRA may be considered as a potential therapeutic agent against SARS-CoV-2.
Supplementary Materials: The following are available online at https://www.mdpi.com/article/ 10.3390/v13081669/s1, Figure S1 : The comparison of FRET and AlphaScreen, Figure S2 : Graphical determination of the type pf inhibition, Figure S3 : Cytotoxicity of ATRA, Figure S4 : Protein expression in ATRA treated Calu-3 cells during SARS-CoV-2 infection, Figure S5 : Amino acid sequence alignment of 3CLpro, Table S1 : The list of compounds screened by the enzyme assay.
Conflicts of Interest: The authors declare no competing financial interest. Y.Y. is a current employee of Kanto Chemical Co., Inc. T.K. and J.Y. are a current employee of TOKIWA Phytochemical Co., Ltd.
References
Anand, Ziebuhr, Wadhwani, Mesters, Hilgenfeld, Coronavirus Main Proteinase (3CL Pro) Structure: Basis for Design of Anti-SARS Drugs, Science,
doi:10.1126/science.1085658
Chelbi-Alix, Pelicano, Retinoic Acid and Interferon Signaling cross Talk in Normal and RA-Resistant APL Cells, Leukemia,
doi:10.1038/sj.leu.2401469
Dollé, Developmental expression of retinoic acid receptors (RARs), Nucl. Recept. Signal,
doi:10.1621/nrs.07006
Du, Cooper, Chen, Lee, Rong et al., Discovery of Chebulagic Acid and Punicalagin as Novel Allosteric Inhibitors of SARS-CoV-2 3CLpro
El-Baba, Lutomski, Kantsadi, Malla, John et al., Allosteric inhibition of the SARS-CoV-2 main protease: Insights from mass spectrometry based assays, Angew. Chemie-Int. Ed,
doi:10.1002/anie.202010316
Ghosh, Chapsal, Weber, Mitsuya, Design of HIV protease inhibitors targeting protein backbone: An effective strategy for combating drug resistance, Acc. Chem. Res,
doi:10.1021/ar7001232
Glickman, Wu, Mercuri, Illy, Bowen et al., A Comparison of ALPHAScreen, TR-FRET, and TRF as Assay Methods for FXR Nuclear Receptors, J. Biomol. Screen,
doi:10.1177/108705710200700102
Hamamoto, Fukuda, Ishimura, Rumi, Kazumori et al., 9-cis retinoic acid enhances the antiviral effect of interferon on hepatitis C virus replication through increased expression of type I interferon receptor, J. Lab. Clin. Med,
doi:10.1067/mlc.2003.8
Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
Horby, Mafham, Bell, Linsell, Staplin et al., Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial, Lancet,
doi:10.1016/S0140-6736(20)32013-4
Huang, Ye, Chen, Chai, Lu et al., Use of All-Trans Retinoic Acid in the Treatment of Acute Promyelocytic Leukemia
Luo, Ross, Retinoic acid exerts dual regulatory actions on the expression and nuclear localization of interferon regulatory factor-1, Exp. Biol. Med,
doi:10.1177/153537020623100517
Maeda, Yamaguchi, Hijikata, Morita, Tanaka et al., All-trans retinoic acid attacks reverse transcriptase resulting in inhibition of HIV-1 replication, Hematology,
doi:10.1080/10245330701255130
Mark, Ghyselinck, Chambon, Function of retinoic acid receptors during embryonic development, Nucl. Recept. Signal,
doi:10.1621/nrs.07002
Matsunaga, Masaoka, Sawasaki, Morishita, Iwatani et al., A cell-free enzymatic activity assay for the evaluation of HIV-1 drug resistance to protease inhibitors, Front. Microbiol
Matsuyama, Nao, Shirato, Kawase, Saito et al., Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells,
doi:10.1073/pnas.2002589117
Mucida, Park, Kim, Turovskaya, Scott et al., Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid, Science,
doi:10.1126/science.1145697
Naoki, Arihiro, Toshiyuki, Noriko, Fumio et al., The genome landscape of the African Green Monkey kidney-derived vero cell line, DNA Res,
doi:10.1093/dnares/dsu029
Pillaiyar, Manickam, Namasivayam, Hayashi, Jung, An overview of severe acute respiratory syndromecoronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy, J. Med. Chem,
doi:10.1021/acs.jmedchem.5b01461
Sanders, Monogue, Jodlowski, Cutrell, Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review, JAMA J. Am. Med. Assoc,
doi:10.1001/jama.2020.6019
Soye, Trottier, Di Lenardo, Restori, Reichman et al., In vitro inhibition of mumps virus by retinoids, Virol. J,
doi:10.1186/1743-422X-10-337
Trott, Olson, Vina, Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem,
doi:10.1002/jcc.21334
Vuong, Khan, Fischer, Arutyunova, Lamer et al., Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication, Nat. Commun,
doi:10.1038/s41467-020-18096-2
Wang, Cao, Zhang, Yang, Liu et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res,
doi:10.1038/s41422-020-0282-0
Yamada, Sato, Sotoyama, Orba, Sawa et al., RIG-I triggers a signaling-abortive anti-SARS-CoV-2 defense in human lung cells, Nat. Immunol,
doi:10.1038/s41590-021-00942-0
Yamaguchi, Maeda, Ueda, Hijikata, Morita et al., Dichotomy of all-trans retinoic acid inducing signals for adult T-cell leukemia, Leukemia,
doi:10.1038/sj.leu.2403760
Yamaoka, Matsunaga, Jeremiah, Nishi, Miyakawa et al., Zika virus protease induces caspase-independent pyroptotic cell death by directly cleaving gasdermin D, Biochem. Biophys. Res. Commun,
doi:10.1016/j.bbrc.2020.11.023
Yamaoka, Matsuyama, Fukushi, Matsunaga, Matsushima et al., Development of monoclonal antibody and diagnostic test for Middle East respiratory syndrome coronavirus using cell-free synthesized nucleocapsid antigen, Front. Microbiol,
doi:10.3389/fmicb.2016.00509
Zhang, Lin, Sun, Curth, Drosten et al., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors, Science,
doi:10.1126/science.abb3405
Zhu, Xu, Chen, Guo, Shen et al., Identification of SARS-CoV-2 3CL protease inhibitors by a quantitative high-throughput screening, ACS Pharmacol. Transl. Sci
Zhu, Zhang, Wang, Li, Yang et al., A novel coronavirus from patients with pneumonia in China, 2019, N. Engl. J. Med,
doi:10.1056/NEJMoa2001017
{ 'indexed': {'date-parts': [[2024, 4, 1]], 'date-time': '2024-04-01T15:54:42Z', 'timestamp': 1711986882817},
'reference-count': 38,
'publisher': 'MDPI AG',
'issue': '8',
'license': [ { 'start': { 'date-parts': [[2021, 8, 23]],
'date-time': '2021-08-23T00:00:00Z',
'timestamp': 1629676800000},
'content-version': 'vor',
'delay-in-days': 0,
'URL': 'https://creativecommons.org/licenses/by/4.0/'}],
'funder': [ { 'DOI': '10.13039/100009619',
'name': 'Japan Agency for Medical Research and Development',
'doi-asserted-by': 'publisher',
'award': ['JP19fk0108110', 'JP20he0522001']}],
'content-domain': {'domain': [], 'crossmark-restriction': False},
'abstract': '<jats:p>The pandemic of COVID-19 caused by SARS-CoV-2 continues to spread despite the global '
'efforts taken to control it. The 3C-like protease (3CLpro), the major protease of SARS-CoV-2, '
'is one of the most interesting targets for antiviral drug development because it is highly '
'conserved among SARS-CoVs and plays an important role in viral replication. Herein, we '
'developed high throughput screening for SARS-CoV-2 3CLpro inhibitor based on AlphaScreen. We '
'screened 91 natural product compounds and found that all-trans retinoic acid (ATRA), an '
'FDA-approved drug, inhibited 3CLpro activity. The 3CLpro inhibitory effect of ATRA was '
'confirmed in vitro by both immunoblotting and AlphaScreen with a 50% inhibition concentration '
'(IC50) of 24.7 ± 1.65 µM. ATRA inhibited the replication of SARS-CoV-2 in VeroE6/TMPRSS2 and '
'Calu-3 cells, with IC50 = 2.69 ± 0.09 µM in the former and 0.82 ± 0.01 µM in the latter. '
'Further, we showed the anti-SARS-CoV-2 effect of ATRA on the currently circulating variants '
'of concern (VOC); alpha, beta, gamma, and delta. These results suggest that ATRA may be '
'considered as a potential therapeutic agent against SARS-CoV-2.</jats:p>',
'DOI': '10.3390/v13081669',
'type': 'journal-article',
'created': {'date-parts': [[2021, 8, 24]], 'date-time': '2021-08-24T03:19:33Z', 'timestamp': 1629775173000},
'page': '1669',
'source': 'Crossref',
'is-referenced-by-count': 18,
'title': 'All-Trans Retinoic Acid Exhibits Antiviral Effect against SARS-CoV-2 by Inhibiting 3CLpro '
'Activity',
'prefix': '10.3390',
'volume': '13',
'author': [ { 'ORCID': 'http://orcid.org/0000-0001-5109-2003',
'authenticated-orcid': False,
'given': 'Takeshi',
'family': 'Morita',
'sequence': 'first',
'affiliation': []},
{'given': 'Kei', 'family': 'Miyakawa', 'sequence': 'additional', 'affiliation': []},
{ 'given': 'Sundararaj Stanleyraj',
'family': 'Jeremiah',
'sequence': 'additional',
'affiliation': []},
{'given': 'Yutaro', 'family': 'Yamaoka', 'sequence': 'additional', 'affiliation': []},
{'given': 'Mitsuru', 'family': 'Sada', 'sequence': 'additional', 'affiliation': []},
{'given': 'Tomoko', 'family': 'Kuniyoshi', 'sequence': 'additional', 'affiliation': []},
{'given': 'Jinwei', 'family': 'Yang', 'sequence': 'additional', 'affiliation': []},
{'given': 'Hirokazu', 'family': 'Kimura', 'sequence': 'additional', 'affiliation': []},
{'given': 'Akihide', 'family': 'Ryo', 'sequence': 'additional', 'affiliation': []}],
'member': '1968',
'published-online': {'date-parts': [[2021, 8, 23]]},
'reference': [ {'key': 'ref1', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2001017'},
{'key': 'ref2', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-021-03398-2'},
{'key': 'ref3', 'doi-asserted-by': 'publisher', 'DOI': '10.1001/jama.2020.6019'},
{'key': 'ref4', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abb3405'},
{'key': 'ref5', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.1085658'},
{'key': 'ref6', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acs.jmedchem.5b01461'},
{'key': 'ref7', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-020-2223-y'},
{'key': 'ref8', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-020-18096-2'},
{'key': 'ref9', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/sj.leu.2401469'},
{'key': 'ref10', 'doi-asserted-by': 'publisher', 'DOI': '10.1067/mlc.2003.8'},
{'key': 'ref11', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0022323'},
{'key': 'ref12', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/1743-422X-10-337'},
{'key': 'ref13', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/10245330701255130'},
{'key': 'ref14', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/sj.leu.2403760'},
{'key': 'ref15', 'doi-asserted-by': 'publisher', 'DOI': '10.1177/108705710200700102'},
{'key': 'ref16', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.2002589117'},
{'key': 'ref17', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmicb.2015.01220'},
{'key': 'ref18', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.bbrc.2020.11.023'},
{'key': 'ref19', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmicb.2016.00509'},
{'key': 'ref20', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/jcc.21334'},
{ 'key': 'ref21',
'unstructured': 'Discovery of Chebulagic Acid and Punicalagin as Novel Allosteric '
'Inhibitors of SARS-CoV-2 '
'3CLprohttps://reader.elsevier.com/reader/sd/pii/S0166354221000656?token=067A519D50C243D8DB69226FA5814A6B5F535267D684F0327D013091EF027785765816A014815C1A69403D353EB45C3F&originRegion=us-east-1&originCreation=20210729065020'},
{'key': 'ref22', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acsptsci.0c00108'},
{'key': 'ref23', 'doi-asserted-by': 'publisher', 'DOI': '10.1177/153537020623100517'},
{'key': 'ref24', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/dnares/dsu029'},
{'key': 'ref25', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41422-020-0282-0'},
{ 'key': 'ref26',
'unstructured': 'SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a '
'Clinically Proven Protease '
'Inhibitorhttps://reader.elsevier.com/reader/sd/pii/S0092867420302294?token=9EBCF58606E2B75994845A858932AF32E87A4870844A01D4C9A8810584C7FC69E3D6BBAC9349F8716F2A547B5A3E5055&originRegion=us-east-1&originCreation=20210518035149'},
{'key': 'ref27', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41590-021-00942-0'},
{'key': 'ref28'},
{ 'key': 'ref29',
'series-title': 'Use of All-Trans Retinoic Acid in the Treatment of Acute Promyelocytic '
'Leukemia',
'volume': 'Volume 32',
'author': 'Huang',
'year': '1989'},
{'key': 'ref30', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/anie.202010316'},
{'key': 'ref31', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/ar7001232'},
{'key': 'ref32', 'doi-asserted-by': 'publisher', 'DOI': '10.1621/nrs.07006'},
{'key': 'ref33', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0021-9258(17)40689-2'},
{'key': 'ref34', 'doi-asserted-by': 'publisher', 'DOI': '10.1621/nrs.07002'},
{'key': 'ref35', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.1145697'},
{'key': 'ref36', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2020.104787'},
{'key': 'ref37', 'doi-asserted-by': 'publisher', 'DOI': '10.1634/theoncologist.1-5-305'},
{'key': 'ref38', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0140-6736(20)32013-4'}],
'container-title': 'Viruses',
'original-title': [],
'language': 'en',
'link': [ { 'URL': 'https://www.mdpi.com/1999-4915/13/8/1669/pdf',
'content-type': 'unspecified',
'content-version': 'vor',
'intended-application': 'similarity-checking'}],
'deposited': { 'date-parts': [[2021, 8, 25]],
'date-time': '2021-08-25T09:34:19Z',
'timestamp': 1629884059000},
'score': 1,
'resource': {'primary': {'URL': 'https://www.mdpi.com/1999-4915/13/8/1669'}},
'subtitle': [],
'short-title': [],
'issued': {'date-parts': [[2021, 8, 23]]},
'references-count': 38,
'journal-issue': {'issue': '8', 'published-online': {'date-parts': [[2021, 8]]}},
'alternative-id': ['v13081669'],
'URL': 'http://dx.doi.org/10.3390/v13081669',
'relation': {},
'ISSN': ['1999-4915'],
'subject': [],
'container-title-short': 'Viruses',
'published': {'date-parts': [[2021, 8, 23]]}}