Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchPropolisPropolis (more..)
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

 

An In Silico Investigation of Brazilian Green Propolis Extracts as Potential Treatment for COVID-19

Ferreira Júnior et al., ACS Omega, doi:10.1021/acsomega.5c02121, Aug 2025
https://c19early.org/ferreirajunior.html
In Silico study showing that Brazilian green propolis extracts demonstrate potential anti-COVID-19 activity through binding to SARS-CoV-2 proteins and anti-inflammatory effects.
12 preclinical studies support the efficacy of propolis for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2 with propolis or metabolites via binding to the spikeA,1,2, MproB,2, RNA-dependent RNA polymeraseC,1,2, PLproD,1, ACE2E,6, and TMPRSS2F,6 proteins. In Vitro studies demonstrate inhibition of the ACE2E,6 and TMPRSS2F,6 proteins. Propolis may inhibit spike protein and ACE2 interaction8, may inhibit SARS-CoV-2 through interactions with MAPK15, inhibited SARS-CoV-2 in Vero E6 cells at a concentration comparable to a combination of four antiviral components9, may mitigate hyperinflammation via STAT1, NOS2, and BTK targeting3, may inhibit SARS-CoV-2 entry by interfering with ACE2/TMPRSS2 interaction7, components of propolis show ACE2 downregulation in human cells6, modulates inflammatory responses by reducing pro-inflammatory cytokines IL-1β, IL-6, and TNF-α7, and may suppress Epstein-Barr Virus reactivation3.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
Ferreira Júnior et al., 5 Aug 2025, peer-reviewed, 11 authors. Contact: angelaleao@ufop.edu.br.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
An In Silico Investigation of Brazilian Green Propolis Extracts as Potential Treatment for COVID-19
Jeronimo Geraldo Ferreira Júnior, Janaína Brandão Seibert, Viviane Martins Rebello Dos Santos, Lucas Resende Dutra Sousa, Tatiane Roquete Amparo, Vagner Thalita Marcolan Valverde, Vagner Rodrigues Santos, Junnia Alvarenga De Carvalho Oliveira, Paula Melo De Abreu Vieira, Vagner De Oliveira Machado, Ângela Leão Andrade
ACS Omega, doi:10.1021/acsomega.5c02121
The absence of a specific antiviral treatment for the highly virulent and lethal coronavirus disease 2019 (Covid-19) remains a significant challenge. The potential of natural agents with immunepromotion capabilities, including apitherapy products, is being investigated as a potential therapeutic modality. Propolis is characterized by a high concentration of bioactive compounds, which exhibit significant antimicrobial, bactericidal, antiviral, anti-inflammatory, immunomodulatory, and antioxidant properties. This study investigated the potential of ethanolic extracts of Brazilian green propolis for COVID-19 treatment. Propolis extracts were obtained at room (EEPV-F) and under 70 °C-heat (EEPV-Q) temperatures, and the extraction yields were 36.74% and 53.54%, respectively. Total flavonoid contents (10.6 ± 0.9 and 6.6 ± 0.2 mg QE g -1 ), total phenolic compounds (44 ± 2 and 66 ± 3 mg GAE g -1 ), and antioxidant capacity by DPPH (IC 50 values of 18.0 ± 0.3 and 16.6 ± 0.5 μg mL -1 ) and ABTS (IC 50 values of 16.6 ± 0.02 and 15.3 ± 0.2 μg mL -1 ) assays were determined. The extracts were not cytotoxic to RAW 264.7 macrophages and exhibited dosedependent anti-inflammatory activity, particularly EEPV-Q. All EEPV-Q concentrations significantly reduced nitric oxide production and demonstrated suitability for further investigation. Molecular docking analysis revealed that the compound guibourtinidol-(4alpha→8)-epiafzelechin exhibited stronger binding affinity for PLpro, RdRp, and Spike-analyzed enzymes. Both EEPV-F and EEPV-Q presented hemolytic activity below 5% across all tested concentrations. Given the limited therapeutic options available for COVID-19, the utilization of green propolis as a therapeutic agent has emerged as a promising and relevant approach. This natural product possesses several advantages, including its safety, ease of oral administration, and its availability as both a natural supplement and a functional food.
Notes The authors declare no competing financial interest.
References
Abers, Shandera, Kass, Neurological and psychiatric adverse effects of antiretroviral drugs, CNS Drugs, doi:10.1007/s40263-013-0132-4
Andrade, Manzi, Domingues, Tetracycline and propolis incorporation and release by bioactive glassy compounds, J. Non -Cryst. Solids, doi:10.1016/j.jnoncrysol.2006.03.083
Anjum, Ullah, Khan, Attaullah, Khan et al., Composition and functional properties of propolis (bee glue): A review, Saudi J. Biol. Sci, doi:10.1016/j.sjbs.2018.08.013
Arnao, Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case, Trends Food Sci. Technol, doi:10.1016/S0924-2244(01)00027-9
Arya, Das, Prashar, Kumar, Potential inhibitors against papain-like protease of novel coronavirus (SARS-CoV-2) from FDA approved drugs, ChemRxiv, doi:10.26434/chemrxiv.11860011.v2
Azevedo, Seibert, Amparo, Dos Santos Antunes, Sousa et al., Chemical constituents, antioxidant potential, antibacterial study and photoprotective activity of Brazilian corn silk extract, Food Sci. Technol, doi:10.1590/fst.98421
Bachevski, Damevska, Simeonovski, Dimova, Back to the basics: Propolis and COVID-19, Dermatol. Ther, doi:10.1111/dth.13780
Bakkali, Averbeck, Averbeck, Idaomar, Biological effects of essential oils-a review, Food Chem. Toxicol, doi:10.1016/j.fct.2007.09.106
Biesaga, Influence of extraction methods on stability of flavonoids, J. Chromatogr. A, doi:10.1016/j.chroma.2011.02.059
Biscaia, Ferreira, Propolis extracts obtained by low pressure methods and supercritical fluid extraction, J. Supercrit. Fluids, doi:10.1016/j.supflu.2009.07.011
Bonoli, Verardo, Marconi, Caboni, Antioxidant phenols in barley (Hordeum vulgare L.) Flour: Comparative spectrophotometric study among extraction methods of free and bound phenolic compounds, J. Agric. Food Chem, doi:10.1021/jf040075c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
Calixto, Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents), doi:10.1590/S0100-879X2000000200004
Calixto, Twenty-five years of research on medicinal plants in Latin America: a personal view, J. Ethnopharmacol, doi:10.1016/j.jep.2005.06.004
Chen, Zhang, Huang, Yin, Cheng et al., Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial, ChemRxiv, doi:10.1101/2020.03.17.20037432
Cottica, Sawaya, Eberlin, Franco, Zeoula et al., Antioxidant activity and composition of propolis obtained by different methods of extraction, J. Braz. Chem. Soc, doi:10.1590/S0103-50532011000500016
Cunha, Sawaya, Caetano, Shimizu, Marcucci et al., Factors that influence the yield and composition of Brazilian propolis extracts, J. Braz. Chem. Soc, doi:10.1590/S0103-50532004000600026
Dallakyan, Olson, Small-molecule library screening by docking with PyRx, Methods Mol. Biol, doi:10.1007/978-1-4939-2269-7_19
Ding, He, Zhang, Huang, Che et al., Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways, J. Pathol, doi:10.1002/path.1560
Elkhenany, El-Badri, Dhar, Green propolis extract promotes in vitro proliferation, differentiation, and migration of bone marrow stromal cells, Biomed. Pharmacother, doi:10.1016/j.biopha.2019.108861
Falcaõ, Vilas-Boas, Estevinho, Barros, Domingues et al., Phenolic characterization of Northeast Portuguese propolis: Usual and unusual compounds, Anal. Bioanal. Chem, doi:10.1007/s00216-009-3232-8
Ferreres, Sousa, Valentaõ, Andrade, Seabra et al., New C-deoxyhexosyl flavones and antioxidant properties of Passif lora edulis leaf extract, J. Agric. Food Chem, doi:10.1021/jf072119y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
Ferri, Gianotti, Tassoni, Optimisation of assay conditions for the determination of antioxidant capacity and polyphenols in cereal food components, J. Food Compos. Anal, doi:10.1016/j.jfca.2013.02.004
Floegel, Kim, Chung, Koo, Chun, Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods, J. Food Compos. Anal, doi:10.1016/j.jfca.2011.01.008
González-Buŕquez, González-Díaz, García-Tovar, Carrillo-Miranda, Soto-Zárate et al., Comparison between in vitro antiviral effect of Mexican propolis and three commercial flavonoids against Canine Distemper virus. Evidence-Based Complementary, Altern. Med, doi:10.1155/2018/7092416
Green, Wagner, Gloglowski, Skipper, Wishnok et al., Analysis of nitrate, nitrite, and ( 15 N)-nitrate in biological fluids, Anal. Biochem, doi:10.1016/0003-2697(82)90118-X
Gómez-Caravaca, Gómez-Romero, Arráez-Román, Segura-Carretero, Fernández-Gutiérrez, Advances in the analysis of phenolic compounds in products derived from bees, J. Pharm. Biomed. Anal, doi:10.1016/j.jpba.2006.03.002
Hoffmann, Kleine-Weber, Schroeder, Kruger, Herrler et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell, doi:10.1016/j.cell.2020.02.052
Hu, Jiang, Qi, Bai, Ye et al., Races of small molecule clinical trials for the treatment of COVID-19: An up-to-date comprehensive review, Drug Dev. Res, doi:10.1002/ddr.21895
Izzedine, Launay-Vacher, Deray, Antiviral druginduced nephrotoxicity, Am. J. Kidney Dis, doi:10.1053/j.ajkd.2005.02.010
Karki, Sharma, Tuladhar, Williams, Zalduondo et al., Synergism of TNF-α and IFN-γ Triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes, Cell, doi:10.1016/j.cell.2020.11.025
Kon, Rai, None
Kubiliene, Laugaliene, Pavilonis, Maruska, Majiene et al., Alternative preparation of propolis extracts: comparison of their composition and biological activities, BMC Complementary Med. Ther, doi:10.1186/s12906-015-0677-5
Kurek-Górecka, Górecki, Rzepecka-Stojko, Balwierz, Stojko, Bee products in dermatology and skin care, Molecules, doi:10.3390/molecules25030556
Lew, Tsai, Wang, Dengue outbreaks in Hawaii after WWIIa review of public health response and scientific literature, Hawaii J Med Public Health
Li, Liu, Yuan, Zhang, Meng, Study on the hemolysis rate and cytotoxicity test of porous ultramicron HA containing Mg, Mater. Sci. Forum, doi:10.4028/www.scientific.net/MSF.610-613.1215
Li, Zhang, Yao, Chen, Wang et al., The association of postembryo transfer SARS-CoV-2 infection with early pregnancy outcomes in in vitro fertilization: a prospective cohort study, Am. J. Obstet. Gynecol, doi:10.1016/j.ajog.2023.12.022
Machado, Silva, Barreto, Costa, Silva et al., Chemical composition and biological activity of extracts obtained by supercritical extraction and ethanolic extraction of brown, green and red propolis derived from different geographic regions in Brazil, PLoS One, doi:10.1371/journal.pone.0145954
Martinez-Rodriguez, Tavarez, Gonzalez-Sanchez, In vitro toxicity assessment of zinc and nickel ferrite nanoparticles in human erythrocytes and peripheral blood mononuclear cell, Toxicol. in Vitro, doi:10.1016/j.tiv.2019.02.011
Maruta, He, PAK1-blockers: Potential therapeutics against COVID-19, Med. Drug Discovery, doi:10.1016/j.medidd.2020.100039
Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Methods, doi:10.1016/0022-1759(83)90303-4
Moura, Negri, Salatino, Lima, Dourado et al., Aqueous extract of Brazilian green propolis: primary components, evaluation of inflammation and wound healing by using subcutaneous implanted sponges. Evidence-Based Complementary, Altern. Med, doi:10.1093/ecam/nep112
Nasheri, Vester, Petronella, Foodborne viral outbreaks associated with frozen produce, Epidemiol. Infect, doi:10.1017/S0950268819001791
Oldoni, Oliveira, Andolfatto, Karling, Calegari et al., Chemical characterization and optimization of the extraction process of bioactive compounds from propolis produced by selected bees Apis mellifera, J. Braz. Chem. Soc, doi:10.5935/0103-5053.20150186
Pascoal, Feás, Dias, Dias, Estevinho, The role of honey and propolis in the treatment of infected wounds, Microbiology for surgical infections: Diagnosis, Prognosis and Treatment
Pasupuleti, Sammugam, Ramesh, Gan, Honey, propolis, and royal jelly: A comprehensive review of their biological actions and health benefits, Oxid. Med. Cell Longevity, doi:10.1155/2017/1259510
Paviani, Fiorito, Sacoda, Cabral, Different solvents for extraction of Brazilian green propolis: composition and extraction yield of phenolic compounds
Pazin, Monaco, Soares, Miguel, Berretta et al., Antioxidant activities of three stingless bee propolis and green propolis types, J. Apic. Res, doi:10.1080/00218839.2016.1263496
Pellegrini, Proteggente, Pannala, Yang, Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radicals Biol. Med, doi:10.1016/S0891-5849(98)00315-3
Peter, Picoli, Zani, Latosinski, Lima et al., Atividade antiviral e virucida de extratos hidroalcooĺicos de proṕolis marrom, verde e de abelhas Jatai ́(Tetragonisca angustula) frente ao herpersvi ́rus bovino tipo 1 (BoHV-1) e ao vi ́rus da diarreia viral bovina (BVDV), Pesq. Vet. Bras, doi:10.1590/s0100-736x2017000700003
Possas, Lourenco-De-Oliveira, Tauil, Pinheiro, Pissinatti et al., Yellow fever outbreak in Brazil: the puzzle of rapid viral spread and challenges for immunisation, Mem. Inst. Oswaldo Cruz, doi:10.1590/0074-02760180278
Qin, Zhou, Hu, Zhang, Yang et al., Dysregulation of immune response in patients with COVID-19 in Wuhan, China, Clin. Infect. Dis, doi:10.1093/cid/ciaa248
Ratia, Saikatendu, Santarsiero, Barretto, Baker et al., Severe acute respiratory syndrome coronavirus papain-like protease: Structure of a viral deubiquitinating enzyme, Proc. Natl. Acad. Sci. U.S.A, doi:10.1073/pnas.0510851103
Razonable, Antiviral drugs for viruses other than Human Immunodeficiency Virus, Mayo Clin. Proc, doi:10.4065/mcp.2011.0309
Reboucas-Silva, Amorim, Jesus-Santos, De Lima, Lima et al., Leishmanicidal and immunomodulatory properties of Brazilian green propolis extract (EPP-AF®) and a gel formulation in a pre-clinical model, Front. Pharmacol, doi:10.3389/fphar.2023.1013376
Refaat, Mady, Sarhan, Rateb, Alaaeldin, Optimization and evaluation of propolis liposomes as a promising therapeutic approach for COVID-19, Int. J. Pharm, doi:10.1016/j.ijpharm.2020.120028
Ripari, Sartori, Honorio, Conte, Tasca et al., Propolis antiviral and immunomodulatory activity: a review and perspectives for COVID-19 treatment, J. Pharm. Pharmacol, doi:10.1093/jpp/rgaa067
Rothan, Byrareddy, The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak, J. Autoimmun, doi:10.1016/j.jaut.2020.102433
Saklani, Kutty, Plant-derived compounds in clinical trials, Drug Discovery Today, doi:10.1016/j.drudis.2007.10.010
Salatino, Fernandes-Silva, Righi, Salatino, Propolis research and the chemistry of plant products, Nat. Prod. Res, doi:10.1039/c0np00072h
Seibert, Bautista-Silva, Amparo, Petit, Pervier et al., Development of propolis nanoemulsion with antioxidant and antimicrobial activity for use as a potential natural preservative, Food Chem, doi:10.1016/j.foodchem.2019.02.078
Semret, Schiller, Jardin, Frenette, Loo et al., Multiplex respiratory virus testing for antimicrobial stewardship: a prospective assessment of antimicrobial use and clinical outcomes among hospitalized adults, J. Infect. Dis, doi:10.1093/infdis/jix288
Silveira, Jong, Berretta, Galvaõ, Ribeiro et al., Efficacy of Brazilian green propolis (EPP-AF®) as an adjunct treatment for hospitalized COVID-19 patients: A randomized, controlled clinical trial, Biomed. Pharmacother, doi:10.1016/j.biopha.2021.111526
Sousa, Duarte, Xavier, Das Merceŝ, Vieira et al., Benznidazole-loaded polymeric nanoparticles for oral chemotherapeutic treatment of Chagas disease, Pharmaceutics, doi:10.3390/pharmaceutics16060800
Stebbing, Phelan, Griffin, Tucker, Oechsle et al., COVID-19: combining antiviral and antiinflammatory treatments, Lancet Infect. Dis, doi:10.1016/S1473-3099(20)30132-8
Teixeira, Message, Negri, Salatino, Stringheta, 02121 ACS Omega XXXX, XXX, XXX-XXX N activity of Brazilian propolis samples. Evidence-Based Complementary, doi:10.1093/ecam/nem177
Toreti, Sato, Pastore, Park, Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evidence-Based Complementary, Altern. Med, doi:10.1155/2013/697390
Upton, Cooki, Dictionary of Statistics
Vardeny, Madjid, Solomon, Applying the lessons of influenza to COVID-19 during a time of uncertainty, Circulation, doi:10.1161/CIRCULATIONAHA.120.046837
Velthuis, Common and unique features of viral RNA-dependent polymerases, Cell. Mol. Life Sci, doi:10.1007/s00018-014-1695-z
Vilas Boas, Campos, Berlanda, De Carvalho Neves, Franco, Antiviral peptides as promising therapeutic drugs, Cell. Mol. Life Sci, doi:10.1007/s00018-019-03138-w
Wan, Shang, Graham, Baric, Li, Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS Coronavirus, J. Virol, doi:10.1128/JVI.00127-20
Wang, Cao, Zhang, Yang, Liu et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res, doi:10.1038/s41422-020-0282-0
Wozniak, Sip, Mrówczynska, Broniarczyk, Waskiewicz et al., Biological activity and chemical composition of propolis from various regions of Poland, Molecules, doi:10.3390/molecules28010141
Xu, Ikeda, Kobayakawa, Ikami, Kayano et al., Downregulation of Rac1 activation by caffeic acid in aortic smooth muscle cells, Life Sci, doi:10.1016/j.lfs.2004.11.015
Yamaya, Nishimura, Deng, Sugawara, Watanabe et al., Inhibitory effects of glycopyrronium, formoterol, and budesonide on coronavirus HCoV-229E replication and cytokine production by primary cultures of human nasal and tracheal epithelial cells, Respir. Invest, doi:10.1016/j.resinv.2019.12.005
Yuan, Chang, Liu, Wang, Liu et al., Brazilian green propolis inhibits ox-ldl-stimulated oxidative stress in human umbilical vein endothelial cells partly through pi3k/akt/mtormediated nrf2/ho-1 pathway. Evidence-Based Complementary, Altern. Med, doi:10.1155/2019/5789574
Zhang, Shen, Chen, Jiang, Hu, Identification of free radical scavengers from Brazilian green propolis using off-line HPLC-DPPH assay and LC-MS, Food Chem, doi:10.1111/1750-3841.13730
Zhang, Xiao, Cai, Chen, Structure of SARS-CoV-2 spike protein, Curr. Opin. Virol, doi:10.1016/j.coviro.2021.08.010
Zheng, Zhang, Huang, Nandakumar, Liu et al., Potential treatment methods targeting 2019-nCoV infection, Eur. J. Med. Chem, doi:10.1016/j.ejmech.2020.112687
Zhong, Zhao, Peng, Zou, Yang, Recent advances in small-molecular therapeutics for COVID-19, Precision Clinic. Med, doi:10.1093/pcmedi/pbac024
Zhou, Li, Yu, Gu, Pan et al., Dermatophagoides pteronyssinus allergen Der p 22: Cloning, expression, IgE-binding in asthmatic children, and immunogenicity, Pediatr. Allergy Immunol, doi:10.1111/pai.13835
Zhu, Lu, Xu, Chen, Yang et al., Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19, J. Infect, doi:10.1016/j.jinf.2020.03.060
Zhu, Zhang, Wang, Li, Yang et al., China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, N Engl J. Med, doi:10.1056/NEJMoa2001017
DOI record: { "DOI": "10.1021/acsomega.5c02121", "ISSN": [ "2470-1343", "2470-1343" ], "URL": "http://dx.doi.org/10.1021/acsomega.5c02121", "alternative-id": [ "10.1021/acsomega.5c02121" ], "article-number": "acsomega.5c02121", "author": [ { "affiliation": [ { "name": "Departamento de Química", "place": [ "Ouro Preto, Brasil" ] }, { "name": "Universidade Federal de Ouro Preto", "place": [ "Ouro Preto, Brasil" ] } ], "family": "Ferreira Júnior", "given": "Jeronimo Geraldo", "sequence": "first" }, { "affiliation": [ { "name": "Departamento de Química", "place": [ "São Carlos, Brasil" ] }, { "name": "Universidade Federal de São Carlos", "place": [ "São Carlos, Brasil" ] } ], "family": "Seibert", "given": "Janaína Brandão", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-0144-9518", "affiliation": [ { "name": "Departamento de Química", "place": [ "Ouro Preto, Brasil" ] }, { "name": "Universidade Federal de Ouro Preto", "place": [ "Ouro Preto, Brasil" ] } ], "authenticated-orcid": true, "family": "Rebello dos Santos", "given": "Viviane Martins", "sequence": "additional" }, { "affiliation": [ { "name": "Departamento de Farmácia", "place": [ "Ouro Preto, Brasil" ] }, { "name": "Universidade Federal de Ouro Preto", "place": [ "Ouro Preto, Brasil" ] } ], "family": "Dutra Sousa", "given": "Lucas Resende", "sequence": "additional" }, { "affiliation": [ { "name": "Departamento de Farmácia", "place": [ "Ouro Preto, Brasil" ] }, { "name": "Universidade Federal de Ouro Preto", "place": [ "Ouro Preto, Brasil" ] } ], "family": "Roquete Amparo", "given": "Tatiane", "sequence": "additional" }, { "affiliation": [ { "name": "Departamento de Morfologia", "place": [ "Belo Horizonte, Brazil" ] }, { "name": "Universidade Federal de Minas Gerais", "place": [ "Belo Horizonte, Brazil" ] } ], "family": "Valverde", "given": "Thalita Marcolan", "sequence": "additional" }, { "affiliation": [ { "name": "Departamento de Clínica, Patologia e Cirurgias Odontológicas", "place": [ "Belo Horizonte, Brazil" ] }, { "name": "Universidade Federal de Minas Gerais", "place": [ "Belo Horizonte, Brazil" ] } ], "family": "Santos", "given": "Vagner Rodrigues", "sequence": "additional" }, { "affiliation": [ { "name": "Departamento de Microbiologia", "place": [ "Belo Horizonte, Brazil" ] }, { "name": "Universidade Federal de Minas Gerais", "place": [ "Belo Horizonte, Brazil" ] } ], "family": "Alvarenga de Carvalho Oliveira", "given": "Junnia", "sequence": "additional" }, { "affiliation": [ { "name": "Departamento de Ciências Biológicas", "place": [ "Ouro Preto, Brasil" ] }, { "name": "Universidade Federal de Ouro Preto", "place": [ "Ouro Preto, Brasil" ] } ], "family": "Melo de Abreu Vieira", "given": "Paula", "sequence": "additional" }, { "affiliation": [ { "name": "Núcleo Tecnológico EPAMIG Uva e Vinho, Fazenda Experimental de Caldas", "place": [ "Caldas, Brasil" ] }, { "name": "Empresa de Pesquisa Agropecuária de Minas Gerais", "place": [ "Caldas, Brasil" ] } ], "family": "de Oliveira Machado", "given": "Vagner", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-0888-5072", "affiliation": [ { "name": "Departamento de Química", "place": [ "Ouro Preto, Brasil" ] }, { "name": "Universidade Federal de Ouro Preto", "place": [ "Ouro Preto, Brasil" ] } ], "authenticated-orcid": true, "family": "Andrade", "given": "Ângela Leão", "sequence": "additional" } ], "container-title": "ACS Omega", "container-title-short": "ACS Omega", "content-domain": { "crossmark-restriction": false, "domain": [] }, "created": { "date-parts": [ [ 2025, 8, 5 ] ], "date-time": "2025-08-05T12:42:28Z", "timestamp": 1754397748000 }, "deposited": { "date-parts": [ [ 2025, 8, 5 ] ], "date-time": "2025-08-05T12:49:16Z", "timestamp": 1754398156000 }, "funder": [ { "DOI": "10.13039/501100004901", "doi-asserted-by": "publisher", "id": [ { "asserted-by": "publisher", "id": "10.13039/501100004901", "id-type": "DOI" } ], "name": "Funda??o de Amparo ? Pesquisa do Estado de Minas Gerais" }, { "DOI": "10.13039/501100003593", "doi-asserted-by": "publisher", "id": [ { "asserted-by": "publisher", "id": "10.13039/501100003593", "id-type": "DOI" } ], "name": "Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico" }, { "DOI": "10.13039/501100009730", "doi-asserted-by": "publisher", "id": [ { "asserted-by": "publisher", "id": "10.13039/501100009730", "id-type": "DOI" } ], "name": "Universidade Federal de Ouro Preto" }, { "DOI": "10.13039/501100002322", "doi-asserted-by": "publisher", "id": [ { "asserted-by": "publisher", "id": "10.13039/501100002322", "id-type": "DOI" } ], "name": "Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior" } ], "indexed": { "date-parts": [ [ 2025, 8, 6 ] ], "date-time": "2025-08-06T00:05:11Z", "timestamp": 1754438711307, "version": "3.41.3" }, "is-referenced-by-count": 0, "issued": { "date-parts": [ [ 2025, 8, 5 ] ] }, "language": "en", "license": [ { "URL": "https://creativecommons.org/licenses/by/4.0/", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 8, 5 ] ], "date-time": "2025-08-05T00:00:00Z", "timestamp": 1754352000000 } } ], "link": [ { "URL": "https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c02121", "content-type": "application/pdf", "content-version": "vor", "intended-application": "unspecified" }, { "URL": "https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c02121", "content-type": "unspecified", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "316", "original-title": [], "prefix": "10.1021", "published": { "date-parts": [ [ 2025, 8, 5 ] ] }, "published-online": { "date-parts": [ [ 2025, 8, 5 ] ] }, "publisher": "American Chemical Society (ACS)", "reference": [ { "author": "Lew R. J.", "first-page": "315", "issue": "12", "journal-title": "Hawaii J Med Public Health", "key": "ref1/cit1", "volume": "77", "year": "2018" }, { "DOI": "10.1590/0074-02760180278", "doi-asserted-by": "publisher", "key": "ref2/cit2" }, { "DOI": "10.1017/S0950268819001791", "doi-asserted-by": "publisher", "key": "ref3/cit3" }, { "DOI": "10.1016/j.jaut.2020.102433", "doi-asserted-by": "publisher", "key": "ref4/cit4" }, { "DOI": "10.1161/CIRCULATIONAHA.120.046837", "doi-asserted-by": "publisher", "key": "ref5/cit5" }, { "DOI": "10.1128/JVI.00127-20", "doi-asserted-by": "publisher", "key": "ref6/cit6" }, { "DOI": "10.1016/j.cell.2020.02.052", "doi-asserted-by": "publisher", "key": "ref7/cit7" }, { "DOI": "10.1016/j.medidd.2020.100039", "doi-asserted-by": "publisher", "key": "ref8/cit8" }, { "DOI": "10.1016/j.lfs.2004.11.015", "doi-asserted-by": "publisher", "key": "ref9/cit9" }, { "DOI": "10.1002/path.1560", "doi-asserted-by": "publisher", "key": "ref10/cit10" }, { "DOI": "10.1016/S1473-3099(20)30132-8", "doi-asserted-by": "publisher", "key": "ref11/cit11" }, { "DOI": "10.1093/cid/ciaa248", "doi-asserted-by": "publisher", "key": "ref12/cit12" }, { "DOI": "10.4065/mcp.2011.0309", "doi-asserted-by": "publisher", "key": "ref13/cit13" }, { "DOI": "10.1007/s00018-019-03138-w", "doi-asserted-by": "publisher", "key": "ref14/cit14" }, { "DOI": "10.1053/j.ajkd.2005.02.010", "doi-asserted-by": "publisher", "key": "ref15/cit15" }, { "DOI": "10.1007/s40263-013-0132-4", "doi-asserted-by": "publisher", "key": "ref16/cit16" }, { "DOI": "10.1093/infdis/jix288", "doi-asserted-by": "publisher", "key": "ref17/cit17" }, { "DOI": "10.1016/j.fct.2007.09.106", "doi-asserted-by": "publisher", "key": "ref18/cit18" }, { "DOI": "10.1016/j.drudis.2007.10.010", "doi-asserted-by": "publisher", "key": "ref19/cit19" }, { "DOI": "10.1590/S0100-879X2000000200004", "doi-asserted-by": "publisher", "key": "ref20/cit20" }, { "DOI": "10.1016/j.jep.2005.06.004", "doi-asserted-by": "publisher", "key": "ref21/cit21" }, { "DOI": "10.1002/ddr.21895", "doi-asserted-by": "publisher", "key": "ref22/cit22" }, { "DOI": "10.1111/pai.13835", "doi-asserted-by": "publisher", "key": "ref23/cit23" }, { "DOI": "10.1155/2017/1259510", "doi-asserted-by": "publisher", "key": "ref24/cit24" }, { "DOI": "10.1155/2013/697390", "doi-asserted-by": "publisher", "key": "ref25/cit25" }, { "DOI": "10.1111/dth.13780", "doi-asserted-by": "publisher", "key": "ref26/cit26" }, { "DOI": "10.1016/B978-0-12-411629-0.00013-1", "author": "Pascoal A.", "doi-asserted-by": "crossref", "first-page": "221", "key": "ref27/cit27", "volume-title": "Microbiology for surgical infections: Diagnosis, Prognosis and Treatment", "year": "2014" }, { "DOI": "10.3390/molecules25030556", "doi-asserted-by": "publisher", "key": "ref28/cit28" }, { "DOI": "10.1155/2018/7092416", "doi-asserted-by": "publisher", "key": "ref29/cit29" }, { "DOI": "10.1016/j.sjbs.2018.08.013", "doi-asserted-by": "publisher", "key": "ref30/cit30" }, { "DOI": "10.1016/j.jfca.2013.02.004", "doi-asserted-by": "publisher", "key": "ref31/cit31" }, { "DOI": "10.1016/S0891-5849(98)00315-3", "doi-asserted-by": "publisher", "key": "ref32/cit32" }, { "DOI": "10.1016/j.jfca.2011.01.008", "doi-asserted-by": "publisher", "key": "ref33/cit33" }, { "DOI": "10.1016/S0924-2244(01)00027-9", "doi-asserted-by": "publisher", "key": "ref34/cit34" }, { "DOI": "10.1021/jf040075c", "doi-asserted-by": "publisher", "key": "ref35/cit35" }, { "DOI": "10.1016/j.jnoncrysol.2006.03.083", "doi-asserted-by": "publisher", "key": "ref36/cit36" }, { "DOI": "10.1016/j.tiv.2019.02.011", "doi-asserted-by": "publisher", "key": "ref37/cit37" }, { "DOI": "10.4028/www.scientific.net/MSF.610-613.1215", "doi-asserted-by": "publisher", "key": "ref38/cit38" }, { "DOI": "10.1016/0022-1759(83)90303-4", "doi-asserted-by": "publisher", "key": "ref39/cit39" }, { "DOI": "10.1016/0003-2697(82)90118-X", "doi-asserted-by": "publisher", "key": "ref40/cit40" }, { "DOI": "10.3390/pharmaceutics16060800", "doi-asserted-by": "publisher", "key": "ref41/cit41" }, { "DOI": "10.1590/fst.98421", "doi-asserted-by": "publisher", "key": "ref42/cit42" }, { "DOI": "10.1056/NEJMoa2001017", "doi-asserted-by": "publisher", "key": "ref43/cit43" }, { "DOI": "10.1016/j.foodchem.2019.02.078", "doi-asserted-by": "publisher", "key": "ref44/cit44" }, { "DOI": "10.1007/978-1-4939-2269-7_19", "doi-asserted-by": "publisher", "key": "ref45/cit45" }, { "DOI": "10.26434/chemrxiv.11860011.v2", "doi-asserted-by": "publisher", "key": "ref46/cit46" }, { "DOI": "10.1101/2020.03.17.20037432", "doi-asserted-by": "publisher", "key": "ref47/cit47" }, { "DOI": "10.1038/s41422-020-0282-0", "doi-asserted-by": "publisher", "key": "ref48/cit48" }, { "DOI": "10.1016/j.jinf.2020.03.060", "doi-asserted-by": "publisher", "key": "ref49/cit49" }, { "author": "Upton G.", "key": "ref50/cit50", "volume-title": "Dictionary of Statistics", "year": "2006" }, { "DOI": "10.1186/s12906-015-0677-5", "doi-asserted-by": "publisher", "key": "ref51/cit51" }, { "DOI": "10.5935/0103-5053.20150186", "doi-asserted-by": "publisher", "key": "ref52/cit52" }, { "DOI": "10.1016/j.supflu.2009.07.011", "doi-asserted-by": "publisher", "key": "ref53/cit53" }, { "DOI": "10.1590/S0103-50532004000600026", "doi-asserted-by": "publisher", "key": "ref54/cit54" }, { "key": "ref55/cit55", "unstructured": "Paviani, L. C.; Fiorito, G.; Sacoda, P.; Cabral, F. A. Different solvents for extraction of Brazilian green propolis: composition and extraction yield of phenolic compounds. In III Iberoamerican Conference on Supercritical Fluid, 2013; pp 1–5." }, { "DOI": "10.1016/j.chroma.2011.02.059", "doi-asserted-by": "publisher", "key": "ref56/cit56" }, { "DOI": "10.1371/journal.pone.0145954", "doi-asserted-by": "publisher", "key": "ref57/cit57" }, { "DOI": "10.1590/S0103-50532011000500016", "doi-asserted-by": "publisher", "key": "ref58/cit58" }, { "DOI": "10.1080/00218839.2016.1263496", "doi-asserted-by": "publisher", "key": "ref59/cit59" }, { "DOI": "10.1111/1750-3841.13730", "doi-asserted-by": "publisher", "key": "ref60/cit60" }, { "DOI": "10.1016/j.jpba.2006.03.002", "doi-asserted-by": "publisher", "key": "ref61/cit61" }, { "DOI": "10.1007/s00216-009-3232-8", "doi-asserted-by": "publisher", "key": "ref62/cit62" }, { "DOI": "10.1093/jpp/rgaa067", "doi-asserted-by": "publisher", "key": "ref63/cit63" }, { "author": "ISO 10993–5", "key": "ref64/cit64", "volume-title": "Biological Evaluation of Medical devices-Part 5: Tests for in vitro cytotoxicity", "year": "2009" }, { "DOI": "10.1016/j.biopha.2019.108861", "doi-asserted-by": "publisher", "key": "ref65/cit65" }, { "DOI": "10.1155/2019/5789574", "doi-asserted-by": "publisher", "key": "ref66/cit66" }, { "DOI": "10.1016/j.cell.2020.11.025", "doi-asserted-by": "publisher", "key": "ref67/cit67" }, { "DOI": "10.3389/fphar.2023.1013376", "doi-asserted-by": "publisher", "key": "ref68/cit68" }, { "DOI": "10.1016/j.biopha.2021.111526", "doi-asserted-by": "publisher", "key": "ref69/cit69" }, { "author": "ASTM F756–13", "key": "ref70/cit70", "volume-title": "Standard Practice for Assessment of Hemolytic Properties of Materials", "year": "2013" }, { "DOI": "10.3390/molecules28010141", "doi-asserted-by": "publisher", "key": "ref71/cit71" }, { "DOI": "10.1016/j.ajog.2023.12.022", "doi-asserted-by": "publisher", "key": "ref72/cit72" }, { "DOI": "10.1093/ecam/nem177", "doi-asserted-by": "publisher", "key": "ref73/cit73" }, { "DOI": "10.1039/c0np00072h", "doi-asserted-by": "publisher", "key": "ref74/cit74" }, { "DOI": "10.1093/ecam/nep112", "doi-asserted-by": "publisher", "key": "ref75/cit75" }, { "DOI": "10.1021/jf072119y", "doi-asserted-by": "publisher", "key": "ref76/cit76" }, { "DOI": "10.1016/j.ijpharm.2020.120028", "doi-asserted-by": "publisher", "key": "ref77/cit77" }, { "DOI": "10.1590/s0100-736x2017000700003", "doi-asserted-by": "publisher", "key": "ref78/cit78" }, { "DOI": "10.1016/j.resinv.2019.12.005", "doi-asserted-by": "publisher", "key": "ref79/cit79" }, { "DOI": "10.1093/pcmedi/pbac024", "doi-asserted-by": "publisher", "key": "ref80/cit80" }, { "DOI": "10.1016/j.ejmech.2020.112687", "doi-asserted-by": "publisher", "key": "ref81/cit81" }, { "DOI": "10.1073/pnas.0510851103", "doi-asserted-by": "publisher", "key": "ref82/cit82" }, { "DOI": "10.1007/s00018-014-1695-z", "doi-asserted-by": "publisher", "key": "ref83/cit83" }, { "DOI": "10.1016/j.coviro.2021.08.010", "doi-asserted-by": "publisher", "key": "ref84/cit84" } ], "reference-count": 84, "references-count": 84, "relation": {}, "resource": { "primary": { "URL": "https://pubs.acs.org/doi/10.1021/acsomega.5c02121" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "An In Silico Investigation of Brazilian Green Propolis Extracts as Potential Treatment for COVID-19", "type": "journal-article" }
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Submit