Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All sotrovimab studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchSotrovimabSotrovimab (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Identification of antibody-resistant SARS-CoV-2 mutants via N4-Hydroxycytidine mutagenesis

Kumar et al., Antiviral Research, doi:10.1016/j.antiviral.2024.106006
Sep 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Sotrovimab for COVID-19
41st treatment shown to reduce risk in May 2023
 
*, now with p = 0.003 from 24 studies, recognized in 38 countries. Efficacy is variant dependent.
Lower risk for ICU admission and hospitalization.
No treatment is 100% effective. Protocols combine treatments. * >10% efficacy, ≥3 studies.
4,800+ studies for 95 treatments. c19early.org
In Vitro selection study identifying SARS-CoV-2 spike mutations that confer resistance to therapeutic antibodies. Using a Wuhan-like strain and omicron B.1.1.529, the authors used sequential mutagenesis with the molnupiravir active compound N4-hydroxycytidine (NHC) and passaging with antibodies to select for resistant mutants. They identified specific spike RBD mutations that abolish binding and neutralization by bamlanivimab (E484K, F490S, S494P), sotrovimab (E340K), cilgavimab (K444E/R, N450D), bebtelovimab (V445A), and broadly-neutralizing antibodies S2K146 (G485S+Q493R) and S2H97 (D428G, K462E, S514F). Structural analysis showed the mutations occur at antibody-binding sites. Many of the mutations are found in circulating variants, explaining the loss of efficacy of some antibodies.
Efficacy is variant dependent. In Vitro studies predict lower efficacy for BA.11-3, BA.4, BA.54, XBB.1.9.3, XBB.1.5.24, XBB.2.9, CH.1.15, and no efficacy for BA.26, ХВВ.1.9.1, XBB.1.16, BQ.1.1.45, and CL.15. US EUA has been revoked.
Kumar et al., 19 Sep 2024, peer-reviewed, 5 authors. Contact: mdobbel@uni-goettingen.de.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperSotrovimabAll
Identification of antibody-resistant SARS-CoV-2 mutants via N4-Hydroxycytidine mutagenesis
Priya Kumar, Xiaoxiao Zhang, Rahul Shaha, Maik Kschischo, Matthias Dobbelstein
Antiviral Research, doi:10.1016/j.antiviral.2024.106006
Monoclonal antibodies targeting the Spike protein of SARS-CoV-2 are effective against COVID-19 and might mitigate future pandemics. However, their efficacy is challenged by the emergence of antibody-resistant virus variants. We developed a method to efficiently identify such resistant mutants based on selection from mutagenized virus pools. By inducing mutations with the active compound of Molnupiravir, N4-hydroxycytidine (NHC), and subsequently passaging the virus in the presence of antibodies, we identified specific Spike mutations linked to resistance. Validation of these mutations was conducted using pseudotypes and immunofluorescence analysis. From a Wuhan-like strain of SARS-CoV-2, we identified the following mutations conferring strong resistance towards the corresponding antibodies: Bamlanivimab -E484K, F490S and S494P; Sotrovimab -E340K; Cilgavimab -K444R/E and N450D. From the Omicron B.1.1.529 variant, the strongly selected mutations were: Bebtelovimab -V445A; Sotrovimab -E340K and K356M; Cilgavimab -K444R, V445A and N450D. We also identified escape mutations in the Wuhan-like Spike for the broadly neutralizing antibodies S2K146combined G485S and Q493R -and S2H97 -D428G, K462E and S514F. Structural analysis revealed that the selected mutations occurred at antibody-binding residues within the receptor-binding domains of the Spike protein. Most of the selected mutants largely maintained ACE2 binding and infectivity. Notably, many of the identified resistance-conferring mutations are prevalent in real-world SARS-CoV-2 variants, but some of them (G485S, D428G, and K462E) have not yet been observed in circulating strains. Our approach offers a strategy for predicting the therapeutic efficacy of antibodies against emerging virus variants.
Declaration of competing interest The other authors declare no conflict of interest. Appendix A. Supplementary data Supplementary data to this article can be found online at https://doi. org/10.1016/j.antiviral.2024.106006.
References
Abenavoli, The COVID-19 pandemic is over, but the virus still lingers, Diseases, doi:10.3390/diseases12030057
Alcantara, Higuchi, Kirita, Matoba, Hoshino, Deep mutational scanning to predict escape from bebtelovimab in SARS-CoV-2 omicron subvariants, Vaccines, doi:10.3390/vaccines11030711
Andrews, FastQC -a quality control tool for high throughput sequencing data, Babraham Bioinformatics
Bai, Wang, Chen, Zhang, An et al., Predicting mutational effects on receptor binding of the spike protein of SARS-CoV-2 variants, J. Am. Chem. Soc, doi:10.1021/jacs.1c07965
Berger Rentsch, Zimmer, A vesicular stomatitis virus replicon-based bioassay for the rapid and sensitive determination of multi-species type I interferon, PLoS One, doi:10.1371/journal.pone.0025858
Bessi, Stiller, Schroeder, Schäd, Grüne et al., The tautomeric state of N4-hydroxycytidine within base-paired RNA, ACS Cent. Sci, doi:10.1021/acscentsci.4c00146
Birnie, Biemond, Appelman, De Bree, Jonges et al., Development of resistance-associated mutations after Sotrovimab administration in high-risk individuals infected with the SARS-CoV-2 omicron variant, JAMA, doi:10.1001/jama.2022.13854
Brady, Zhang, Tuffy, Haskins, Du et al., Qualification of a biolayer interferometry assay to support AZD7442 resistance monitoring, Microbiol. Spectr
Cameroni, Bowen, Rosen, Saliba, Zepeda et al., Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift, Nature, doi:10.1038/s41586-021-04386-2
Cao, Jian, Wang, Yu, Song et al., Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution, Nature, doi:10.1038/s41586-022-05644-7
Cao, Wang, Jian, Xiao, Song et al., Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies, Nature, doi:10.1038/s41586-021-04385-3
Carabelli, Peacock, Thorne, Harvey, Hughes et al., SARS-CoV-2 variant biology: immune escape, transmission and fitness, Nat. Rev. Microbiol, doi:10.1038/s41579-022-00841-7
Cathcart, Havenar-Daughton, Lempp, Ma, Schmid et al., The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2, bioRxiv, doi:10.1101/2021.03.09.434607
Chen, Datta, Grace Li, Chien, Price et al., First-in-Human study of bamlanivimab in a randomized trial of hospitalized patients with COVID-19, Clin. Pharmacol. Therapeut, doi:10.1002/cpt.2405
Chen, Huang, Tian, Huang, Zhang et al., Cytoplasmic tail truncation of SARS-CoV-2 spike protein enhances titer of pseudotyped vectors but masks the effect of the D614G mutation, J. Virol, doi:10.1128/JVI.00966-21
Chen, Winkler, Case, Aziati, Bricker et al., In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains, Nature, doi:10.1038/s41586-021-03720-y
Choudhary, Chew, Deo, Flynn, Regan et al., Emergence of SARS-CoV-2 escape mutations during Bamlanivimab therapy in a phase II randomized clinical trial, Nature Microbiology, doi:10.1038/s41564-022-01254-1
Cingolani, Platts, Wang Le, Coon, Nguyen et al., A program for annotating and predicting the effects of single nucleotide polymorphisms, Fly, doi:10.4161/fly.19695
Cohen, Nirula, Mulligan, Novak, Marovich et al., Effect of bamlanivimab vs placebo on incidence of COVID-19 among residents and staff of skilled nursing and assisted living facilities: a randomized clinical trial, JAMA, doi:10.1001/jama.2021.8828
Corman, Landt, Kaiser, Molenkamp, Meijer et al., Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR, Euro Surveill. : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, doi:10.2807/1560-7917.es.2020.25.3.2000045
Corti, Purcell, Snell, Veesler, Tackling COVID-19 with neutralizing monoclonal antibodies, Cell, doi:10.1016/j.cell.2021.05.005
Cox, Peacock, Harvey, Hughes, Wright et al., SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies, Nat. Rev. Microbiol, doi:10.1038/s41579-022-00809-7
Dadonaite, Crawford, Radford, Farrell, Yu et al., A pseudovirus system enables deep mutational scanning of the full SARS-CoV-2 spike, Cell, doi:10.1016/j.cell.2023.02.001
Dejnirattisai, Huo, Zhou, Zahradník, Supasa et al., SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses, Cell, doi:10.1016/j.cell.2021.12.046
Del Rio, Malani, COVID-19 in the fall of 2023-forgotten but not gone, JAMA, doi:10.1001/jama.2023.19049
Dong, Zost, Greaney, Starr, Dingens et al., Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail, Nature Microbiology, doi:10.1038/s41564-021-00972-2
Ecdc, SARS-CoV-2 variants of concern as of 16 February 2024
Fda, Coronavirus (COVID-19) update: FDA revokes emergency use authorization for monoclonal antibody bamlanivimab
Fda, Emergency use authorizations for drugs and non-vaccine biological products
Fda, Fact sheet for healthcare providers: emergency use authorization for Sotrovimab
Focosi, Casadevall, A critical analysis of the use of cilgavimab plus tixagevimab monoclonal antibody cocktail (Evusheld™) for COVID-19 prophylaxis and treatment, Viruses, doi:10.3390/v14091999
Focosi, Casadevall, Franchini, Maggi, Sotrovimab: a review of its efficacy against SARS-CoV-2 variants, Viruses, doi:10.3390/v16020217
Focosi, Mcconnell, Casadevall, Cappello, Valdiserra et al., Monoclonal antibody therapies against SARS-CoV-2, Lancet Infect. Dis, doi:10.1016/s1473-3099(22)00311-5
Francino-Urdaniz, Steiner, Kirby, Zhao, Haas et al., One-shot identification of SARS-CoV-2 S RBD escape mutants using yeast screening, Cell Rep, doi:10.1016/j.celrep.2021.109627
Gal-Tanamy, Keck, Yi, Mckeating, Patel et al., In Vitro Selection of a Neutralization-Resistant Hepatitis C Virus Escape Mutant, Proceedings of the National Academy of Sciences, doi:10.1073/pnas.0809879105
Gangavarapu, Latif, Mullen, Alkuzweny, Hufbauer et al., Outbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations, Nat. Methods, doi:10.1038/s41592-023-01769-3
Garrison, Kronenberg, Dawson, Pedersen, Prins, A spectrum of free software tools for processing the VCF variant call format: vcflib, bio-vcf, cyvcf2, hts-nim and slivar, PLoS Comput. Biol, doi:10.1371/journal.pcbi.1009123
Garrison, Marth, Haplotype-based variant detection from short-read sequencing, doi:10.48550/ARXIV.1207.3907
Gisaid, Lineage comparison
Guigon, Faure, Lemaire, Chopin, Tinez et al., Emergence of Q493R mutation in SARS-CoV-2 spike protein during bamlanivimab/etesevimab treatment and resistance to viral clearance, J. Infect, doi:10.1016/j.jinf.2021.08.033
Gupta, Gonzalez-Rojas, Juarez, Crespo Casal, Moya et al., Early treatment for covid-19 with SARS-CoV-2 neutralizing antibody Sotrovimab, N. Engl. J. Med, doi:10.1056/NEJMoa2107934
Haars, Palanisamy, Wallin, Molling, Lindh et al., Prevalence of SARS-CoV-2 omicron sublineages and spike protein mutations conferring resistance against monoclonal antibodies in a Swedish cohort during 2022-2023, Microorganisms, doi:10.3390/microorganisms11102417
Hoffmann, Hofmann-Winkler, Krüger, Kempf, Nehlmeier et al., SARS-CoV-2 variant B.1.617 is resistant to bamlanivimab and evades antibodies induced by infection and vaccination, Cell Rep, doi:10.1016/j.celrep.2021.109415
Hoffmann, Kleine-Weber, Pöhlmann, A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells, Mol. Cell, doi:10.1016/j.molcel.2020.04.022
Iketani, Liu, Guo, Liu, Chan et al., Antibody evasion properties of SARS-CoV-2 Omicron sublineages, Nature, doi:10.1038/s41586-022-04594-4
Jackson, Farzan, Chen, Choe, Mechanisms of SARS-CoV-2 entry into cells, Nat. Rev. Mol. Cell Biol, doi:10.1038/s41580-021-00418-x
Janion, Glickman, N4-hydroxycytidine: a mutagen specific for at to GC transitions, Mutat. Res. Fund Mol. Mech. Mutagen, doi:10.1016/0027-5107(80)90218-3
Jensen, Luebke, Feldt, Keitel, Brandenburger et al., Emergence of the E484K mutation in SARS-COV-2-infected immunocompromised patients treated with bamlanivimab in Germany, The Lancet Regional Health -Europe, doi:10.1016/j.lanepe.2021.100164
Johnson, Lyddon, Suarez, Salcedo, Lepique et al., Optimized pseudotyping conditions for the SARS-COV-2 spike glycoprotein, J. Virol, doi:10.1128/JVI.01062-20
Johnson, Xie, Bailey, Kalveram, Lokugamage et al., Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis, Nature, doi:10.1038/s41586-021-03237-4
Jones, Brown-Augsburger, Corbett, Westendorf, Davies et al., The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates, Sci. Transl. Med, doi:10.1126/scitranslmed.abf1906
Kabinger, Stiller, Schmitzova, Dienemann, Kokic et al., Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis, Nat. Struct. Mol. Biol, doi:10.1038/s41594-021-00651-0
Keam, Tixagevimab + cilgavimab: first approval, Drugs, doi:10.1007/s40265-022-01731-1
Khatri, Siddqui, Sadhu, Maithil, Vishwakarma et al., Intrinsic D614G and P681R/H mutations in SARS-CoV-2 VoCs Alpha, Delta, Omicron and viruses with D614G plus key signature mutations in spike protein alters fusogenicity and infectivity, Med. Microbiol. Immunol, doi:10.1007/s00430-022-00760-7
Lan, Ge, Yu, Shan, Zhou et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature, doi:10.1038/s41586-020-2180-5
Langmead, Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, doi:10.1038/nmeth.1923
Li, Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, doi:10.1093/bioinformatics/btp324
Li, Handsaker, Wysoker, Fennell, Ruan et al., The sequence alignment/map format and SAMtools, Bioinformatics, doi:10.1093/bioinformatics/btp352
Li, Wang, Lavrijsen, Lamers, De Vries et al., SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination, Cell Res, doi:10.1038/s41422-022-00618-w
Loo, Mctamney, Arends, Abram, Aksyuk et al., The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans, Sci. Transl. Med, doi:10.1126/scitranslmed.abl8124
Lupala, Ye, Chen, Su, Liu, Mutations on RBD of SARS-CoV-2 Omicron variant result in stronger binding to human ACE2 receptor, Biochem. Biophys. Res. Commun, doi:10.1016/j.bbrc.2021.12.079
Mannar, Saville, Zhu, Srivastava, Berezuk et al., SARS-CoV-2 Omicron variant: antibody evasion and cryo-EM structure of spike protein-ACE2 complex, Science, doi:10.1126/science.abn7760
Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet.journal, doi:10.14806/ej.17.1.200
Mia, Howlader, Akter, Hossain, Preclinical and clinical investigations of potential drugs and vaccines for COVID-19 therapy: a comprehensive review with recent update, Clinical Pathology, doi:10.1177/2632010x241263054
Moeller, Shi, Demir, Belica, Banerjee et al., Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN, Proc. Natl. Acad. Sci, doi:10.1073/pnas.2106379119
Montgomery, Hobbs, Padilla, Arbetter, Templeton et al., Efficacy and safety of intramuscular administration of tixagevimab-cilgavimab for early outpatient treatment of COVID-19 (TACKLE): a phase 3, randomised, double-blind, placebo-controlled trial, doi:10.1016/S2213-2600(22)00180-1
Oladunni, Park, Chiem, Ye, Pipenbrink et al., Selection, identification, and characterization of SARS-CoV-2 monoclonal antibody resistant mutants, J. Virol Methods, doi:10.1016/j.jviromet.2021.114084
Pandey, Mohapatra, Subramaniam, Sanyal, Pande et al., Evolution of serotype A foot-and-mouth disease virus capsid under neutralizing antibody pressure in vitro, Virus Res, doi:10.1016/j.virusres.2014.01.009
Park, De Marco, Starr, Liu, Pinto et al., Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry, Science, doi:10.1126/science.abm8143
Pastorio, Zech, Noettger, Jung, Jacob et al., Determinants of Spike infectivity, processing, and neutralization in SARS-CoV-2 Omicron subvariants BA.1 and BA.2, Cell Host Microbe, doi:10.1016/j.chom.2022.07.006
Peacock, Goldhill, Zhou, Baillon, Frise et al., The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets, Nature Microbiology, doi:10.1038/s41564-021-00908-w
Pinto, Park, Beltramello, Walls, Tortorici et al., Crossneutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody, Nature, doi:10.1038/s41586-020-2349-y
Ragonnet-Cronin, Nutalai, Huo, Dijokaite-Guraliuc, Das et al., Generation of SARS-CoV-2 escape mutations by monoclonal antibody therapy, Nat. Commun, doi:10.1038/s41467-023-37826-w
Razonable, Tulledge-Scheitel, Hanson, Arndt, Speicher et al., Real-world clinical outcomes of bebtelovimab and Sotrovimab treatment of high-risk persons with coronavirus disease 2019 during the omicron epoch, Open Forum Infect. Dis, doi:10.1093/ofid/ofac411
Reynard, Nguyen, Alazard-Dany, Barateau, Cimarelli et al., Identification of a new ribonucleoside inhibitor of ebola virus replication, Viruses, doi:10.3390/v7122934
Robson, Khan, Le, Paris, Demirbag et al., Coronavirus RNA proofreading: molecular basis and therapeutic targeting, Mol. Cell, doi:10.1016/j.molcel.2020.07.027
Rockett, Basile, Maddocks, Fong, Agius et al., Resistance mutations in SARS-CoV-2 Delta variant after Sotrovimab use, N. Engl. J. Med, doi:10.1056/NEJMc2120219
Ruden, Cingolani, Patel, Coon, Nguyen et al., Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front. Genet, doi:10.3389/fgene.2012.00035
Schrodinger, The PyMOL Molecular Graphics System, Version
Scialo, Daniele, Amato, Pastore, Matera et al., ACE2: the major cell entry receptor for SARS-CoV-2, Lung, doi:10.1007/s00408-020-00408-4
Shah, Woo, Omicron: a heavily mutated SARS-CoV-2 variant exhibits stronger binding to ACE2 and potently escapes approved COVID-19 therapeutic antibodies, Front. Immunol, doi:10.3389/fimmu.2021.830527
Sharma, Rawat, Greiff, Janakiraman, Gromiha, Predicting the immune escape of SARS-CoV-2 neutralizing antibodies upon mutation, Biochim. Biophys. Acta (BBA) -Mol. Basis Dis, doi:10.1016/j.bbadis.2023.166959
Sheahan, Sims, Zhou, Graham, Pruijssers et al., An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice, Sci. Transl. Med, doi:10.1126/scitranslmed.abb5883
Shruti, Céline, Lucas, Mark, Gunter et al., GISAID's Role in Pandemic Response, doi:10.46234/ccdcw2021.255
Sidarovich, Krüger, Rocha, Graichen, Kempf et al., Host cell entry and neutralization sensitivity of SARS-CoV-2 lineages B.1.620 and R.1, Viruses
Starr, Czudnochowski, Liu, Zatta, Park et al., SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape, Nature, doi:10.1038/s41586-021-03807-6
Starr, Greaney, Dingens, Bloom, Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016, Cell Reports Medicine, doi:10.1016/j.xcrm.2021.100255
Stegmann, Dickmanns, Gerber, Nikolova, Klemke et al., The folate antagonist methotrexate diminishes replication of the coronavirus SARS-CoV-2 and enhances the antiviral efficacy of remdesivir in cell culture models, Virus Res, doi:10.1016/j.virusres.2021.198469
Syed, Molnupiravir: first approval, Drugs, doi:10.1007/s40265-022-01684-5
Taft, Weber, Gao, Ehling, Han et al., Deep mutational learning predicts ACE2 binding and antibody escape to combinatorial mutations in the SARS-CoV-2 receptor-binding domain, Cell, doi:10.1016/j.cell.2022.08.024
Takashita, Kinoshita, Yamayoshi, Sakai-Tagawa, Fujisaki et al., Efficacy of antibodies and antiviral drugs against covid-19 omicron variant, N. Engl. J. Med, doi:10.1056/NEJMc2119407
Thomson, Rosen, Shepherd, Spreafico, Da Silva Filipe et al., Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity, Cell, doi:10.1016/j.cell.2021.01.037
Toots, Yoon, Cox, Hart, Sticher et al., Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia, Sci. Transl. Med, doi:10.1126/scitranslmed.aax5866
Urakova, Kuznetsova, Crossman, Sokratian, Guthrie et al., beta-d-N(4)-Hydroxycytidine is a potent anti-alphavirus compound that induces a high level of mutations in the viral genome, J. Virol, doi:10.1128/JVI.01965-17
Vanblargan, Errico, Halfmann, Zost, Crowe et al., An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies, Nat. Med, doi:10.1038/s41591-021-01678-y
Vellas, Kamar, Izopet, Resistance mutations in SARS-CoV-2 omicron variant after tixagevimab-cilgavimab treatment, J. Infect, doi:10.1016/j.jinf.2022.07.014
Wang, Iketani, Li, Liu, Guo et al., Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants, Cell, doi:10.1016/j.cell.2022.12.018
Wang, Yan, Song, Duan, Dong et al., Identification of a highly conserved neutralizing epitope within the RBD region of diverse SARS-CoV-2 variants, Nat. Commun, doi:10.1038/s41467-024-45050-3
Wang, Ye, Zhou, Song, Zhu et al., Key mutations in the spike protein of SARS-CoV-2 affecting neutralization resistance and viral internalization, J. Med. Virol, doi:10.1002/jmv.28407
Westendorf, Žentelis, Wang, Foster, Vaillancourt et al., LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants, Cell Rep, doi:10.1016/j.celrep.2022.110812
Willett, Grove, Maclean, Wilkie, De Lorenzo et al., SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway, Nat Microbiol, doi:10.1038/s41564-022-01143-7
Wood, Salzberg, Kraken: ultrafast metagenomic sequence classification using exact alignments, Genome Biol, doi:10.1186/gb-2014-15-3-r46
Xiao, Lu, Zhang, Johnson, Mckay et al., A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent, Nat. Struct. Mol. Biol, doi:10.1038/s41594-020-00549-3
Yi, Sun, Lin, Gu, Ding et al., Comprehensive mapping of binding hot spots of SARS-CoV-2 RBD-specific neutralizing antibodies for tracking immune escape variants, Genome medicine, doi:10.1186/s13073-021-00985-w
Yin, Xu, Xu, Cao, Wu et al., Structures of the Omicron spike trimer with ACE2 and an anti-Omicron antibody, Science, doi:10.1126/science.abn8863
Zhang, Jackson, Mou, Ojha, Peng et al., SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity, Nat. Commun, doi:10.1038/s41467-020-19808-4
Zhao, Zhou, Tian, Huang, Liu et al., Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape, Nat. Commun, doi:10.1038/s41467-022-32665-7
Zibat, Zhang, Dickmanns, Stegmann, Dobbelstein et al., N4-hydroxycytidine, the active compound of Molnupiravir, promotes SARS-CoV-2 mutagenesis and escape from a neutralizing nanobody, iScience, doi:10.1016/j.isci.2023.107786
Zimmer, Locher, Berger Rentsch, Halbherr, Pseudotyping of vesicular stomatitis virus with the envelope glycoproteins of highly pathogenic avian influenza viruses, J. Gen. Virol, doi:10.1099/vir.0.065201-0
Zost, Gilchuk, Case, Binshtein, Chen et al., Potently neutralizing and protective human antibodies against SARS-CoV-2, Nature, doi:10.1038/s41586-020-2548-6
{ 'indexed': {'date-parts': [[2024, 9, 19]], 'date-time': '2024-09-19T19:40:16Z', 'timestamp': 1726774816832}, 'reference-count': 105, 'publisher': 'Elsevier BV', 'license': [ { 'start': { 'date-parts': [[2024, 11, 1]], 'date-time': '2024-11-01T00:00:00Z', 'timestamp': 1730419200000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.elsevier.com/tdm/userlicense/1.0/'}, { 'start': { 'date-parts': [[2024, 11, 1]], 'date-time': '2024-11-01T00:00:00Z', 'timestamp': 1730419200000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.elsevier.com/legal/tdmrep-license'}, { 'start': { 'date-parts': [[2024, 9, 16]], 'date-time': '2024-09-16T00:00:00Z', 'timestamp': 1726444800000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'http://creativecommons.org/licenses/by/4.0/'}], 'funder': [ { 'DOI': '10.13039/501100002347', 'name': 'Federal Ministry of Education and Research Bonn Office', 'doi-asserted-by': 'publisher', 'id': [{'id': '10.13039/501100002347', 'id-type': 'DOI', 'asserted-by': 'publisher'}]}, { 'DOI': '10.13039/501100001663', 'name': 'Volkswagen Foundation', 'doi-asserted-by': 'publisher', 'id': [{'id': '10.13039/501100001663', 'id-type': 'DOI', 'asserted-by': 'publisher'}]}], 'content-domain': {'domain': ['elsevier.com', 'sciencedirect.com'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2024, 11]]}, 'DOI': '10.1016/j.antiviral.2024.106006', 'type': 'journal-article', 'created': {'date-parts': [[2024, 9, 16]], 'date-time': '2024-09-16T17:15:36Z', 'timestamp': 1726506936000}, 'page': '106006', 'update-policy': 'http://dx.doi.org/10.1016/elsevier_cm_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'special_numbering': 'C', 'title': 'Identification of antibody-resistant SARS-CoV-2 mutants via N4-Hydroxycytidine mutagenesis', 'prefix': '10.1016', 'volume': '231', 'author': [ { 'ORCID': 'http://orcid.org/0009-0008-0060-1224', 'authenticated-orcid': False, 'given': 'Priya', 'family': 'Kumar', 'sequence': 'first', 'affiliation': []}, {'given': 'Xiaoxiao', 'family': 'Zhang', 'sequence': 'additional', 'affiliation': []}, {'given': 'Rahul', 'family': 'Shaha', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-3977-9982', 'authenticated-orcid': False, 'given': 'Maik', 'family': 'Kschischo', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-5052-3967', 'authenticated-orcid': False, 'given': 'Matthias', 'family': 'Dobbelstein', 'sequence': 'additional', 'affiliation': []}], 'member': '78', 'reference': [ { 'key': '10.1016/j.antiviral.2024.106006_bib1', 'doi-asserted-by': 'crossref', 'first-page': '57', 'DOI': '10.3390/diseases12030057', 'article-title': 'The COVID-19 pandemic is over, but the virus still lingers', 'volume': '12', 'author': 'Abenavoli', 'year': '2024', 'journal-title': 'Diseases'}, { 'key': '10.1016/j.antiviral.2024.106006_bib2', 'doi-asserted-by': 'crossref', 'DOI': '10.3390/vaccines11030711', 'article-title': 'Deep mutational scanning to predict escape from bebtelovimab in ' 'SARS-CoV-2 omicron subvariants', 'volume': '11', 'author': 'Alcantara', 'year': '2023', 'journal-title': 'Vaccines'}, { 'journal-title': 'Babraham Bioinformatics', 'article-title': 'FastQC - a quality control tool for high throughput sequencing data', 'year': '2010', 'author': 'Andrews', 'key': '10.1016/j.antiviral.2024.106006_bib3'}, { 'key': '10.1016/j.antiviral.2024.106006_bib4', 'doi-asserted-by': 'crossref', 'first-page': '17646', 'DOI': '10.1021/jacs.1c07965', 'article-title': 'Predicting mutational effects on receptor binding of the spike protein ' 'of SARS-CoV-2 variants', 'volume': '143', 'author': 'Bai', 'year': '2021', 'journal-title': 'J. Am. Chem. Soc.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib5', 'doi-asserted-by': 'crossref', 'DOI': '10.1371/journal.pone.0025858', 'article-title': 'A vesicular stomatitis virus replicon-based bioassay for the rapid and ' 'sensitive determination of multi-species type I interferon', 'volume': '6', 'author': 'Berger Rentsch', 'year': '2011', 'journal-title': 'PLoS One'}, { 'key': '10.1016/j.antiviral.2024.106006_bib6', 'doi-asserted-by': 'crossref', 'first-page': '1084', 'DOI': '10.1021/acscentsci.4c00146', 'article-title': 'The tautomeric state of N4-hydroxycytidine within base-paired RNA', 'volume': '10', 'author': 'Bessi', 'year': '2024', 'journal-title': 'ACS Cent. Sci.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib7', 'doi-asserted-by': 'crossref', 'first-page': '1104', 'DOI': '10.1001/jama.2022.13854', 'article-title': 'Development of resistance-associated mutations after Sotrovimab ' 'administration in high-risk individuals infected with the SARS-CoV-2 ' 'omicron variant', 'volume': '328', 'author': 'Birnie', 'year': '2022', 'journal-title': 'JAMA'}, { 'key': '10.1016/j.antiviral.2024.106006_bib8', 'doi-asserted-by': 'crossref', 'DOI': '10.1128/spectrum.01034-22', 'article-title': 'Qualification of a biolayer interferometry assay to support AZD7442 ' 'resistance monitoring', 'volume': '10', 'author': 'Brady', 'year': '2022', 'journal-title': 'Microbiol. Spectr.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib9', 'doi-asserted-by': 'crossref', 'first-page': '664', 'DOI': '10.1038/s41586-021-04386-2', 'article-title': 'Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic ' 'shift', 'volume': '602', 'author': 'Cameroni', 'year': '2022', 'journal-title': 'Nature'}, { 'key': '10.1016/j.antiviral.2024.106006_bib10', 'first-page': '521', 'article-title': 'Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD ' 'evolution', 'volume': '614', 'author': 'Cao', 'year': '2023', 'journal-title': 'Nature'}, { 'key': '10.1016/j.antiviral.2024.106006_bib11', 'doi-asserted-by': 'crossref', 'first-page': '657', 'DOI': '10.1038/s41586-021-04385-3', 'article-title': 'Omicron escapes the majority of existing SARS-CoV-2 neutralizing ' 'antibodies', 'volume': '602', 'author': 'Cao', 'year': '2022', 'journal-title': 'Nature'}, { 'key': '10.1016/j.antiviral.2024.106006_bib12', 'first-page': '162', 'article-title': 'SARS-CoV-2 variant biology: immune escape, transmission and fitness', 'volume': '21', 'author': 'Carabelli', 'year': '2023', 'journal-title': 'Nat. Rev. Microbiol.'}, { 'journal-title': 'bioRxiv', 'article-title': 'The dual function monoclonal antibodies VIR-7831 and VIR-7832 ' 'demonstrate potent in vitro and in vivo activity against SARS-CoV-2', 'year': '2022', 'author': 'Cathcart', 'key': '10.1016/j.antiviral.2024.106006_bib13'}, { 'key': '10.1016/j.antiviral.2024.106006_bib14', 'doi-asserted-by': 'crossref', 'DOI': '10.1128/JVI.00966-21', 'article-title': 'Cytoplasmic tail truncation of SARS-CoV-2 spike protein enhances titer ' 'of pseudotyped vectors but masks the effect of the D614G mutation', 'volume': '95', 'author': 'Chen', 'year': '2021', 'journal-title': 'J. Virol.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib15', 'doi-asserted-by': 'crossref', 'first-page': '1467', 'DOI': '10.1002/cpt.2405', 'article-title': 'First-in-Human study of bamlanivimab in a randomized trial of ' 'hospitalized patients with COVID-19', 'volume': '110', 'author': 'Chen', 'year': '2021', 'journal-title': 'Clin. Pharmacol. Therapeut.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib16', 'doi-asserted-by': 'crossref', 'first-page': '103', 'DOI': '10.1038/s41586-021-03720-y', 'article-title': 'In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains', 'volume': '596', 'author': 'Chen', 'year': '2021', 'journal-title': 'Nature'}, { 'key': '10.1016/j.antiviral.2024.106006_bib17', 'doi-asserted-by': 'crossref', 'first-page': '1906', 'DOI': '10.1038/s41564-022-01254-1', 'article-title': 'Emergence of SARS-CoV-2 escape mutations during Bamlanivimab therapy in ' 'a phase II randomized clinical trial', 'volume': '7', 'author': 'Choudhary', 'year': '2022', 'journal-title': 'Nature Microbiology'}, { 'key': '10.1016/j.antiviral.2024.106006_bib18', 'doi-asserted-by': 'crossref', 'first-page': '80', 'DOI': '10.4161/fly.19695', 'article-title': 'A program for annotating and predicting the effects of single ' 'nucleotide polymorphisms', 'volume': '6', 'author': 'Cingolani', 'year': '2012', 'journal-title': 'Fly'}, { 'key': '10.1016/j.antiviral.2024.106006_bib19', 'doi-asserted-by': 'crossref', 'first-page': '46', 'DOI': '10.1001/jama.2021.8828', 'article-title': 'Effect of bamlanivimab vs placebo on incidence of COVID-19 among ' 'residents and staff of skilled nursing and assisted living facilities: ' 'a randomized clinical trial', 'volume': '326', 'author': 'Cohen', 'year': '2021', 'journal-title': 'JAMA'}, { 'key': '10.1016/j.antiviral.2024.106006_bib20', 'doi-asserted-by': 'crossref', 'DOI': '10.2807/1560-7917.ES.2020.25.3.2000045', 'article-title': 'Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR', 'volume': '25', 'author': 'Corman', 'year': '2020', 'journal-title': 'Euro Surveill. : bulletin Europeen sur les maladies transmissibles = ' 'European communicable disease bulletin'}, { 'key': '10.1016/j.antiviral.2024.106006_bib21', 'doi-asserted-by': 'crossref', 'first-page': '3086', 'DOI': '10.1016/j.cell.2021.05.005', 'article-title': 'Tackling COVID-19 with neutralizing monoclonal antibodies', 'volume': '184', 'author': 'Corti', 'year': '2021', 'journal-title': 'Cell'}, { 'key': '10.1016/j.antiviral.2024.106006_bib22', 'doi-asserted-by': 'crossref', 'first-page': '112', 'DOI': '10.1038/s41579-022-00809-7', 'article-title': 'SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro ' 'studies', 'volume': '21', 'author': 'Cox', 'year': '2023', 'journal-title': 'Nat. Rev. Microbiol.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib23', 'doi-asserted-by': 'crossref', 'first-page': '1263', 'DOI': '10.1016/j.cell.2023.02.001', 'article-title': 'A pseudovirus system enables deep mutational scanning of the full ' 'SARS-CoV-2 spike', 'volume': '186', 'author': 'Dadonaite', 'year': '2023', 'journal-title': 'Cell'}, { 'key': '10.1016/j.antiviral.2024.106006_bib24', 'doi-asserted-by': 'crossref', 'first-page': '467', 'DOI': '10.1016/j.cell.2021.12.046', 'article-title': 'SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from ' 'neutralizing antibody responses', 'volume': '185', 'author': 'Dejnirattisai', 'year': '2022', 'journal-title': 'Cell'}, { 'key': '10.1016/j.antiviral.2024.106006_bib25', 'doi-asserted-by': 'crossref', 'first-page': '1517', 'DOI': '10.1001/jama.2023.19049', 'article-title': 'COVID-19 in the fall of 2023—forgotten but not gone', 'volume': '330', 'author': 'del Rio', 'year': '2023', 'journal-title': 'JAMA'}, { 'key': '10.1016/j.antiviral.2024.106006_bib26', 'doi-asserted-by': 'crossref', 'first-page': '1233', 'DOI': '10.1038/s41564-021-00972-2', 'article-title': 'Genetic and structural basis for SARS-CoV-2 variant neutralization by a ' 'two-antibody cocktail', 'volume': '6', 'author': 'Dong', 'year': '2021', 'journal-title': 'Nature Microbiology'}, { 'issue': '1999', 'key': '10.1016/j.antiviral.2024.106006_bib33', 'article-title': 'A critical analysis of the use of cilgavimab plus tixagevimab ' 'monoclonal antibody cocktail (Evusheld™) for COVID-19 prophylaxis and ' 'treatment', 'volume': '14', 'author': 'Focosi', 'year': '2022', 'journal-title': 'Viruses'}, { 'key': '10.1016/j.antiviral.2024.106006_bib34', 'doi-asserted-by': 'crossref', 'DOI': '10.3390/v16020217', 'article-title': 'Sotrovimab: a review of its efficacy against SARS-CoV-2 variants', 'volume': '16', 'author': 'Focosi', 'year': '2024', 'journal-title': 'Viruses'}, { 'key': '10.1016/j.antiviral.2024.106006_bib35', 'doi-asserted-by': 'crossref', 'first-page': 'e311', 'DOI': '10.1016/S1473-3099(22)00311-5', 'article-title': 'Monoclonal antibody therapies against SARS-CoV-2', 'volume': '22', 'author': 'Focosi', 'year': '2022', 'journal-title': 'Lancet Infect. Dis.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib36', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.celrep.2021.109627', 'article-title': 'One-shot identification of SARS-CoV-2 S RBD escape mutants using yeast ' 'screening', 'volume': '36', 'author': 'Francino-Urdaniz', 'year': '2021', 'journal-title': 'Cell Rep.'}, { 'volume': '105', 'first-page': '19450', 'year': '2008', 'author': 'Gal-Tanamy', 'key': '10.1016/j.antiviral.2024.106006_bib37'}, { 'key': '10.1016/j.antiviral.2024.106006_bib38', 'doi-asserted-by': 'crossref', 'first-page': '512', 'DOI': '10.1038/s41592-023-01769-3', 'article-title': 'Outbreak.info genomic reports: scalable and dynamic surveillance of ' 'SARS-CoV-2 variants and mutations', 'volume': '20', 'author': 'Gangavarapu', 'year': '2023', 'journal-title': 'Nat. Methods'}, { 'key': '10.1016/j.antiviral.2024.106006_bib39', 'doi-asserted-by': 'crossref', 'DOI': '10.1371/journal.pcbi.1009123', 'article-title': 'A spectrum of free software tools for processing the VCF variant call ' 'format: vcflib, bio-vcf, cyvcf2, hts-nim and slivar', 'volume': '18', 'author': 'Garrison', 'year': '2022', 'journal-title': 'PLoS Comput. Biol.'}, { 'journal-title': 'arXiv:1207.3907v2', 'article-title': 'Haplotype-based variant detection from short-read sequencing', 'year': '2012', 'author': 'Garrison', 'key': '10.1016/j.antiviral.2024.106006_bib40'}, { 'key': '10.1016/j.antiviral.2024.106006_bib42', 'doi-asserted-by': 'crossref', 'first-page': '248', 'DOI': '10.1016/j.jinf.2021.08.033', 'article-title': 'Emergence of Q493R mutation in SARS-CoV-2 spike protein during ' 'bamlanivimab/etesevimab treatment and resistance to viral clearance', 'volume': '84', 'author': 'Guigon', 'year': '2022', 'journal-title': 'J. Infect.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib43', 'doi-asserted-by': 'crossref', 'first-page': '1941', 'DOI': '10.1056/NEJMoa2107934', 'article-title': 'Early treatment for covid-19 with SARS-CoV-2 neutralizing antibody ' 'Sotrovimab', 'volume': '385', 'author': 'Gupta', 'year': '2021', 'journal-title': 'N. Engl. J. Med.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib44', 'doi-asserted-by': 'crossref', 'DOI': '10.3390/microorganisms11102417', 'article-title': 'Prevalence of SARS-CoV-2 omicron sublineages and spike protein ' 'mutations conferring resistance against monoclonal antibodies in a ' 'Swedish cohort during 2022-2023', 'volume': '11', 'author': 'Haars', 'year': '2023', 'journal-title': 'Microorganisms'}, { 'key': '10.1016/j.antiviral.2024.106006_bib45', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.celrep.2021.109415', 'article-title': 'SARS-CoV-2 variant B.1.617 is resistant to bamlanivimab and evades ' 'antibodies induced by infection and vaccination', 'volume': '36', 'author': 'Hoffmann', 'year': '2021', 'journal-title': 'Cell Rep.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib46', 'doi-asserted-by': 'crossref', 'first-page': '779', 'DOI': '10.1016/j.molcel.2020.04.022', 'article-title': 'A multibasic cleavage site in the spike protein of SARS-CoV-2 is ' 'essential for infection of human lung cells', 'volume': '78', 'author': 'Hoffmann', 'year': '2020', 'journal-title': 'Mol. Cell'}, { 'key': '10.1016/j.antiviral.2024.106006_bib47', 'doi-asserted-by': 'crossref', 'first-page': '553', 'DOI': '10.1038/s41586-022-04594-4', 'article-title': 'Antibody evasion properties of SARS-CoV-2 Omicron sublineages', 'volume': '604', 'author': 'Iketani', 'year': '2022', 'journal-title': 'Nature'}, { 'key': '10.1016/j.antiviral.2024.106006_bib48', 'doi-asserted-by': 'crossref', 'first-page': '3', 'DOI': '10.1038/s41580-021-00418-x', 'article-title': 'Mechanisms of SARS-CoV-2 entry into cells', 'volume': '23', 'author': 'Jackson', 'year': '2022', 'journal-title': 'Nat. Rev. Mol. Cell Biol.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib49', 'doi-asserted-by': 'crossref', 'first-page': '43', 'DOI': '10.1016/0027-5107(80)90218-3', 'article-title': 'N4-hydroxycytidine: a mutagen specific for at to GC transitions', 'volume': '72', 'author': 'Janion', 'year': '1980', 'journal-title': 'Mutat. Res. Fund Mol. Mech. Mutagen'}, { 'key': '10.1016/j.antiviral.2024.106006_bib50', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.lanepe.2021.100164', 'article-title': 'Emergence of the E484K mutation in SARS-COV-2-infected ' 'immunocompromised patients treated with bamlanivimab in Germany', 'volume': '8', 'author': 'Jensen', 'year': '2021', 'journal-title': 'The Lancet Regional Health - Europe'}, { 'key': '10.1016/j.antiviral.2024.106006_bib51', 'doi-asserted-by': 'crossref', 'first-page': '293', 'DOI': '10.1038/s41586-021-03237-4', 'article-title': 'Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis', 'volume': '591', 'author': 'Johnson', 'year': '2021', 'journal-title': 'Nature'}, { 'key': '10.1016/j.antiviral.2024.106006_bib52', 'doi-asserted-by': 'crossref', 'DOI': '10.1128/JVI.01062-20', 'article-title': 'Optimized pseudotyping conditions for the SARS-COV-2 spike glycoprotein', 'volume': '94', 'author': 'Johnson', 'year': '2020', 'journal-title': 'J. Virol.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib53', 'doi-asserted-by': 'crossref', 'DOI': '10.1126/scitranslmed.abf1906', 'article-title': 'The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 ' 'infection in nonhuman primates', 'volume': '13', 'author': 'Jones', 'year': '2021', 'journal-title': 'Sci. Transl. Med.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib54', 'doi-asserted-by': 'crossref', 'first-page': '740', 'DOI': '10.1038/s41594-021-00651-0', 'article-title': 'Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis', 'volume': '28', 'author': 'Kabinger', 'year': '2021', 'journal-title': 'Nat. Struct. Mol. Biol.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib55', 'doi-asserted-by': 'crossref', 'first-page': '1001', 'DOI': '10.1007/s40265-022-01731-1', 'article-title': 'Tixagevimab + cilgavimab: first approval', 'volume': '82', 'author': 'Keam', 'year': '2022', 'journal-title': 'Drugs'}, { 'key': '10.1016/j.antiviral.2024.106006_bib56', 'doi-asserted-by': 'crossref', 'first-page': '103', 'DOI': '10.1007/s00430-022-00760-7', 'article-title': 'Intrinsic D614G and P681R/H mutations in SARS-CoV-2 VoCs Alpha, Delta, ' 'Omicron and viruses with D614G plus key signature mutations in spike ' 'protein alters fusogenicity and infectivity', 'volume': '212', 'author': 'Khatri', 'year': '2023', 'journal-title': 'Med. Microbiol. Immunol.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib57', 'doi-asserted-by': 'crossref', 'first-page': '215', 'DOI': '10.1038/s41586-020-2180-5', 'article-title': 'Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ' 'ACE2 receptor', 'volume': '581', 'author': 'Lan', 'year': '2020', 'journal-title': 'Nature'}, { 'key': '10.1016/j.antiviral.2024.106006_bib58', 'doi-asserted-by': 'crossref', 'first-page': '357', 'DOI': '10.1038/nmeth.1923', 'article-title': 'Fast gapped-read alignment with Bowtie 2', 'volume': '9', 'author': 'Langmead', 'year': '2012', 'journal-title': 'Nat. Methods'}, { 'key': '10.1016/j.antiviral.2024.106006_bib59', 'doi-asserted-by': 'crossref', 'first-page': '1754', 'DOI': '10.1093/bioinformatics/btp324', 'article-title': 'Fast and accurate short read alignment with Burrows-Wheeler transform', 'volume': '25', 'author': 'Li', 'year': '2009', 'journal-title': 'Bioinformatics'}, { 'key': '10.1016/j.antiviral.2024.106006_bib60', 'doi-asserted-by': 'crossref', 'first-page': '2078', 'DOI': '10.1093/bioinformatics/btp352', 'article-title': 'The sequence alignment/map format and SAMtools', 'volume': '25', 'author': 'Li', 'year': '2009', 'journal-title': 'Bioinformatics'}, { 'key': '10.1016/j.antiviral.2024.106006_bib61', 'doi-asserted-by': 'crossref', 'first-page': '322', 'DOI': '10.1038/s41422-022-00618-w', 'article-title': 'SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, ' 'nirmatrelvir, and the combination', 'volume': '32', 'author': 'Li', 'year': '2022', 'journal-title': 'Cell Res.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib62', 'doi-asserted-by': 'crossref', 'DOI': '10.1126/scitranslmed.abl8124', 'article-title': 'The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective ' 'in nonhuman primates and has an extended half-life in humans', 'volume': '14', 'author': 'Loo', 'year': '2022', 'journal-title': 'Sci. Transl. Med.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib63', 'doi-asserted-by': 'crossref', 'first-page': '34', 'DOI': '10.1016/j.bbrc.2021.12.079', 'article-title': 'Mutations on RBD of SARS-CoV-2 Omicron variant result in stronger ' 'binding to human ACE2 receptor', 'volume': '590', 'author': 'Lupala', 'year': '2022', 'journal-title': 'Biochem. Biophys. Res. Commun.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib64', 'doi-asserted-by': 'crossref', 'first-page': '760', 'DOI': '10.1126/science.abn7760', 'article-title': 'SARS-CoV-2 Omicron variant: antibody evasion and cryo-EM structure of ' 'spike protein–ACE2 complex', 'volume': '375', 'author': 'Mannar', 'year': '2022', 'journal-title': 'Science (New York, N.Y.)'}, { 'key': '10.1016/j.antiviral.2024.106006_bib65', 'doi-asserted-by': 'crossref', 'first-page': '10', 'DOI': '10.14806/ej.17.1.200', 'article-title': 'Cutadapt removes adapter sequences from high-throughput sequencing ' 'reads', 'volume': '17', 'author': 'Martin', 'year': '2011', 'journal-title': 'EMBnet.journal'}, { 'key': '10.1016/j.antiviral.2024.106006_bib66', 'doi-asserted-by': 'crossref', 'DOI': '10.1177/2632010X241263054', 'article-title': 'Preclinical and clinical investigations of potential drugs and vaccines ' 'for COVID-19 therapy: a comprehensive review with recent update', 'volume': '17', 'author': 'Mia', 'year': '2024', 'journal-title': 'Clinical Pathology'}, { 'key': '10.1016/j.antiviral.2024.106006_bib67', 'doi-asserted-by': 'crossref', 'DOI': '10.1073/pnas.2106379119', 'article-title': 'Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN', 'volume': '119', 'author': 'Moeller', 'year': '2022', 'journal-title': 'Proc. Natl. Acad. Sci. USA'}, { 'key': '10.1016/j.antiviral.2024.106006_bib68', 'doi-asserted-by': 'crossref', 'first-page': '985', 'DOI': '10.1016/S2213-2600(22)00180-1', 'article-title': 'Efficacy and safety of intramuscular administration of ' 'tixagevimab–cilgavimab for early outpatient treatment of COVID-19 ' '(TACKLE): a phase 3, randomised, double-blind, placebo-controlled trial', 'volume': '10', 'author': 'Montgomery', 'year': '2022', 'journal-title': 'Lancet Respir. Med.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib70', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.jviromet.2021.114084', 'article-title': 'Selection, identification, and characterization of SARS-CoV-2 ' 'monoclonal antibody resistant mutants', 'volume': '290', 'author': 'Oladunni', 'year': '2021', 'journal-title': 'J. Virol Methods'}, { 'key': '10.1016/j.antiviral.2024.106006_bib71', 'doi-asserted-by': 'crossref', 'first-page': '72', 'DOI': '10.1016/j.virusres.2014.01.009', 'article-title': 'Evolution of serotype A foot-and-mouth disease virus capsid under ' 'neutralizing antibody pressure in vitro', 'volume': '181', 'author': 'Pandey', 'year': '2014', 'journal-title': 'Virus Res.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib72', 'doi-asserted-by': 'crossref', 'first-page': '449', 'DOI': '10.1126/science.abm8143', 'article-title': 'Antibody-mediated broad sarbecovirus neutralization through ACE2 ' 'molecular mimicry', 'volume': '375', 'author': 'Park', 'year': '2022', 'journal-title': 'Science (New York, N.Y.)'}, { 'key': '10.1016/j.antiviral.2024.106006_bib73', 'doi-asserted-by': 'crossref', 'first-page': '1255', 'DOI': '10.1016/j.chom.2022.07.006', 'article-title': 'Determinants of Spike infectivity, processing, and neutralization in ' 'SARS-CoV-2 Omicron subvariants BA.1 and BA.2', 'volume': '30', 'author': 'Pastorio', 'year': '2022', 'journal-title': 'Cell Host Microbe'}, { 'key': '10.1016/j.antiviral.2024.106006_bib74', 'doi-asserted-by': 'crossref', 'first-page': '899', 'DOI': '10.1038/s41564-021-00908-w', 'article-title': 'The furin cleavage site in the SARS-CoV-2 spike protein is required for ' 'transmission in ferrets', 'volume': '6', 'author': 'Peacock', 'year': '2021', 'journal-title': 'Nature Microbiology'}, { 'key': '10.1016/j.antiviral.2024.106006_bib75', 'doi-asserted-by': 'crossref', 'first-page': '290', 'DOI': '10.1038/s41586-020-2349-y', 'article-title': 'Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV ' 'antibody', 'volume': '583', 'author': 'Pinto', 'year': '2020', 'journal-title': 'Nature'}, { 'key': '10.1016/j.antiviral.2024.106006_bib76', 'doi-asserted-by': 'crossref', 'first-page': '3334', 'DOI': '10.1038/s41467-023-37826-w', 'article-title': 'Generation of SARS-CoV-2 escape mutations by monoclonal antibody ' 'therapy', 'volume': '14', 'author': 'Ragonnet-Cronin', 'year': '2023', 'journal-title': 'Nat. Commun.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib77', 'doi-asserted-by': 'crossref', 'first-page': 'ofac411', 'DOI': '10.1093/ofid/ofac411', 'article-title': 'Real-world clinical outcomes of bebtelovimab and Sotrovimab treatment ' 'of high-risk persons with coronavirus disease 2019 during the omicron ' 'epoch', 'volume': '9', 'author': 'Razonable', 'year': '2022', 'journal-title': 'Open Forum Infect. Dis.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib78', 'doi-asserted-by': 'crossref', 'first-page': '6233', 'DOI': '10.3390/v7122934', 'article-title': 'Identification of a new ribonucleoside inhibitor of ebola virus ' 'replication', 'volume': '7', 'author': 'Reynard', 'year': '2015', 'journal-title': 'Viruses'}, { 'key': '10.1016/j.antiviral.2024.106006_bib79', 'doi-asserted-by': 'crossref', 'first-page': '710', 'DOI': '10.1016/j.molcel.2020.07.027', 'article-title': 'Coronavirus RNA proofreading: molecular basis and therapeutic targeting', 'volume': '79', 'author': 'Robson', 'year': '2020', 'journal-title': 'Mol. Cell'}, { 'key': '10.1016/j.antiviral.2024.106006_bib80', 'doi-asserted-by': 'crossref', 'first-page': '1477', 'DOI': '10.1056/NEJMc2120219', 'article-title': 'Resistance mutations in SARS-CoV-2 Delta variant after Sotrovimab use', 'volume': '386', 'author': 'Rockett', 'year': '2022', 'journal-title': 'N. Engl. J. Med.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib81', 'article-title': 'Using Drosophila melanogaster as a model for genotoxic chemical ' 'mutational studies with a new program, SnpSift', 'volume': '3', 'author': 'Ruden', 'year': '2012', 'journal-title': 'Front. Genet.'}, { 'year': '2015', 'series-title': 'The PyMOL Molecular Graphics System, Version 1.8', 'author': 'Schrodinger', 'key': '10.1016/j.antiviral.2024.106006_bib82'}, { 'key': '10.1016/j.antiviral.2024.106006_bib83', 'doi-asserted-by': 'crossref', 'first-page': '867', 'DOI': '10.1007/s00408-020-00408-4', 'article-title': 'ACE2: the major cell entry receptor for SARS-CoV-2', 'volume': '198', 'author': 'Scialo', 'year': '2020', 'journal-title': 'Lung'}, { 'key': '10.1016/j.antiviral.2024.106006_bib84', 'doi-asserted-by': 'crossref', 'DOI': '10.3389/fimmu.2021.830527', 'article-title': 'Omicron: a heavily mutated SARS-CoV-2 variant exhibits stronger binding ' 'to ACE2 and potently escapes approved COVID-19 therapeutic antibodies', 'volume': '12', 'author': 'Shah', 'year': '2022', 'journal-title': 'Front. Immunol.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib85', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.bbadis.2023.166959', 'article-title': 'Predicting the immune escape of SARS-CoV-2 neutralizing antibodies upon ' 'mutation', 'volume': '1870', 'author': 'Sharma', 'year': '2024', 'journal-title': 'Biochim. Biophys. Acta (BBA) - Mol. Basis Dis.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib86', 'doi-asserted-by': 'crossref', 'DOI': '10.1126/scitranslmed.abb5883', 'article-title': 'An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in ' 'human airway epithelial cell cultures and multiple coronaviruses in ' 'mice', 'volume': '12', 'author': 'Sheahan', 'year': '2020', 'journal-title': 'Sci. Transl. Med.'}, { 'volume': '3', 'first-page': '1049', 'year': '2021', 'author': 'Shruti', 'key': '10.1016/j.antiviral.2024.106006_bib87'}, { 'key': '10.1016/j.antiviral.2024.106006_bib88', 'doi-asserted-by': 'crossref', 'DOI': '10.3390/v14112475', 'article-title': 'Host cell entry and neutralization sensitivity of SARS-CoV-2 lineages ' 'B.1.620 and R.1', 'volume': '14', 'author': 'Sidarovich', 'year': '2022', 'journal-title': 'Viruses'}, { 'key': '10.1016/j.antiviral.2024.106006_bib89', 'doi-asserted-by': 'crossref', 'first-page': '97', 'DOI': '10.1038/s41586-021-03807-6', 'article-title': 'SARS-CoV-2 RBD antibodies that maximize breadth and resistance to ' 'escape', 'volume': '597', 'author': 'Starr', 'year': '2021', 'journal-title': 'Nature'}, { 'key': '10.1016/j.antiviral.2024.106006_bib90', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.xcrm.2021.100255', 'article-title': 'Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal ' 'antibody LY-CoV555 and its cocktail with LY-CoV016', 'volume': '2', 'author': 'Starr', 'year': '2021', 'journal-title': 'Cell Reports Medicine'}, { 'key': '10.1016/j.antiviral.2024.106006_bib91', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.virusres.2021.198469', 'article-title': 'The folate antagonist methotrexate diminishes replication of the ' 'coronavirus SARS-CoV-2 and enhances the antiviral efficacy of ' 'remdesivir in cell culture models', 'volume': '302', 'author': 'Stegmann', 'year': '2021', 'journal-title': 'Virus Res.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib92', 'doi-asserted-by': 'crossref', 'first-page': '455', 'DOI': '10.1007/s40265-022-01684-5', 'article-title': 'Molnupiravir: first approval', 'volume': '82', 'author': 'Syed', 'year': '2022', 'journal-title': 'Drugs'}, { 'key': '10.1016/j.antiviral.2024.106006_bib93', 'doi-asserted-by': 'crossref', 'first-page': '4008', 'DOI': '10.1016/j.cell.2022.08.024', 'article-title': 'Deep mutational learning predicts ACE2 binding and antibody escape to ' 'combinatorial mutations in the SARS-CoV-2 receptor-binding domain', 'volume': '185', 'author': 'Taft', 'year': '2022', 'journal-title': 'Cell'}, { 'key': '10.1016/j.antiviral.2024.106006_bib94', 'doi-asserted-by': 'crossref', 'first-page': '995', 'DOI': '10.1056/NEJMc2119407', 'article-title': 'Efficacy of antibodies and antiviral drugs against covid-19 omicron ' 'variant', 'volume': '386', 'author': 'Takashita', 'year': '2022', 'journal-title': 'N. Engl. J. Med.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib95', 'doi-asserted-by': 'crossref', 'first-page': '1171', 'DOI': '10.1016/j.cell.2021.01.037', 'article-title': 'Circulating SARS-CoV-2 spike N439K variants maintain fitness while ' 'evading antibody-mediated immunity', 'volume': '184', 'author': 'Thomson', 'year': '2021', 'journal-title': 'Cell'}, { 'key': '10.1016/j.antiviral.2024.106006_bib96', 'doi-asserted-by': 'crossref', 'DOI': '10.1126/scitranslmed.aax5866', 'article-title': 'Characterization of orally efficacious influenza drug with high ' 'resistance barrier in ferrets and human airway epithelia', 'volume': '11', 'author': 'Toots', 'year': '2019', 'journal-title': 'Sci. Transl. Med.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib97', 'doi-asserted-by': 'crossref', 'DOI': '10.1128/JVI.01965-17', 'article-title': 'beta-d-N(4)-Hydroxycytidine is a potent anti-alphavirus compound that ' 'induces a high level of mutations in the viral genome', 'volume': '92', 'author': 'Urakova', 'year': '2018', 'journal-title': 'J. Virol.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib98', 'doi-asserted-by': 'crossref', 'first-page': '490', 'DOI': '10.1038/s41591-021-01678-y', 'article-title': 'An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization ' 'by therapeutic monoclonal antibodies', 'volume': '28', 'author': 'VanBlargan', 'year': '2022', 'journal-title': 'Nat. Med.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib99', 'doi-asserted-by': 'crossref', 'first-page': 'e162', 'DOI': '10.1016/j.jinf.2022.07.014', 'article-title': 'Resistance mutations in SARS-CoV-2 omicron variant after ' 'tixagevimab-cilgavimab treatment', 'volume': '85', 'author': 'Vellas', 'year': '2022', 'journal-title': 'J. Infect.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib100', 'doi-asserted-by': 'crossref', 'first-page': '279', 'DOI': '10.1016/j.cell.2022.12.018', 'article-title': 'Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB ' 'subvariants', 'volume': '186', 'author': 'Wang', 'year': '2023', 'journal-title': 'Cell'}, { 'key': '10.1016/j.antiviral.2024.106006_bib101', 'article-title': 'Key mutations in the spike protein of SARS-CoV-2 affecting ' 'neutralization resistance and viral internalization', 'volume': '95', 'author': 'Wang', 'year': '2023', 'journal-title': 'J. Med. Virol.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib102', 'doi-asserted-by': 'crossref', 'first-page': '842', 'DOI': '10.1038/s41467-024-45050-3', 'article-title': 'Identification of a highly conserved neutralizing epitope within the ' 'RBD region of diverse SARS-CoV-2 variants', 'volume': '15', 'author': 'Wang', 'year': '2024', 'journal-title': 'Nat. Commun.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib103', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.celrep.2022.110812', 'article-title': 'LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants', 'volume': '39', 'author': 'Westendorf', 'year': '2022', 'journal-title': 'Cell Rep.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib104', 'doi-asserted-by': 'crossref', 'first-page': '1161', 'DOI': '10.1038/s41564-022-01143-7', 'article-title': 'SARS-CoV-2 Omicron is an immune escape variant with an altered cell ' 'entry pathway', 'volume': '7', 'author': 'Willett', 'year': '2022', 'journal-title': 'Nat Microbiol'}, { 'key': '10.1016/j.antiviral.2024.106006_bib105', 'doi-asserted-by': 'crossref', 'first-page': 'R46', 'DOI': '10.1186/gb-2014-15-3-r46', 'article-title': 'Kraken: ultrafast metagenomic sequence classification using exact ' 'alignments', 'volume': '15', 'author': 'Wood', 'year': '2014', 'journal-title': 'Genome Biol.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib106', 'doi-asserted-by': 'crossref', 'first-page': '202', 'DOI': '10.1038/s41594-020-00549-3', 'article-title': 'A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 ' 'agent', 'volume': '28', 'author': 'Xiao', 'year': '2021', 'journal-title': 'Nat. Struct. Mol. Biol.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib113', 'doi-asserted-by': 'crossref', 'first-page': '164', 'DOI': '10.1186/s13073-021-00985-w', 'article-title': 'Comprehensive mapping of binding hot spots of SARS-CoV-2 RBD-specific ' 'neutralizing antibodies for tracking immune escape variants', 'volume': '13', 'author': 'Yi', 'year': '2021', 'journal-title': 'Genome medicine'}, { 'key': '10.1016/j.antiviral.2024.106006_bib107', 'doi-asserted-by': 'crossref', 'first-page': '1048', 'DOI': '10.1126/science.abn8863', 'article-title': 'Structures of the Omicron spike trimer with ACE2 and an anti-Omicron ' 'antibody', 'volume': '375', 'author': 'Yin', 'year': '2022', 'journal-title': 'Science (New York, N.Y.)'}, { 'key': '10.1016/j.antiviral.2024.106006_bib108', 'doi-asserted-by': 'crossref', 'first-page': '6013', 'DOI': '10.1038/s41467-020-19808-4', 'article-title': 'SARS-CoV-2 spike-protein D614G mutation increases virion spike density ' 'and infectivity', 'volume': '11', 'author': 'Zhang', 'year': '2020', 'journal-title': 'Nat. Commun.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib109', 'doi-asserted-by': 'crossref', 'first-page': '4958', 'DOI': '10.1038/s41467-022-32665-7', 'article-title': 'Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and ' 'lead to a non-RBM-binding monoclonal antibody escape', 'volume': '13', 'author': 'Zhao', 'year': '2022', 'journal-title': 'Nat. Commun.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib110', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.isci.2023.107786', 'article-title': 'N4-hydroxycytidine, the active compound of Molnupiravir, promotes ' 'SARS-CoV-2 mutagenesis and escape from a neutralizing nanobody', 'volume': '26', 'author': 'Zibat', 'year': '2023', 'journal-title': 'iScience'}, { 'key': '10.1016/j.antiviral.2024.106006_bib111', 'doi-asserted-by': 'crossref', 'first-page': '1634', 'DOI': '10.1099/vir.0.065201-0', 'article-title': 'Pseudotyping of vesicular stomatitis virus with the envelope ' 'glycoproteins of highly pathogenic avian influenza viruses', 'volume': '95', 'author': 'Zimmer', 'year': '2014', 'journal-title': 'J. Gen. Virol.'}, { 'key': '10.1016/j.antiviral.2024.106006_bib112', 'doi-asserted-by': 'crossref', 'first-page': '443', 'DOI': '10.1038/s41586-020-2548-6', 'article-title': 'Potently neutralizing and protective human antibodies against ' 'SARS-CoV-2', 'volume': '584', 'author': 'Zost', 'year': '2020', 'journal-title': 'Nature'}], 'container-title': 'Antiviral Research', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://api.elsevier.com/content/article/PII:S0166354224002158?httpAccept=text/xml', 'content-type': 'text/xml', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://api.elsevier.com/content/article/PII:S0166354224002158?httpAccept=text/plain', 'content-type': 'text/plain', 'content-version': 'vor', 'intended-application': 'text-mining'}], 'deposited': { 'date-parts': [[2024, 9, 19]], 'date-time': '2024-09-19T19:26:38Z', 'timestamp': 1726773998000}, 'score': 1, 'resource': {'primary': {'URL': 'https://linkinghub.elsevier.com/retrieve/pii/S0166354224002158'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 11]]}, 'references-count': 105, 'alternative-id': ['S0166354224002158'], 'URL': 'http://dx.doi.org/10.1016/j.antiviral.2024.106006', 'relation': {}, 'ISSN': ['0166-3542'], 'subject': [], 'container-title-short': 'Antiviral Research', 'published': {'date-parts': [[2024, 11]]}, 'assertion': [ {'value': 'Elsevier', 'name': 'publisher', 'label': 'This article is maintained by'}, { 'value': 'Identification of antibody-resistant SARS-CoV-2 mutants via N4-Hydroxycytidine ' 'mutagenesis', 'name': 'articletitle', 'label': 'Article Title'}, {'value': 'Antiviral Research', 'name': 'journaltitle', 'label': 'Journal Title'}, { 'value': 'https://doi.org/10.1016/j.antiviral.2024.106006', 'name': 'articlelink', 'label': 'CrossRef DOI link to publisher maintained version'}, {'value': 'article', 'name': 'content_type', 'label': 'Content Type'}, { 'value': '© 2024 The Authors. Published by Elsevier B.V.', 'name': 'copyright', 'label': 'Copyright'}], 'article-number': '106006'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit