Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchVitamin AVitamin A (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

All-Trans Retinoic Acid Exhibits Antiviral Effect against SARS-CoV-2 by Inhibiting 3CLpro Activity

Morita et al., Viruses, doi:10.3390/v13081669
Aug 2021  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Vitamin A for COVID-19
42nd treatment shown to reduce risk in June 2023, now with p = 0.021 from 14 studies.
Lower risk for recovery and cases.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
In Vitro and In Silico study showing that all-trans retinoic acid is a potent SARS-CoV-2 3CLpro inhibitor, inhibits SARS-CoV-2 replication in VeroE6/TMPRSS2 cells, and is effective against alpha, beta, gamma, and delta variants in Calu-3 cells.
10 preclinical studies support the efficacy of vitamin A for COVID-19:
Vitamin A has been identified by the European Food Safety Authority (EFSA) as having sufficient evidence for a causal relationship between intake and optimal immune system function10-12. Vitamin A has potent antiviral activity against SARS-CoV-2 in both human cell lines and human organoids of the lower respiratory tract (active metabolite all-trans retinoic acid, ATRA)7, is predicted to bind critical host and viral proteins for SARS-CoV-2 and may compensate for gene expression changes related to SARS-CoV-21-3, may be beneficial for COVID-19 via antiviral, anti-inflammatory, and immunomodulatory effects according to network pharmacology analysis4, reduces barrier compromise caused by TNF-α in Calu-3 cells6, inhibits mouse coronavirus replication9, may stimulate innate immunity by activating interferon responses in an IRF3-dependent manner (ATRA)9, may reduce excessive inflammation induced by SARS-CoV-21, shows SARS-CoV-2 antiviral activity In Vitro1,5,8, is effective against multiple SARS-CoV-2 variants in Calu-3 cells8, and inhibits the entry and replication of SARS-CoV-2 via binding to ACE2 / 3CLpro / RdRp / helicase / 3′-to-5′ exonuclease1.
Morita et al., 23 Aug 2021, peer-reviewed, 9 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperVitamin AAll
All-Trans Retinoic Acid Exhibits Antiviral Effect against SARS-CoV-2 by Inhibiting 3CLpro Activity
Takeshi Morita, Kei Miyakawa, Sundararaj Stanleyraj Jeremiah, Yutaro Yamaoka, Mitsuru Sada, Tomoko Kuniyoshi, Jinwei Yang, Hirokazu Kimura, Akihide Ryo
Viruses, doi:10.3390/v13081669
The pandemic of COVID-19 caused by SARS-CoV-2 continues to spread despite the global efforts taken to control it. The 3C-like protease (3CLpro), the major protease of SARS-CoV-2, is one of the most interesting targets for antiviral drug development because it is highly conserved among SARS-CoVs and plays an important role in viral replication. Herein, we developed high throughput screening for SARS-CoV-2 3CLpro inhibitor based on AlphaScreen. We screened 91 natural product compounds and found that all-trans retinoic acid (ATRA), an FDA-approved drug, inhibited 3CLpro activity. The 3CLpro inhibitory effect of ATRA was confirmed in vitro by both immunoblotting and AlphaScreen with a 50% inhibition concentration (IC 50 ) of 24.7 ± 1.65 µM. ATRA inhibited the replication of SARS-CoV-2 in VeroE6/TMPRSS2 and Calu-3 cells, with IC 50 = 2.69 ± 0.09 µM in the former and 0.82 ± 0.01 µM in the latter. Further, we showed the anti-SARS-CoV-2 effect of ATRA on the currently circulating variants of concern (VOC); alpha, beta, gamma, and delta. These results suggest that ATRA may be considered as a potential therapeutic agent against SARS-CoV-2.
Supplementary Materials: The following are available online at https://www.mdpi.com/article/ 10.3390/v13081669/s1, Figure S1 : The comparison of FRET and AlphaScreen, Figure S2 : Graphical determination of the type pf inhibition, Figure S3 : Cytotoxicity of ATRA, Figure S4 : Protein expression in ATRA treated Calu-3 cells during SARS-CoV-2 infection, Figure S5 : Amino acid sequence alignment of 3CLpro, Table S1 : The list of compounds screened by the enzyme assay. Conflicts of Interest: The authors declare no competing financial interest. Y.Y. is a current employee of Kanto Chemical Co., Inc. T.K. and J.Y. are a current employee of TOKIWA Phytochemical Co., Ltd.
References
Adamson, All-trans-retinoic acid pharmacology and its impact on the treatment of acute promyelocytic leukemia, Oncologist, doi:10.1634/theoncologist.1-5-305
Anand, Ziebuhr, Wadhwani, Mesters, Hilgenfeld, Coronavirus Main Proteinase (3CL Pro) Structure: Basis for Design of Anti-SARS Drugs, Science, doi:10.1126/science.1085658
Caly, Druce, Catton, Jans, Wagstaff, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antivir. Res, doi:10.1016/j.antiviral.2020.104787
Chelbi-Alix, Pelicano, Retinoic Acid and Interferon Signaling cross Talk in Normal and RA-Resistant APL Cells, Leukemia, doi:10.1038/sj.leu.2401469
Dollé, Developmental expression of retinoic acid receptors (RARs), Nucl. Recept. Signal, doi:10.1621/nrs.07006
Du, Cooper, Chen, Lee, Rong et al., Discovery of Chebulagic Acid and Punicalagin as Novel Allosteric Inhibitors of SARS-CoV-2 3CLpro
El-Baba, Lutomski, Kantsadi, Malla, John et al., Allosteric inhibition of the SARS-CoV-2 main protease: Insights from mass spectrometry based assays, Angew. Chemie-Int. Ed, doi:10.1002/anie.202010316
Ghosh, Chapsal, Weber, Mitsuya, Design of HIV protease inhibitors targeting protein backbone: An effective strategy for combating drug resistance, Acc. Chem. Res, doi:10.1021/ar7001232
Glickman, Wu, Mercuri, Illy, Bowen et al., A Comparison of ALPHAScreen, TR-FRET, and TRF as Assay Methods for FXR Nuclear Receptors, J. Biomol. Screen, doi:10.1177/108705710200700102
Gudas, Retinoids and vertebrate development, J. Biol. Chem, doi:10.1016/S0021-9258(17)40689-2
Hamamoto, Fukuda, Ishimura, Rumi, Kazumori et al., 9-cis retinoic acid enhances the antiviral effect of interferon on hepatitis C virus replication through increased expression of type I interferon receptor, J. Lab. Clin. Med, doi:10.1067/mlc.2003.8
Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
Horby, Mafham, Bell, Linsell, Staplin et al., Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial, Lancet, doi:10.1016/S0140-6736(20)32013-4
Huang, Ye, Chen, Chai, Lu et al., Use of All-Trans Retinoic Acid in the Treatment of Acute Promyelocytic Leukemia
Jin, Du, Xu, Deng, Liu et al., Structure of M pro from SARS-CoV-2 and discovery of its inhibitors, Nature, doi:10.1038/s41586-020-2223-y
Luo, Ross, Retinoic acid exerts dual regulatory actions on the expression and nuclear localization of interferon regulatory factor-1, Exp. Biol. Med, doi:10.1177/153537020623100517
Maeda, Yamaguchi, Hijikata, Morita, Tanaka et al., All-trans retinoic acid attacks reverse transcriptase resulting in inhibition of HIV-1 replication, Hematology, doi:10.1080/10245330701255130
Mark, Ghyselinck, Chambon, Function of retinoic acid receptors during embryonic development, Nucl. Recept. Signal, doi:10.1621/nrs.07002
Matsunaga, Masaoka, Sawasaki, Morishita, Iwatani et al., A cell-free enzymatic activity assay for the evaluation of HIV-1 drug resistance to protease inhibitors, Front. Microbiol
Matsuyama, Nao, Shirato, Kawase, Saito et al., Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells, doi:10.1073/pnas.2002589117
Mucida, Park, Kim, Turovskaya, Scott et al., Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid, Science, doi:10.1126/science.1145697
Naoki, Arihiro, Toshiyuki, Noriko, Fumio et al., The genome landscape of the African Green Monkey kidney-derived vero cell line, DNA Res, doi:10.1093/dnares/dsu029
Pillaiyar, Manickam, Namasivayam, Hayashi, Jung, An overview of severe acute respiratory syndromecoronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy, J. Med. Chem, doi:10.1021/acs.jmedchem.5b01461
Sanders, Monogue, Jodlowski, Cutrell, Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review, JAMA J. Am. Med. Assoc, doi:10.1001/jama.2020.6019
Soye, Trottier, Di Lenardo, Restori, Reichman et al., In vitro inhibition of mumps virus by retinoids, Virol. J, doi:10.1186/1743-422X-10-337
Soye, Trottier, Richardson, Ward, Miller, RIG-I is required for the inhibition of measles virus by retinoids, PLoS ONE, doi:10.1371/journal.pone.0022323
Trott, Olson, Vina, Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem, doi:10.1002/jcc.21334
Vuong, Khan, Fischer, Arutyunova, Lamer et al., Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication, Nat. Commun, doi:10.1038/s41467-020-18096-2
Wang, Cao, Zhang, Yang, Liu et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res, doi:10.1038/s41422-020-0282-0
Wang, Nair, Liu, Iketani, Luo et al., Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7, Nature, doi:10.1038/s41586-021-03398-2
Yamada, Sato, Sotoyama, Orba, Sawa et al., RIG-I triggers a signaling-abortive anti-SARS-CoV-2 defense in human lung cells, Nat. Immunol, doi:10.1038/s41590-021-00942-0
Yamaguchi, Maeda, Ueda, Hijikata, Morita et al., Dichotomy of all-trans retinoic acid inducing signals for adult T-cell leukemia, Leukemia, doi:10.1038/sj.leu.2403760
Yamaoka, Matsunaga, Jeremiah, Nishi, Miyakawa et al., Zika virus protease induces caspase-independent pyroptotic cell death by directly cleaving gasdermin D, Biochem. Biophys. Res. Commun, doi:10.1016/j.bbrc.2020.11.023
Yamaoka, Matsuyama, Fukushi, Matsunaga, Matsushima et al., Development of monoclonal antibody and diagnostic test for Middle East respiratory syndrome coronavirus using cell-free synthesized nucleocapsid antigen, Front. Microbiol, doi:10.3389/fmicb.2016.00509
Zhang, Lin, Sun, Curth, Drosten et al., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors, Science, doi:10.1126/science.abb3405
Zhu, Xu, Chen, Guo, Shen et al., Identification of SARS-CoV-2 3CL protease inhibitors by a quantitative high-throughput screening, ACS Pharmacol. Transl. Sci
Zhu, Zhang, Wang, Li, Yang et al., A novel coronavirus from patients with pneumonia in China, 2019, N. Engl. J. Med, doi:10.1056/NEJMoa2001017
{ 'indexed': {'date-parts': [[2024, 4, 1]], 'date-time': '2024-04-01T15:54:42Z', 'timestamp': 1711986882817}, 'reference-count': 38, 'publisher': 'MDPI AG', 'issue': '8', 'license': [ { 'start': { 'date-parts': [[2021, 8, 23]], 'date-time': '2021-08-23T00:00:00Z', 'timestamp': 1629676800000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0/'}], 'funder': [ { 'DOI': '10.13039/100009619', 'name': 'Japan Agency for Medical Research and Development', 'doi-asserted-by': 'publisher', 'award': ['JP19fk0108110', 'JP20he0522001']}], 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'abstract': '<jats:p>The pandemic of COVID-19 caused by SARS-CoV-2 continues to spread despite the global ' 'efforts taken to control it. The 3C-like protease (3CLpro), the major protease of SARS-CoV-2, ' 'is one of the most interesting targets for antiviral drug development because it is highly ' 'conserved among SARS-CoVs and plays an important role in viral replication. Herein, we ' 'developed high throughput screening for SARS-CoV-2 3CLpro inhibitor based on AlphaScreen. We ' 'screened 91 natural product compounds and found that all-trans retinoic acid (ATRA), an ' 'FDA-approved drug, inhibited 3CLpro activity. The 3CLpro inhibitory effect of ATRA was ' 'confirmed in vitro by both immunoblotting and AlphaScreen with a 50% inhibition concentration ' '(IC50) of 24.7 ± 1.65 µM. ATRA inhibited the replication of SARS-CoV-2 in VeroE6/TMPRSS2 and ' 'Calu-3 cells, with IC50 = 2.69 ± 0.09 µM in the former and 0.82 ± 0.01 µM in the latter. ' 'Further, we showed the anti-SARS-CoV-2 effect of ATRA on the currently circulating variants ' 'of concern (VOC); alpha, beta, gamma, and delta. These results suggest that ATRA may be ' 'considered as a potential therapeutic agent against SARS-CoV-2.</jats:p>', 'DOI': '10.3390/v13081669', 'type': 'journal-article', 'created': {'date-parts': [[2021, 8, 24]], 'date-time': '2021-08-24T03:19:33Z', 'timestamp': 1629775173000}, 'page': '1669', 'source': 'Crossref', 'is-referenced-by-count': 18, 'title': 'All-Trans Retinoic Acid Exhibits Antiviral Effect against SARS-CoV-2 by Inhibiting 3CLpro ' 'Activity', 'prefix': '10.3390', 'volume': '13', 'author': [ { 'ORCID': 'http://orcid.org/0000-0001-5109-2003', 'authenticated-orcid': False, 'given': 'Takeshi', 'family': 'Morita', 'sequence': 'first', 'affiliation': []}, {'given': 'Kei', 'family': 'Miyakawa', 'sequence': 'additional', 'affiliation': []}, { 'given': 'Sundararaj Stanleyraj', 'family': 'Jeremiah', 'sequence': 'additional', 'affiliation': []}, {'given': 'Yutaro', 'family': 'Yamaoka', 'sequence': 'additional', 'affiliation': []}, {'given': 'Mitsuru', 'family': 'Sada', 'sequence': 'additional', 'affiliation': []}, {'given': 'Tomoko', 'family': 'Kuniyoshi', 'sequence': 'additional', 'affiliation': []}, {'given': 'Jinwei', 'family': 'Yang', 'sequence': 'additional', 'affiliation': []}, {'given': 'Hirokazu', 'family': 'Kimura', 'sequence': 'additional', 'affiliation': []}, {'given': 'Akihide', 'family': 'Ryo', 'sequence': 'additional', 'affiliation': []}], 'member': '1968', 'published-online': {'date-parts': [[2021, 8, 23]]}, 'reference': [ {'key': 'ref1', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2001017'}, {'key': 'ref2', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-021-03398-2'}, {'key': 'ref3', 'doi-asserted-by': 'publisher', 'DOI': '10.1001/jama.2020.6019'}, {'key': 'ref4', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abb3405'}, {'key': 'ref5', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.1085658'}, {'key': 'ref6', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acs.jmedchem.5b01461'}, {'key': 'ref7', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-020-2223-y'}, {'key': 'ref8', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-020-18096-2'}, {'key': 'ref9', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/sj.leu.2401469'}, {'key': 'ref10', 'doi-asserted-by': 'publisher', 'DOI': '10.1067/mlc.2003.8'}, {'key': 'ref11', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0022323'}, {'key': 'ref12', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/1743-422X-10-337'}, {'key': 'ref13', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/10245330701255130'}, {'key': 'ref14', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/sj.leu.2403760'}, {'key': 'ref15', 'doi-asserted-by': 'publisher', 'DOI': '10.1177/108705710200700102'}, {'key': 'ref16', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.2002589117'}, {'key': 'ref17', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmicb.2015.01220'}, {'key': 'ref18', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.bbrc.2020.11.023'}, {'key': 'ref19', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmicb.2016.00509'}, {'key': 'ref20', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/jcc.21334'}, { 'key': 'ref21', 'unstructured': 'Discovery of Chebulagic Acid and Punicalagin as Novel Allosteric ' 'Inhibitors of SARS-CoV-2 ' '3CLprohttps://reader.elsevier.com/reader/sd/pii/S0166354221000656?token=067A519D50C243D8DB69226FA5814A6B5F535267D684F0327D013091EF027785765816A014815C1A69403D353EB45C3F&originRegion=us-east-1&originCreation=20210729065020'}, {'key': 'ref22', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acsptsci.0c00108'}, {'key': 'ref23', 'doi-asserted-by': 'publisher', 'DOI': '10.1177/153537020623100517'}, {'key': 'ref24', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/dnares/dsu029'}, {'key': 'ref25', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41422-020-0282-0'}, { 'key': 'ref26', 'unstructured': 'SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a ' 'Clinically Proven Protease ' 'Inhibitorhttps://reader.elsevier.com/reader/sd/pii/S0092867420302294?token=9EBCF58606E2B75994845A858932AF32E87A4870844A01D4C9A8810584C7FC69E3D6BBAC9349F8716F2A547B5A3E5055&originRegion=us-east-1&originCreation=20210518035149'}, {'key': 'ref27', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41590-021-00942-0'}, {'key': 'ref28'}, { 'key': 'ref29', 'series-title': 'Use of All-Trans Retinoic Acid in the Treatment of Acute Promyelocytic ' 'Leukemia', 'volume': 'Volume 32', 'author': 'Huang', 'year': '1989'}, {'key': 'ref30', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/anie.202010316'}, {'key': 'ref31', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/ar7001232'}, {'key': 'ref32', 'doi-asserted-by': 'publisher', 'DOI': '10.1621/nrs.07006'}, {'key': 'ref33', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0021-9258(17)40689-2'}, {'key': 'ref34', 'doi-asserted-by': 'publisher', 'DOI': '10.1621/nrs.07002'}, {'key': 'ref35', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.1145697'}, {'key': 'ref36', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2020.104787'}, {'key': 'ref37', 'doi-asserted-by': 'publisher', 'DOI': '10.1634/theoncologist.1-5-305'}, {'key': 'ref38', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0140-6736(20)32013-4'}], 'container-title': 'Viruses', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.mdpi.com/1999-4915/13/8/1669/pdf', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2021, 8, 25]], 'date-time': '2021-08-25T09:34:19Z', 'timestamp': 1629884059000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.mdpi.com/1999-4915/13/8/1669'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2021, 8, 23]]}, 'references-count': 38, 'journal-issue': {'issue': '8', 'published-online': {'date-parts': [[2021, 8]]}}, 'alternative-id': ['v13081669'], 'URL': 'http://dx.doi.org/10.3390/v13081669', 'relation': {}, 'ISSN': ['1999-4915'], 'subject': [], 'container-title-short': 'Viruses', 'published': {'date-parts': [[2021, 8, 23]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit