Conv. Plasma
Nigella Sativa
Peg.. Lambda

All sotrovimab studies
Meta analysis
Home COVID-19 treatment researchSotrovimabSotrovimab (more..)
Melatonin Meta
Bromhexine Meta Metformin Meta
Budesonide Meta
Cannabidiol Meta Molnupiravir Meta
Colchicine Meta
Conv. Plasma Meta
Curcumin Meta Nigella Sativa Meta
Ensovibep Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Peg.. Lambda Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta Remdesivir Meta
Ivermectin Meta
Lactoferrin Meta

All Studies   Meta Analysis   Recent:  
0 0.5 1 1.5 2+ Mortality -140% Improvement Relative Risk Mortality (b) -50% Sotrovimab for COVID-19  Woo et al.  LATE TREATMENT Is late treatment with sotrovimab beneficial for COVID-19? PSM retrospective 420 patients in Germany Higher mortality with sotrovimab (not stat. sig., p=0.12) Woo et al., Microbiology Spectrum, Dec 2022 Favors sotrovimab Favors control

Sotrovimab in Hospitalized Patients with SARS-CoV-2 Omicron Variant Infection: a Propensity Score-Matched Retrospective Cohort Study

Woo et al., Microbiology Spectrum, doi:10.1128/spectrum.04103-22
Dec 2022  
  Source   PDF   All Studies   Meta AnalysisMeta
PSM retrospective 1,254 hospitalized patients in Germany, 147 treated with sotrovimab, showing higher mortality with sotrovimab, without statistical significance.
Efficacy is variant dependent. In Vitro studies predict lower efficacy for BA.1 Liu, Sheward, VanBlargan and a lack of efficacy for BA.2 Zhou. US EUA has been revoked.
risk of death, 140.0% higher, RR 2.40, p = 0.12, treatment 4 of 60 (6.7%), control 10 of 360 (2.8%), non-ICU, propensity score matching.
risk of death, 50.0% higher, RR 1.50, p = 0.08, treatment 36 of 87 (41.4%), control 24 of 87 (27.6%), ICU, propensity score matching.
Effect extraction follows pre-specified rules prioritizing more serious outcomes. Submit updates
Woo et al., 8 Dec 2022, retrospective, Germany, peer-reviewed, 13 authors.
All Studies   Meta Analysis   Submit Updates or Corrections
This PaperSotrovimabAll
Sotrovimab in Hospitalized Patients with SARS-CoV-2 Omicron Variant Infection: a Propensity Score-Matched Retrospective Cohort Study
Marcel S Woo, Thomas Theo Brehm, Marlene Fischer, Andreas Heyer, Dominic Wichmann, Sabine Jordan, Dominik Nörz, Marc Lütgehetmann, Marylyn M Addo, Ansgar W Lohse, Stefan Schmiedel, Stefan Kluge, Julian Schulze Zur Wiesch
Microbiology Spectrum, doi:10.1128/spectrum.04103-22
In vitro data suggest the monoclonal antibody sotrovimab may have lost inhibitory capability against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant. We aimed to provide real-life data on clinical outcomes in hospitalized patients. We retrospectively analyzed patients who were treated at the University Medical Center Hamburg-Eppendorf, Germany, between December 2021 and June 2022. Out of all 1,254 patients, 185 were treated with sotrovimab: 147 patients received sotrovimab monotherapy, and 38 received combination treatment with sotrovimab and remdesivir. We compared in-hospital mortality for the different treatment regimens for patients treated on regular wards and the intensive care unit separately and performed propensity score matching by age, sex, comorbidities, immunosuppression, and additional dexamethasone treatment to select patients who did not receive antiviral treatment for comparison. No difference in in-hospital mortality was observed between any of the treatment groups and the respective control groups. These findings underline that sotrovimab adds no clinical benefit for hospitalized patients with SARS-CoV-2 Omicron variant infections. IMPORTANCE This study shows that among hospitalized patients with SARS-CoV-2 Omicron variant infection at risk of disease progression, treatment with sotrovimab alone or in combination with remdesivir did not decrease in-hospital mortality. These real-world clinical findings in combination with previous in vitro data about lacking neutralizing activity of sotrovimab against SARS-CoV-2 Omicron variant do not support sotrovimab as a treatment option in these patients.
Bmj, Update to living WHO guideline on drugs for COVID-19, BMJ, doi:10.1016/j.antiviral.2022.105252
Brehm, Heyer, Roedl, Jarczak, Nierhaus et al., Patient characteristics and clinical course of COVID-19 patients treated at a German tertiary center during the first and second waves in the year 2020, J Clin Med, doi:10.3390/jcm10112274
Brehm, Pfefferle, Possel, Karolyi, Zoufaly et al., Clinical efficacy and in vitro neutralization capacity of monoclonal antibodies for severe acute respiratory syndrome coronavirus 2 delta and omicron variants, J Med Virol, doi:10.1002/jmv.27916
Brehm, Van Der Meirschen, Hennigs, Roedl, Jarczak et al., Comparison of clinical characteristics and disease outcome of COVID-19 and seasonal influenza, Sci Rep, doi:10.1038/s41598-021-85081-0
Cao, Wang, Jian, Song, Yisimayi et al., Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies, Nature, doi:10.1038/s41586-021-04385-3
Dejnirattisai, Huo, Zhou, Zahradník, Supasa et al., SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses, Cell, doi:10.1016/j.cell.2021.12.046
Gupta, Gonzalez-Rojas, Juarez, Casal, Moya et al., Early treatment for COVID-19 with SARS-CoV-2 neutralizing antibody sotrovimab, N Engl J Med, doi:10.1056/NEJMoa2107934
Gupta, Gonzalez-Rojas, Juarez, Casal, Moya et al., Effect of sotrovimab on hospitalization or death among high-risk patients with mild to moderate COVID-19: a randomized clinical trial, JAMA, doi:10.1001/jama.2022.2832
Iketani, Liu, Guo, Liu, Chan et al., Antibody evasion properties of SARS-CoV-2 Omicron sublineages, Nature, doi:10.1038/s41586-022-04594-4
Nörz, Grunwald, Olearo, Fischer, Aepfelbacher et al., Evaluation of a fully automated high-throughput SARS-CoV-2 multiplex qPCR assay with built-in screening functionality for del-HV69/70-and N501Y variants such as B.1.1.7, J Clin Virol, doi:10.1016/j.jcv.2021.104894
Nörz, Grunwald, Tang, Olearo, Günther et al., Rapid automated screening for SARS-CoV-2 B.1.617 lineage variants (Delta/ Kappa) through a versatile toolset of qPCR-based SNP detection, Diagnostics, doi:10.3390/diagnostics11101818
Nörz, Grunwald, Tang, Weinschenk, Günther et al., Clinical evaluation of a fully-automated high-throughput multiplex screening-assay to detect and differentiate the SARS-CoV-2 B.1.1, Omicron), doi:10.3390/v14030608
Piccicacco, Zeitler, Ing, Montero, Faughn et al., Real-world effectiveness of early remdesivir and sotrovimab in the highest-risk COVID-19 outpatients during the Omicron surge, J Antimicrob Chemother, doi:10.1093/jac/dkac256
Takashita, Yamayoshi, Simon, Van Bakel, Sordillo et al., Efficacy of antibodies and antiviral drugs against Omicron BA.2.12.1, BA.4, and BA.5 subvariants, N Engl J Med, doi:10.1056/NEJMc2207519
Vangeel, Chiu, Jonghe, Maes, Slechten et al., Remdesivir, molnupiravir and nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern, Antiviral Res, doi:10.1016/j.antiviral.2022.105252
Who, WHO coronavirus (COVID-19) dashboard
Late treatment
is less effective
Please send us corrections, updates, or comments. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop