All-Trans Retinoic Acid Exhibits Antiviral Effect against SARS-CoV-2 by Inhibiting 3CLpro Activity
Takeshi Morita, Kei Miyakawa, Sundararaj Stanleyraj Jeremiah, Yutaro Yamaoka, Mitsuru Sada, Tomoko Kuniyoshi, Jinwei Yang, Hirokazu Kimura, Akihide Ryo
Viruses, doi:10.3390/v13081669
The pandemic of COVID-19 caused by SARS-CoV-2 continues to spread despite the global efforts taken to control it. The 3C-like protease (3CLpro), the major protease of SARS-CoV-2, is one of the most interesting targets for antiviral drug development because it is highly conserved among SARS-CoVs and plays an important role in viral replication. Herein, we developed high throughput screening for SARS-CoV-2 3CLpro inhibitor based on AlphaScreen. We screened 91 natural product compounds and found that all-trans retinoic acid (ATRA), an FDA-approved drug, inhibited 3CLpro activity. The 3CLpro inhibitory effect of ATRA was confirmed in vitro by both immunoblotting and AlphaScreen with a 50% inhibition concentration (IC 50 ) of 24.7 ± 1.65 µM. ATRA inhibited the replication of SARS-CoV-2 in VeroE6/TMPRSS2 and Calu-3 cells, with IC 50 = 2.69 ± 0.09 µM in the former and 0.82 ± 0.01 µM in the latter. Further, we showed the anti-SARS-CoV-2 effect of ATRA on the currently circulating variants of concern (VOC); alpha, beta, gamma, and delta. These results suggest that ATRA may be considered as a potential therapeutic agent against SARS-CoV-2.
Supplementary Materials: The following are available online at https://www.mdpi.com/article/ 10.3390/v13081669/s1, Figure S1 : The comparison of FRET and AlphaScreen, Figure S2 : Graphical determination of the type pf inhibition, Figure S3 : Cytotoxicity of ATRA, Figure S4 : Protein expression in ATRA treated Calu-3 cells during SARS-CoV-2 infection, Figure S5 : Amino acid sequence alignment of 3CLpro, Table S1 : The list of compounds screened by the enzyme assay.
Conflicts of Interest: The authors declare no competing financial interest. Y.Y. is a current employee of Kanto Chemical Co., Inc. T.K. and J.Y. are a current employee of TOKIWA Phytochemical Co., Ltd.
References
Anand, Ziebuhr, Wadhwani, Mesters, Hilgenfeld, Coronavirus Main Proteinase (3CL Pro) Structure: Basis for Design of Anti-SARS Drugs, Science,
doi:10.1126/science.1085658
Chelbi-Alix, Pelicano, Retinoic Acid and Interferon Signaling cross Talk in Normal and RA-Resistant APL Cells, Leukemia,
doi:10.1038/sj.leu.2401469
Dollé, Developmental expression of retinoic acid receptors (RARs), Nucl. Recept. Signal,
doi:10.1621/nrs.07006
Du, Cooper, Chen, Lee, Rong et al., Discovery of Chebulagic Acid and Punicalagin as Novel Allosteric Inhibitors of SARS-CoV-2 3CLpro
El-Baba, Lutomski, Kantsadi, Malla, John et al., Allosteric inhibition of the SARS-CoV-2 main protease: Insights from mass spectrometry based assays, Angew. Chemie-Int. Ed,
doi:10.1002/anie.202010316
Ghosh, Chapsal, Weber, Mitsuya, Design of HIV protease inhibitors targeting protein backbone: An effective strategy for combating drug resistance, Acc. Chem. Res,
doi:10.1021/ar7001232
Glickman, Wu, Mercuri, Illy, Bowen et al., A Comparison of ALPHAScreen, TR-FRET, and TRF as Assay Methods for FXR Nuclear Receptors, J. Biomol. Screen,
doi:10.1177/108705710200700102
Hamamoto, Fukuda, Ishimura, Rumi, Kazumori et al., 9-cis retinoic acid enhances the antiviral effect of interferon on hepatitis C virus replication through increased expression of type I interferon receptor, J. Lab. Clin. Med,
doi:10.1067/mlc.2003.8
Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
Horby, Mafham, Bell, Linsell, Staplin et al., Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial, Lancet,
doi:10.1016/S0140-6736(20)32013-4
Huang, Ye, Chen, Chai, Lu et al., Use of All-Trans Retinoic Acid in the Treatment of Acute Promyelocytic Leukemia
Luo, Ross, Retinoic acid exerts dual regulatory actions on the expression and nuclear localization of interferon regulatory factor-1, Exp. Biol. Med,
doi:10.1177/153537020623100517
Maeda, Yamaguchi, Hijikata, Morita, Tanaka et al., All-trans retinoic acid attacks reverse transcriptase resulting in inhibition of HIV-1 replication, Hematology,
doi:10.1080/10245330701255130
Mark, Ghyselinck, Chambon, Function of retinoic acid receptors during embryonic development, Nucl. Recept. Signal,
doi:10.1621/nrs.07002
Matsunaga, Masaoka, Sawasaki, Morishita, Iwatani et al., A cell-free enzymatic activity assay for the evaluation of HIV-1 drug resistance to protease inhibitors, Front. Microbiol
Matsuyama, Nao, Shirato, Kawase, Saito et al., Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells,
doi:10.1073/pnas.2002589117
Mucida, Park, Kim, Turovskaya, Scott et al., Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid, Science,
doi:10.1126/science.1145697
Naoki, Arihiro, Toshiyuki, Noriko, Fumio et al., The genome landscape of the African Green Monkey kidney-derived vero cell line, DNA Res,
doi:10.1093/dnares/dsu029
Pillaiyar, Manickam, Namasivayam, Hayashi, Jung, An overview of severe acute respiratory syndromecoronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy, J. Med. Chem,
doi:10.1021/acs.jmedchem.5b01461
Sanders, Monogue, Jodlowski, Cutrell, Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review, JAMA J. Am. Med. Assoc,
doi:10.1001/jama.2020.6019
Soye, Trottier, Di Lenardo, Restori, Reichman et al., In vitro inhibition of mumps virus by retinoids, Virol. J,
doi:10.1186/1743-422X-10-337
Trott, Olson, Vina, Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem,
doi:10.1002/jcc.21334
Vuong, Khan, Fischer, Arutyunova, Lamer et al., Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication, Nat. Commun,
doi:10.1038/s41467-020-18096-2
Wang, Cao, Zhang, Yang, Liu et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res,
doi:10.1038/s41422-020-0282-0
Yamada, Sato, Sotoyama, Orba, Sawa et al., RIG-I triggers a signaling-abortive anti-SARS-CoV-2 defense in human lung cells, Nat. Immunol,
doi:10.1038/s41590-021-00942-0
Yamaguchi, Maeda, Ueda, Hijikata, Morita et al., Dichotomy of all-trans retinoic acid inducing signals for adult T-cell leukemia, Leukemia,
doi:10.1038/sj.leu.2403760
Yamaoka, Matsunaga, Jeremiah, Nishi, Miyakawa et al., Zika virus protease induces caspase-independent pyroptotic cell death by directly cleaving gasdermin D, Biochem. Biophys. Res. Commun,
doi:10.1016/j.bbrc.2020.11.023
Yamaoka, Matsuyama, Fukushi, Matsunaga, Matsushima et al., Development of monoclonal antibody and diagnostic test for Middle East respiratory syndrome coronavirus using cell-free synthesized nucleocapsid antigen, Front. Microbiol,
doi:10.3389/fmicb.2016.00509
Zhang, Lin, Sun, Curth, Drosten et al., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors, Science,
doi:10.1126/science.abb3405
Zhu, Xu, Chen, Guo, Shen et al., Identification of SARS-CoV-2 3CL protease inhibitors by a quantitative high-throughput screening, ACS Pharmacol. Transl. Sci
Zhu, Zhang, Wang, Li, Yang et al., A novel coronavirus from patients with pneumonia in China, 2019, N. Engl. J. Med,
doi:10.1056/NEJMoa2001017
DOI record:
{
"DOI": "10.3390/v13081669",
"ISSN": [
"1999-4915"
],
"URL": "http://dx.doi.org/10.3390/v13081669",
"abstract": "<jats:p>The pandemic of COVID-19 caused by SARS-CoV-2 continues to spread despite the global efforts taken to control it. The 3C-like protease (3CLpro), the major protease of SARS-CoV-2, is one of the most interesting targets for antiviral drug development because it is highly conserved among SARS-CoVs and plays an important role in viral replication. Herein, we developed high throughput screening for SARS-CoV-2 3CLpro inhibitor based on AlphaScreen. We screened 91 natural product compounds and found that all-trans retinoic acid (ATRA), an FDA-approved drug, inhibited 3CLpro activity. The 3CLpro inhibitory effect of ATRA was confirmed in vitro by both immunoblotting and AlphaScreen with a 50% inhibition concentration (IC50) of 24.7 ± 1.65 µM. ATRA inhibited the replication of SARS-CoV-2 in VeroE6/TMPRSS2 and Calu-3 cells, with IC50 = 2.69 ± 0.09 µM in the former and 0.82 ± 0.01 µM in the latter. Further, we showed the anti-SARS-CoV-2 effect of ATRA on the currently circulating variants of concern (VOC); alpha, beta, gamma, and delta. These results suggest that ATRA may be considered as a potential therapeutic agent against SARS-CoV-2.</jats:p>",
"alternative-id": [
"v13081669"
],
"author": [
{
"ORCID": "http://orcid.org/0000-0001-5109-2003",
"affiliation": [],
"authenticated-orcid": false,
"family": "Morita",
"given": "Takeshi",
"sequence": "first"
},
{
"affiliation": [],
"family": "Miyakawa",
"given": "Kei",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Jeremiah",
"given": "Sundararaj Stanleyraj",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Yamaoka",
"given": "Yutaro",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Sada",
"given": "Mitsuru",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Kuniyoshi",
"given": "Tomoko",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Yang",
"given": "Jinwei",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Kimura",
"given": "Hirokazu",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Ryo",
"given": "Akihide",
"sequence": "additional"
}
],
"container-title": "Viruses",
"container-title-short": "Viruses",
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2021,
8,
24
]
],
"date-time": "2021-08-24T03:19:33Z",
"timestamp": 1629775173000
},
"deposited": {
"date-parts": [
[
2021,
8,
25
]
],
"date-time": "2021-08-25T09:34:19Z",
"timestamp": 1629884059000
},
"funder": [
{
"DOI": "10.13039/100009619",
"award": [
"JP19fk0108110",
"JP20he0522001"
],
"doi-asserted-by": "publisher",
"name": "Japan Agency for Medical Research and Development"
}
],
"indexed": {
"date-parts": [
[
2024,
4,
1
]
],
"date-time": "2024-04-01T15:54:42Z",
"timestamp": 1711986882817
},
"is-referenced-by-count": 18,
"issue": "8",
"issued": {
"date-parts": [
[
2021,
8,
23
]
]
},
"journal-issue": {
"issue": "8",
"published-online": {
"date-parts": [
[
2021,
8
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2021,
8,
23
]
],
"date-time": "2021-08-23T00:00:00Z",
"timestamp": 1629676800000
}
}
],
"link": [
{
"URL": "https://www.mdpi.com/1999-4915/13/8/1669/pdf",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "1968",
"original-title": [],
"page": "1669",
"prefix": "10.3390",
"published": {
"date-parts": [
[
2021,
8,
23
]
]
},
"published-online": {
"date-parts": [
[
2021,
8,
23
]
]
},
"publisher": "MDPI AG",
"reference": [
{
"DOI": "10.1056/NEJMoa2001017",
"doi-asserted-by": "publisher",
"key": "ref1"
},
{
"DOI": "10.1038/s41586-021-03398-2",
"doi-asserted-by": "publisher",
"key": "ref2"
},
{
"DOI": "10.1001/jama.2020.6019",
"doi-asserted-by": "publisher",
"key": "ref3"
},
{
"DOI": "10.1126/science.abb3405",
"doi-asserted-by": "publisher",
"key": "ref4"
},
{
"DOI": "10.1126/science.1085658",
"doi-asserted-by": "publisher",
"key": "ref5"
},
{
"DOI": "10.1021/acs.jmedchem.5b01461",
"doi-asserted-by": "publisher",
"key": "ref6"
},
{
"DOI": "10.1038/s41586-020-2223-y",
"doi-asserted-by": "publisher",
"key": "ref7"
},
{
"DOI": "10.1038/s41467-020-18096-2",
"doi-asserted-by": "publisher",
"key": "ref8"
},
{
"DOI": "10.1038/sj.leu.2401469",
"doi-asserted-by": "publisher",
"key": "ref9"
},
{
"DOI": "10.1067/mlc.2003.8",
"doi-asserted-by": "publisher",
"key": "ref10"
},
{
"DOI": "10.1371/journal.pone.0022323",
"doi-asserted-by": "publisher",
"key": "ref11"
},
{
"DOI": "10.1186/1743-422X-10-337",
"doi-asserted-by": "publisher",
"key": "ref12"
},
{
"DOI": "10.1080/10245330701255130",
"doi-asserted-by": "publisher",
"key": "ref13"
},
{
"DOI": "10.1038/sj.leu.2403760",
"doi-asserted-by": "publisher",
"key": "ref14"
},
{
"DOI": "10.1177/108705710200700102",
"doi-asserted-by": "publisher",
"key": "ref15"
},
{
"DOI": "10.1073/pnas.2002589117",
"doi-asserted-by": "publisher",
"key": "ref16"
},
{
"DOI": "10.3389/fmicb.2015.01220",
"doi-asserted-by": "publisher",
"key": "ref17"
},
{
"DOI": "10.1016/j.bbrc.2020.11.023",
"doi-asserted-by": "publisher",
"key": "ref18"
},
{
"DOI": "10.3389/fmicb.2016.00509",
"doi-asserted-by": "publisher",
"key": "ref19"
},
{
"DOI": "10.1002/jcc.21334",
"doi-asserted-by": "publisher",
"key": "ref20"
},
{
"key": "ref21",
"unstructured": "Discovery of Chebulagic Acid and Punicalagin as Novel Allosteric Inhibitors of SARS-CoV-2 3CLprohttps://reader.elsevier.com/reader/sd/pii/S0166354221000656?token=067A519D50C243D8DB69226FA5814A6B5F535267D684F0327D013091EF027785765816A014815C1A69403D353EB45C3F&originRegion=us-east-1&originCreation=20210729065020"
},
{
"DOI": "10.1021/acsptsci.0c00108",
"doi-asserted-by": "publisher",
"key": "ref22"
},
{
"DOI": "10.1177/153537020623100517",
"doi-asserted-by": "publisher",
"key": "ref23"
},
{
"DOI": "10.1093/dnares/dsu029",
"doi-asserted-by": "publisher",
"key": "ref24"
},
{
"DOI": "10.1038/s41422-020-0282-0",
"doi-asserted-by": "publisher",
"key": "ref25"
},
{
"key": "ref26",
"unstructured": "SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitorhttps://reader.elsevier.com/reader/sd/pii/S0092867420302294?token=9EBCF58606E2B75994845A858932AF32E87A4870844A01D4C9A8810584C7FC69E3D6BBAC9349F8716F2A547B5A3E5055&originRegion=us-east-1&originCreation=20210518035149"
},
{
"DOI": "10.1038/s41590-021-00942-0",
"doi-asserted-by": "publisher",
"key": "ref27"
},
{
"key": "ref28"
},
{
"author": "Huang",
"key": "ref29",
"series-title": "Use of All-Trans Retinoic Acid in the Treatment of Acute Promyelocytic Leukemia",
"volume": "Volume 32",
"year": "1989"
},
{
"DOI": "10.1002/anie.202010316",
"doi-asserted-by": "publisher",
"key": "ref30"
},
{
"DOI": "10.1021/ar7001232",
"doi-asserted-by": "publisher",
"key": "ref31"
},
{
"DOI": "10.1621/nrs.07006",
"doi-asserted-by": "publisher",
"key": "ref32"
},
{
"DOI": "10.1016/S0021-9258(17)40689-2",
"doi-asserted-by": "publisher",
"key": "ref33"
},
{
"DOI": "10.1621/nrs.07002",
"doi-asserted-by": "publisher",
"key": "ref34"
},
{
"DOI": "10.1126/science.1145697",
"doi-asserted-by": "publisher",
"key": "ref35"
},
{
"DOI": "10.1016/j.antiviral.2020.104787",
"doi-asserted-by": "publisher",
"key": "ref36"
},
{
"DOI": "10.1634/theoncologist.1-5-305",
"doi-asserted-by": "publisher",
"key": "ref37"
},
{
"DOI": "10.1016/S0140-6736(20)32013-4",
"doi-asserted-by": "publisher",
"key": "ref38"
}
],
"reference-count": 38,
"references-count": 38,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.mdpi.com/1999-4915/13/8/1669"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "All-Trans Retinoic Acid Exhibits Antiviral Effect against SARS-CoV-2 by Inhibiting 3CLpro Activity",
"type": "journal-article",
"volume": "13"
}