Inhibition of the Cell Uptake of Delta and Omicron SARS-CoV-2 Pseudoviruses by N-Acetylcysteine Irrespective of the Oxidoreductive Environment
Sebastiano La Maestra, Silvano Garibaldi, Roumen Balansky, Francesco D’agostini, Rosanna T Micale, Silvio De Flora
Cells, doi:10.3390/cells11203313
The binding of SARS-CoV-2 spikes to the cell receptor angiotensin-converting enzyme 2 (ACE2) is a crucial target both in the prevention and in the therapy of COVID-19. We explored the involvement of oxidoreductive mechanisms by investigating the effects of oxidants and antioxidants on virus uptake by ACE2-expressing cells of human origin (ACE2-HEK293). The cell uptake of pseudoviruses carrying the envelope of either Delta or Omicron variants of SARS-CoV-2 was evaluated by means of a cytofluorimetric approach. The thiol N-acetyl-L-cysteine (NAC) inhibited the uptake of both variants in a reproducible and dose-dependent fashion. Ascorbic acid showed modest effects. In contrast, neither hydrogen peroxide (H 2 O 2 ) nor a system-generating reactive oxygen species (ROS), which play an important role in the intracellular alterations produced by SARS-CoV-2, were able to affect the ability of either Delta or Omicron SARS-CoV-2 pseudoviruses to be internalized into ACE2-expressing cells. In addition, neither H 2 O 2 nor the ROS generating system interfered with the ability of NAC to inhibit that mechanism. Moreover, based on previous studies, a preventive pharmacological approach with NAC would have the advantage of decreasing the risk of developing COVID-19, irrespective of its variants, and at the same time other respiratory viral infections and associated comorbidities.
Author Contributions: Planning, methodology, formal analysis, and editing, S.L.M.; methodology and formal analysis, S.G.; methodology, R.B., F.D. and R.T.M.; supervision, conceptualization, and writing, S.D.F. All authors have read and agreed to the published version of the manuscript. Funding: This research received no external funding excepting the supply of the materials specified under Acknowledgements.
Institutional Review Board Statement: Not applicable. Informed Consent Statement: Not applicable.
References
Akhter, Quéromès, Pillai, Kepenekian, Badar et al., The Combination of bromelain and acetylcysteine (BromAc) synergistically inactivates SARS-CoV-2, Viruses,
doi:10.3390/v13030425
Angeli, Reboldi, Trapasso, Zappa, Spanevello et al., COVID-19, vaccines and deficiency of ACE2 and other angiotensinases. Closing the loop on the "Spike effect, Eur. J. Intern. Med,
doi:10.1016/j.ejim.2022.06.015
Aruoma, Halliwell, Hoey, Butler, The antioxidant action of N-acetylcysteine: Its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid, Free Radic. Biol. Med,
doi:10.1016/0891-5849(89)90066-X
Bartolini, Stabile, Bastianelli, Giustarini, Pierucci et al., SARS-CoV2 infection impairs the metabolism and redox function of cellular glutathione, Redox Biol,
doi:10.1016/j.redox.2021.102041
Basi, Turkoglu, In vitro effect of oxidized and reduced glutathione peptides on angiotensin converting enzyme purified from human plasma, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci,
doi:10.1016/j.jchromb.2018.11.023
Beyerstedt, Casaro, Rangel, COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection, Eur. J. Clin. Microbiol. Infect. Dis,
doi:10.1007/s10096-020-04138-6
Capettini, Montecucco, Mach, Stergiopulos, Santos et al., Role of renin-angiotensin system in inflammation, immunity and aging, Curr. Pharm. Des,
doi:10.2174/138161212799436593
De Flora, Balansky, La Maestra, Rationale for the use of N-acetylcysteine in both prevention and adjuvant therapy of COVID-19, FASEB J,
doi:10.1096/fj.202001807
De Flora, Grassi, Carati, Attenuation of influenza-like symptomatology and improvement of cell-mediated immunity with long-term N-acetylcysteine treatment, Eur. Respir. J,
doi:10.1183/09031936.97.10071535
De Flora, Izzotti, D'agostini, Balansky, Mechanisms of N-acetylcysteine in the prevention of DNA damage and cancer, with special reference to smoking-related end-points, Carcinogenesis,
doi:10.1093/carcin/22.7.999
Debnath, Mitra, Dewaker, Prabhakar, Tadala et al., N-acetyl cysteine: A tool to perturb SARS-CoV-2 spike protein conformation, ChemRxiv,
doi:10.26434/chemrxiv.12687923.v2
Delgado-Roche, Mesta, Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection, Arch. Med. Res,
doi:10.1016/j.arcmed.2020.04.019
Duarte Lana, Lana, Rodrigues, Santos, Navani et al., Nebulization of glutathione and N-Acetylcysteine as an adjuvant therapy for COVID-19 onset, Adv. Redox Res,
doi:10.1016/j.arres.2021.100015
Galli, Marcantonini, Giustarini, Albertini, Migni et al., How aging and oxidative stress influence the cytopathic inflammatory effects of SARS-CoV-2 infection: The role of cellular glutathione and cysteine metabolism, Antioxidants,
doi:10.3390/antiox11071366
García-Sánchez, Miranda-Díaz, Cardona-Muñoz, The role of oxidative stress in physiopathology and pharmacological treatment with pro-and antioxidant properties in chronic diseases, Oxid. Med. Cell Longev
Grishin, Dolgova, Harms, Pickering, George et al., Disulfide Bonds Play a Critical Role in the Structure and Function of the Receptor-binding Domain of the SARS-CoV-2 Spike Antigen, J. Mol. Biol,
doi:10.1016/j.jmb.2021.167357
Hati, Bhattacharyya, Impact of thiol-disulfide balance on the binding of COVID-19 spike protein with angiotensin-converting enzyme 2 receptor, ACS Omega,
doi:10.1021/acsomega.0c02125
Ivanov, Goc, Ivanova, Niedzwiecki, Rath, Inhibition of ACE2 Expression by ascorbic acid alone and its combinations with other natural compounds, Infect. Dis,
doi:10.1177/1178633721994605
Jorge-Aarón, Rosa-Ester, N-acetylcysteine as a potential treatment for COVID-19, Future Microbiol
Khanna, Raymond, Jin, Charbit, Gitlin et al., Thiol drugs decrease SARS-CoV-2 lung injury in vivo and disrupt SARS-CoV-2 spike complex binding to ACE2 in vitro, bioRxiv
Laforge, Elbim, Frère, Hémadi, Massaad et al., Tissue damage from neutrophilinduced oxidative stress in COVID-19, Nat. Rev. Immunol,
doi:10.1038/s41577-020-0407-1
Manček-Keber, Hafner-Bratkovič, Lainšček, Benčina, Govednik et al., Disruption of disulfides within RBD of SARS-CoV-2 spike protein prevents fusion and represents a target for viral entry inhibition by registered drugs, FASEB J,
doi:10.1096/fj.202100560R
Murae, Shimizu, Yamamoto, Kobayashi, Houri et al., The function of SARS-CoV-2 spike protein is impaired by disulfide-bond disruption with mutation at cysteine-488 and by thiol-reactive N-acetyl-cysteine and glutathione, Biochem. Biophys. Res. Commun,
doi:10.1016/j.bbrc.2022.01.106
Shi, Zeida, Edwards, Mallory, Sastre et al., Thiol-based chemical probes exhibit antiviral activity against SARS-CoV-2 via allosteric disulfide disruption in the spike glycoprotein, Proc. Natl. Acad. Sci,
doi:10.1073/pnas.2120419119
Strålin, Karlsson, Johansson, Marklund, The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase, Arterioscler. Thromb. Vasc. Biol,
doi:10.1161/01.ATV.15.11.2032
Van Den Brand, Haagmans, Van Riel, Osterhaus, Kuiken, The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models, J. Comp. Pathol,
doi:10.1016/j.jcpa.2014.01.004
Vitiello, Ferrara, Auti, Di Domenico, Boccellino, Advances in the Omicron variant development, J. Intern. Med,
doi:10.1111/joim.13478
Walls, Park, Tortorici, Wall, Mcguire et al., Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell,
doi:10.1016/j.cell.2020.02.058
Çakırca, Damar Çakırca, Üstünel, Torun, Koyuncu et al., Thiol level and total oxidant/antioxidant status in patients with COVID-19 infection, Ir. J. Med. Sci,
doi:10.1007/s11845-021-02743-8
DOI record:
{
"DOI": "10.3390/cells11203313",
"ISSN": [
"2073-4409"
],
"URL": "http://dx.doi.org/10.3390/cells11203313",
"abstract": "<jats:p>The binding of SARS-CoV-2 spikes to the cell receptor angiotensin-converting enzyme 2 (ACE2) is a crucial target both in the prevention and in the therapy of COVID-19. We explored the involvement of oxidoreductive mechanisms by investigating the effects of oxidants and antioxidants on virus uptake by ACE2-expressing cells of human origin (ACE2-HEK293). The cell uptake of pseudoviruses carrying the envelope of either Delta or Omicron variants of SARS-CoV-2 was evaluated by means of a cytofluorimetric approach. The thiol N-acetyl-L-cysteine (NAC) inhibited the uptake of both variants in a reproducible and dose-dependent fashion. Ascorbic acid showed modest effects. In contrast, neither hydrogen peroxide (H2O2) nor a system-generating reactive oxygen species (ROS), which play an important role in the intracellular alterations produced by SARS-CoV-2, were able to affect the ability of either Delta or Omicron SARS-CoV-2 pseudoviruses to be internalized into ACE2-expressing cells. In addition, neither H2O2 nor the ROS generating system interfered with the ability of NAC to inhibit that mechanism. Moreover, based on previous studies, a preventive pharmacological approach with NAC would have the advantage of decreasing the risk of developing COVID-19, irrespective of its variants, and at the same time other respiratory viral infections and associated comorbidities.</jats:p>",
"alternative-id": [
"cells11203313"
],
"author": [
{
"ORCID": "http://orcid.org/0000-0003-4939-2124",
"affiliation": [],
"authenticated-orcid": false,
"family": "La Maestra",
"given": "Sebastiano",
"sequence": "first"
},
{
"affiliation": [],
"family": "Garibaldi",
"given": "Silvano",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Balansky",
"given": "Roumen",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0002-6299-6873",
"affiliation": [],
"authenticated-orcid": false,
"family": "D’Agostini",
"given": "Francesco",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Micale",
"given": "Rosanna T.",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0002-8023-5541",
"affiliation": [],
"authenticated-orcid": false,
"family": "De Flora",
"given": "Silvio",
"sequence": "additional"
}
],
"container-title": "Cells",
"container-title-short": "Cells",
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2022,
10,
24
]
],
"date-time": "2022-10-24T00:43:50Z",
"timestamp": 1666572230000
},
"deposited": {
"date-parts": [
[
2022,
10,
24
]
],
"date-time": "2022-10-24T01:55:50Z",
"timestamp": 1666576550000
},
"indexed": {
"date-parts": [
[
2022,
10,
24
]
],
"date-time": "2022-10-24T06:25:52Z",
"timestamp": 1666592752557
},
"is-referenced-by-count": 0,
"issue": "20",
"issued": {
"date-parts": [
[
2022,
10,
21
]
]
},
"journal-issue": {
"issue": "20",
"published-online": {
"date-parts": [
[
2022,
10
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2022,
10,
21
]
],
"date-time": "2022-10-21T00:00:00Z",
"timestamp": 1666310400000
}
}
],
"link": [
{
"URL": "https://www.mdpi.com/2073-4409/11/20/3313/pdf",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "1968",
"original-title": [],
"page": "3313",
"prefix": "10.3390",
"published": {
"date-parts": [
[
2022,
10,
21
]
]
},
"published-online": {
"date-parts": [
[
2022,
10,
21
]
]
},
"publisher": "MDPI AG",
"reference": [
{
"DOI": "10.1038/s41580-021-00418-x",
"doi-asserted-by": "publisher",
"key": "ref1"
},
{
"DOI": "10.1016/j.cell.2020.02.058",
"doi-asserted-by": "publisher",
"key": "ref2"
},
{
"DOI": "10.1016/j.medntd.2020.100043",
"doi-asserted-by": "publisher",
"key": "ref3"
},
{
"DOI": "10.2174/138161212799436593",
"doi-asserted-by": "publisher",
"key": "ref4"
},
{
"DOI": "10.1007/s10096-020-04138-6",
"doi-asserted-by": "publisher",
"key": "ref5"
},
{
"DOI": "10.1016/j.jchromb.2018.11.023",
"doi-asserted-by": "publisher",
"key": "ref6"
},
{
"DOI": "10.1016/j.ejim.2022.06.015",
"doi-asserted-by": "publisher",
"key": "ref7"
},
{
"DOI": "10.1021/acsomega.0c02125",
"doi-asserted-by": "publisher",
"key": "ref8"
},
{
"DOI": "10.1021/jacsau.1c00128",
"doi-asserted-by": "publisher",
"key": "ref9"
},
{
"DOI": "10.3390/v13030425",
"doi-asserted-by": "publisher",
"key": "ref10"
},
{
"DOI": "10.1016/j.jmb.2021.167357",
"doi-asserted-by": "publisher",
"key": "ref11"
},
{
"DOI": "10.1096/fj.202100560R",
"doi-asserted-by": "publisher",
"key": "ref12"
},
{
"DOI": "10.1101/2020.12.08.415505",
"doi-asserted-by": "publisher",
"key": "ref13"
},
{
"DOI": "10.26434/chemrxiv.12687923.v2",
"doi-asserted-by": "publisher",
"key": "ref14"
},
{
"DOI": "10.1016/j.bbrc.2022.01.106",
"doi-asserted-by": "publisher",
"key": "ref15"
},
{
"DOI": "10.1073/pnas.2120419119",
"doi-asserted-by": "publisher",
"key": "ref16"
},
{
"DOI": "10.1093/carcin/22.7.999",
"doi-asserted-by": "publisher",
"key": "ref17"
},
{
"DOI": "10.1016/j.jcpa.2014.01.004",
"doi-asserted-by": "publisher",
"key": "ref18"
},
{
"DOI": "10.1155/2020/2082145",
"doi-asserted-by": "publisher",
"key": "ref19"
},
{
"DOI": "10.5455/oams.080612.ed.001",
"doi-asserted-by": "publisher",
"key": "ref20"
},
{
"DOI": "10.15167/2421-4248/jpmh2021.62.1S3.1895",
"doi-asserted-by": "publisher",
"key": "ref21"
},
{
"DOI": "10.1016/j.mam.2008.05.005",
"doi-asserted-by": "publisher",
"key": "ref22"
},
{
"DOI": "10.1007/BF01649460",
"doi-asserted-by": "publisher",
"key": "ref23"
},
{
"DOI": "10.1007/s11845-021-02743-8",
"doi-asserted-by": "publisher",
"key": "ref24"
},
{
"DOI": "10.3390/antiox11071366",
"doi-asserted-by": "publisher",
"key": "ref25"
},
{
"DOI": "10.1016/j.redox.2021.102041",
"doi-asserted-by": "publisher",
"key": "ref26"
},
{
"DOI": "10.1016/S0014-5793(00)02197-9",
"doi-asserted-by": "publisher",
"key": "ref27"
},
{
"DOI": "10.1104/pp.110.167569",
"doi-asserted-by": "publisher",
"key": "ref28"
},
{
"DOI": "10.1111/joim.13478",
"doi-asserted-by": "publisher",
"key": "ref29"
},
{
"DOI": "10.2217/fmb-2020-0074",
"doi-asserted-by": "publisher",
"key": "ref30"
},
{
"DOI": "10.1096/fj.202001807",
"doi-asserted-by": "publisher",
"key": "ref31"
},
{
"DOI": "10.1177/1178633721994605",
"doi-asserted-by": "publisher",
"key": "ref32"
},
{
"DOI": "10.1016/j.arcmed.2020.04.019",
"doi-asserted-by": "publisher",
"key": "ref33"
},
{
"DOI": "10.1016/j.jpha.2020.03.001",
"doi-asserted-by": "publisher",
"key": "ref34"
},
{
"DOI": "10.1038/s41577-020-0407-1",
"doi-asserted-by": "publisher",
"key": "ref35"
},
{
"DOI": "10.1161/01.ATV.15.11.2032",
"doi-asserted-by": "publisher",
"key": "ref36"
},
{
"DOI": "10.1146/annurev-chembioeng-080615-033553",
"doi-asserted-by": "publisher",
"key": "ref37"
},
{
"DOI": "10.1016/0891-5849(89)90066-X",
"doi-asserted-by": "publisher",
"key": "ref38"
},
{
"DOI": "10.1016/j.arres.2021.100015",
"doi-asserted-by": "publisher",
"key": "ref39"
},
{
"DOI": "10.1183/09031936.97.10071535",
"doi-asserted-by": "publisher",
"key": "ref40"
}
],
"reference-count": 40,
"references-count": 40,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.mdpi.com/2073-4409/11/20/3313"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [
"General Medicine"
],
"subtitle": [],
"title": "Inhibition of the Cell Uptake of Delta and Omicron SARS-CoV-2 Pseudoviruses by N-Acetylcysteine Irrespective of the Oxidoreductive Environment",
"type": "journal-article",
"volume": "11"
}