Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchSelect treatment..Select..
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

 

Hypochlorous Acid (HOCl) as a Promising Respiratory Antiseptic

Winter et al., Viruses, doi:10.3390/v17091219, Sep 2025
https://c19early.org/winter.html
Review of hypochlorous acid (HOCl) as a promising respiratory antiseptic for COVID-19 and other viral infections. Authors propose that aerosolized HOCl solutions up to 500 µM (≈26 ppm) could provide an effective early treatment strategy for SARS-CoV-2, influenza, and RSV through inhalation. HOCl is naturally produced by the innate immune system and in vitro studies show efficacy against SARS-CoV-2 at concentrations of 35 ppm and above. Authors suggest HOCl works by disrupting viral disulfide bonds, particularly targeting exposed cysteine residues in the SARS-CoV-2 receptor-binding motif that are critical for ACE2 binding. The compound shows low cytotoxicity, broad antimicrobial spectrum, and established safety in wound treatment applications.
Winter et al., 7 Sep 2025, peer-reviewed, 3 authors. Contact: wilfried.posch@i-med.ac.at (corresponding author), michael.winter@hocl.at, dirk@totoconsulting.net.
Hypochlorous Acid (HOCl) as a Promising Respiratory Antiseptic
Michael Winter, Dirk Boecker, Wilfried Posch
Viruses, doi:10.3390/v17091219
The COVID-19 pandemic has inflicted unprecedented pressure on communities and healthcare systems around the world. An outstandingly broad and intensive investigation of possible therapeutic interventions is currently taking place to prevent similar future threats to the global population. Investigating the related mechanisms of action is often complex and time consuming. Moreover, research on biochemical interactions of new drugs involves a considerable amount of effort, consequently bearing inherent financial and operational risks for pharmaceutical companies. An interesting approach to counteract colonization and infection is the concept of antiseptic treatment in vivo. Antiseptics are cost-effective and globally accessible, due to their ease of production, transportation and handling. A broad spectrum of active agents with different properties is readily available. One of these substances is hypochlorous acid (HOCl), which is also a naturally occurring biocidal agent and as such part of the innate immune system. Its successful history of medical use in wound treatment, combined with low cytotoxicity and documented efficacy against various pathogens, suggests that HOCl might be an effective agent for treating the respiratory mucosa. This could potentially enable therapeutic inhalation for combating bacterial infections and viral pathogens such as human respiratory syncytial, influenza, and SARS-CoV-2 viruses, which will be discussed in the present article.
References
Actimaris, Patient Information Leaflet "Actimaris Nasal Spray
Aherne, Ortiz, Fazli, Davies, Effects of stabilized hypochlorous acid on oral biofilm bacteria, BMC Oral Health, doi:10.1186/s12903-022-02453-2
Akira, Uematsu, Takeuchi, Pathogen Recognition and Innate Immunity, Cell, doi:10.1016/j.cell.2006.02.015
Amatore, Sgarbanti, Aquilano, Baldelli, Limongi et al., Influenza virus replication in lung epithelial cells depends on redox-sensitive pathways activated by NOX4-derived ROS, Cell. Microbiol, doi:10.1111/cmi.12343
Ampiaw, Yaqub, Lee, Electrolyzed water as a disinfectant: A systematic review of factors affecting the production and efficiency of hypochlorous acid, J. Water Process Eng, doi:10.1016/j.jwpe.2021.102228
Andrés, Pérez De La Lastra, Andrés Juan, Plou, Pérez-Lebeña, Impact of Reactive Species on Amino Acids-Biological Relevance in Proteins and Induced Pathologies, Int. J. Mol. Sci, doi:10.3390/ijms232214049
Andrés, Pérez De La Lastra, Juan, Plou, Pérez-Lebeña, Hypochlorous Acid Chemistry in Mammalian Cells-Influence on Infection and Role in Various Pathologies, Int. J. Mol. Sci, doi:10.3390/ijms231810735
Antosova, Mokra, Pepucha, Plevkova, Buday et al., Physiology of nitric oxide in the respiratory system, Physiol. Res. Czech Acad. Sci, doi:10.33549/physiolres.933673
Ashby, Carlson, Scott, Redox Buffering of Hypochlorous Acid by Thiocyanate in Physiologic Fluids, J. Am. Chem. Soc, doi:10.1021/ja0438361
Barakat, Rasmy, Hosny, Kashef, Effect of povidone-iodine and propanol-based mecetronium ethyl sulphate on antimicrobial resistance and virulence in Staphylococcus aureus, Antimicrob. Resist. Infect. Control, doi:10.1186/s13756-022-01178-9
Bauer, HOCl and the control of oncogenesis, J. Inorg. Biochem, doi:10.1016/j.jinorgbio.2017.11.005
Benedusi, Tamburini, Sicurella, Summa, Ferrara et al., The Lesson Learned from the COVID-19 Pandemic: Can an Active Chemical Be Effective, Safe, Harmless-for-Humans and Low-Cost at a Time? Evidence on Aerosolized Hypochlorous Acid, Int. J. Environ. Res. Public Health, doi:10.3390/ijerph192013163
Biedro Ń, Konopi Ński, Marcinkiewicz, Józefowski, Oxidation by Neutrophils-Derived HOCl Increases Immunogenicity of Proteins by Converting Them into Ligands of Several Endocytic Receptors Involved in Antigen Uptake by Dendritic Cells and Macrophages, PLoS ONE, doi:10.1371/journal.pone.0123293
Block, Rowan, Hypochlorous Acid: A Review, J. Oral Maxillofac. Surg, doi:10.1016/j.joms.2020.06.029
Boecker, Breves, Zhang, Bulitta, Antimicrobial Activity in the Gasphase with Hypochloric Acid, Curr. Dir. Biomed. Eng, doi:10.1515/cdbme-2021-2130
Boecker, Zhang, Breves, Herth, Kramer et al., Antimicrobial efficacy, mode of action and in vivo use of hypochlorous acid (HOCl) for prevention or therapeutic support of infections, GMS Hyg. Infect Control, doi:10.3205/dgkh000433
Briotech, Application for Inclusion in the 2021 WHO Essential Medicines List
Butler, Henderson, Capon, Blaskovich, Antibiotics in the clinical pipeline as of December 2022, J. Antibiot, doi:10.1038/s41429-023-00629-8
Bárcena, Mayoral, Quirós, Mitohormesis, an Antiaging Paradigm, Int. Rev. Cell. Mol. Biol, doi:10.1016/bs.ircmb.2018.05.002
Campbell, Kuo, Chlamydia pneumoniae-An infectious risk factor for atherosclerosis?, Nat. Rev. Microbiol, doi:10.1038/nrmicro796
Cegolon, Mirandola, Salaris, Salvati, Mastrangelo et al., Hypothiocyanite and Hypothiocyanite/Lactoferrin Mixture Exhibit Virucidal Activity In Vitro against SARS-CoV-2, Pathogens, doi:10.3390/pathogens10020233
Cespuglio, Amrouni, Meiller, Buguet, Gautier-Sauvigné, Nitric oxide in the regulation of the sleep-wake states, Sleep. Med. Rev, doi:10.1016/j.smrv.2012.01.006
Chen, Chen, Ding, Effectiveness of hypochlorous acid to reduce the biofilms on titanium alloy surfaces in vitro, Int. J. Mol. Sci, doi:10.3390/ijms17071161
Cherney, Duirk, Tarr, Collette, Monitoring the Speciation of Aqueous Free Chlorine from pH 1 to 12 with Raman Spectroscopy to Determine the Identity of the Potent Low-pH Oxidant, Appl. Spectrosc, doi:10.1366/000370206777887062
Choudhury, Shabnam, Ahsan, Kabir, Md Khan et al., Effect of 1% Povidone Iodine Mouthwash/Gargle, Nasal and Eye Drop in COVID-19 patient, Biores. Commun, doi:10.3329/brc.v7i1.54245
Darie, Khanna, Jahn, Osthoff, Bassetti et al., Fast multiplex bacterial PCR of bronchoalveolar lavage for antibiotic stewardship in hospitalised patients with pneumonia at risk of Gram-negative bacterial infection (Flagship II): A multicentre, randomised controlled trial, Lancet Respir. Med, doi:10.1016/S2213-2600(22)00086-8
Davies, Buczkowski, Welch, Green, Mawer et al., Effective in vitro inactivation of SARS-CoV-2 by commercially available mouthwashes, J. Gen. Virol, doi:10.1099/jgv.0.001578
Debnath, Mitra, Dewaker, Prabhakar, Tadala et al., Conformational perturbation of SARS-CoV-2 spike protein using N-acetyl cysteine: An exploration of probable mechanism of action to combat COVID-19, J. Biomol. Struct. Dyn, doi:10.1080/07391102.2023.2234031
Del Rosso, Bhatia, Status Report on Topical Hypochlorous Acid: Clinical Relevance of Specific Formulations, Potential Modes of Action, and Study Outcomes, J. Clin. Aesthetic Dermatol
Dickson, Erb-Downward, Freeman, Mccloskey, Beck et al., Spatial Variation in the Healthy Human Lung Microbiome and the Adapted Island Model of Lung Biogeography, Ann. Am. Thorac. Soc, doi:10.1513/AnnalsATS.201501-029OC
Dominy, Lynch, Ermini, Benedyk, Marczyk et al., Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors, Sci. Adv, doi:10.1126/sciadv.aau3333
Fahy, Dickey, Airway Mucus Function and Dysfunction, N. Engl. J. Med, doi:10.1056/NEJMra0910061
Fernández, Matthews, Seal, Intraabdominal Lavage of Hypochlorous Acid: A New Paradigm for the Septic and Open Abdomen, Wounds
Florido, Chiu, Hogg, Influenza A Virus Hemagglutinin Is Produced in Different Disulfide-Bonded States, Antioxid. Redox Signal, doi:10.1089/ars.2021.0033
Gmbh, Patient Information Leaflet "Plasma Liquid Nasal Spray Gel
Gold, Andriessen, Bhatia, Bitter, Chilukuri et al., Topical stabilized hypochlorous acid: The future gold standard for wound care and scar management in dermatologic and plastic surgery procedures, J. Cosmet. Dermatol, doi:10.1111/jocd.13280
Gorrini, Harris, Mak, Modulation of oxidative stress as an anticancer strategy, Nat. Rev. Drug Discov, doi:10.1038/nrd4002
Guan, Nuth, Weiss, Fausto, Liu et al., Rapidly Kills Corona, Flu, and Herpes to Prevent Aerosol Spread, J. Dent. Res, doi:10.1177/00220345231169434
Hacioglu, Oyardi, Yilmaz, Nagl, Comparative Fungicidal Activities of N-Chlorotaurine and Conventional Antiseptics against Candida spp. isolated from vulvovaginal candidiasis, J. Fungi, doi:10.3390/jof8070682
Hakim, Thammakarn, Suguro, Ishida, Kawamura et al., Evaluation of sprayed hypochlorous acid solutions for their virucidal activity against avian influenza virus through in vitro experiments, J. Vet. Med. Sci, doi:10.1292/jvms.14-0413
Hati, Bhattacharyya, Impact of Thiol-Disulfide Balance on the Binding of Covid-19 Spike Protein with Angiotensin-Converting Enzyme 2 Receptor, ACS Omega, doi:10.1021/acsomega.0c02125
Held, Halko, Hurst, Mechanisms of chlorine oxidation of hydrogen peroxide, J. Am. Chem. Soc, doi:10.1021/ja00486a025
Hicks, Chaiwatpongsakorn, Costello, Mclellan, Ray et al., Five Residues in the Apical Loop of the Respiratory Syncytial Virus Fusion Protein F2 Subunit Are Critical for Its Fusion Activity, J. Virol, doi:10.1128/JVI.00621-18
Hiemstra, Mccray, Bals, The innate immune function of airway epithelial cells in inflammatory lung disease, Eur. Respir. J, doi:10.1183/09031936.00141514
Hong, Lee, Keum, Kim, Jung et al., Clinical and microbiological efficacy of pyrophosphate containing toothpaste: A double-blinded placebo-controlled randomized clinical trial, Microorganisms, doi:10.3390/microorganisms8111806
Ide, Harris, Stevens, Sussams, Hopkins et al., Periodontitis and Cognitive Decline in Alzheimer's Disease, PLoS ONE, doi:10.1371/journal.pone.0151081
Islam, Takeyama, Role of Neutrophil Extracellular Traps in Health and Disease Pathophysiology: Recent Insights and Advances, Int. J. Mol. Sci, doi:10.3390/ijms242115805
Jandova, Snell, Hua, Dickinson, Fimbres et al., Topical hypochlorous acid (HOCl) blocks inflammatory gene expression and tumorigenic progression in UV-exposed SKH-1 high risk mouse skin, Redox Biol, doi:10.1016/j.redox.2021.102042
Jin, Piao, Cha, Kim, Taurine chloramine activates Nrf2, increases HO-1 expression and protects cells from death caused by hydrogen peroxide, J. Clin. Biochem. Nutr, doi:10.3164/jcbn.08-262
Kamal Arefin, Banu, Nasir Uddin, Nurul Fattah Rumi, Khan et al., Virucidal Effect of Povidone Iodine on SARS-CoV-2 in Nasopharynx: An Open-Label Randomized Clinical Trial, Indian. J. Otolaryngol. Head. Neck Surg, doi:10.1007/s12070-022-03106-0
Kampf, Antibiotic Resistance Can Be Enhanced in Gram-Positive Species by Some Biocidal Agents Used for Disinfection, Antibiotics, doi:10.3390/antibiotics8010013
Karimi, Crossett, Cordwell, Pattison, Davies, Characterization of disulfide (cystine) oxidation by HOCl in a model peptide: Evidence for oxygen addition, disulfide bond cleavage and adduct formation with thiols, Free Radic. Biol. Med, doi:10.1016/j.freeradbiomed.2020.04.023
Kawai, Akira, The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors, Nat. Immunol, doi:10.1038/ni.1863
Kayesh, Kohara, Tsukiyama-Kohara, Effects of oxidative stress on viral infections: An overview, npj Viruses, doi:10.1038/s44298-025-00110-3
Kearns, Dawson, Cytoprotective Effect of Taurine Against Hypochlorous Acid Toxicity to PC12 Cells, doi:10.1007/0-306-46838-7_60
Kiamco, Zmuda, Mohamed, Call, Raval et al., Hypochlorous-Acid-Generating Electrochemical Scaffold for Treatment of Wound Biofilms, Sci. Rep, doi:10.1038/s41598-019-38968-y
Kinane, Stathopoulou, Papapanou, Periodontal diseases, Nat. Rev. Dis. Primers, doi:10.1038/nrdp.2017.38
Kramer, Eggers, Exner, Simon, Steinmann et al., Recommendation of the German Society of Hospital Hygiene (DGKH): Prevention of COVID-19 by virucidal gargling and virucidal nasal spray-Updated version April 2022, GMS Hyg. Infect. Control, doi:10.3205/dgkh000416
Kubota, Goda, Tsuru, Yonekura, Yagi et al., Efficacy and safety of strong acid electrolyzed water for peritoneal lavage to prevent surgical site infection in patients with perforated appendicitis, Surg. Today, doi:10.1007/s00595-014-1050-x
Küster, Kramer, Bremert, Langner, Hosemann et al., Eradication of MRSA skull base osteitis by combined treatment with antibiotics and sinonasal irrigation with sodium hypochlorite, Eur. Arch. Oto-Rhino-Laryngol, doi:10.1007/s00405-015-3739-x
Lafon, Diem, Witting, Zaderer, Bellmann-Weiler et al., Potent SARS-CoV-2-Specific T Cell Immunity and Low Anaphylatoxin Levels Correlate with Mild Disease Progression in COVID-19 Patients, Front. Immunol, doi:10.3389/fimmu.2021.684014
Lan, Ge, Yu, Shan, Zhou et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature, doi:10.1038/s41586-020-2180-5
Landino, Lessard, Lactate Dehydrogenase-B Oxidation and Inhibition by Singlet Oxygen and Hypochlorous Acid, Oxygen, doi:10.3390/oxygen4040027
Leiby, Raredon, Niklason, Bioengineering the blood-gas barrier, Compr. Physiol, doi:10.1002/j.2040-4603.2020.tb00124.x
Leung, Zhang, Wang, Ning, Knox et al., Topical hypochlorite ameliorates NF-κB-mediated skin diseases in mice, J. Clin. Investig, doi:10.1172/JCI70895
Lewandowski, Ste ¸pi Ńska, Osuchowski, Kasprzycka, Dobrzy Ńska et al., The HOCl dry fog-is it safe for human cells?, PLoS ONE, doi:10.1371/journal.pone.0304602
Li, Deng, Lei, Ding, Li et al., The Role of Oxidative Stress in Tumorigenesis and Progression, Cells, doi:10.3390/cells13050441
Ludwig, Enzenhofer, Schneider, Rauch, Bodenteich et al., Efficacy of a Carrageenan nasal spray in patients with common cold: A randomized controlled trial, Respir. Res, doi:10.1186/1465-9921-14-124
Lundberg, Weitzberg, Gladwin, The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics, Nat. Rev. Drug Discov, doi:10.1038/nrd2466
Marcinkiewicz, Grabowska, Bereta, Stelmaszynska, Taurine chloramine, a product of activated neutrophils, inhibits in vitro the generation of nitric oxide and other macrophage inflammatory mediators, J. Leukoc. Biol, doi:10.1002/jlb.58.6.667
Marcinkiewicz, Nagl, Kyriakopoulos, Walczewska, Skóra et al., Current Opinion on the Therapeutic Capacity of Taurine-Containing Halogen Derivatives in Infectious and Inflammatory Diseases, Advances in Experimental Medicine and Biology
Mcdonnell, Russell, Antiseptics and Disinfectants: Activity, Action, and Resistance, Clin. Microbiol. Rev, doi:10.1128/CMR.12.1.147
Mckenna, Davies, The inhibition of bacterial growth by hypochlorous acid. Possible role in the bactericidal activity of phagocytes, Biochem. J, doi:10.1042/bj2540685
Mclellan, Chen, Leung, Graepel, Du et al., Crystal Structure of Respiratory Syncytial Virus Fusion Glycoprotein Stabilized in the Prefusion Conformation by Human Antibody D25, Science, doi:10.1126/science.1234914
Mclellan, Yang, Graham, Kwong, Structure of Respiratory Syncytial Virus Fusion Glycoprotein in the Postfusion Conformation Reveals Preservation of Neutralizing Epitopes, J. Virol, doi:10.1128/JVI.00555-11
Mehendale, Clayton, Homyer, Reynolds, HOCl vs OCl-: Clarification on chlorine-based disinfectants used within clinical settings, J. Glob. Health Rep, doi:10.29392/001c.84488
Meister, Brüggemann, Todt, Conzelmann, Müller et al., Virucidal efficacy of different oral rinses against severe acute respiratory syndrome Coronavirus 2, J. Infect. Dis, doi:10.1093/infdis/jiaa471
Meister, Todt, Brüggemann, Steinmann, Banava et al., Virucidal activity of nasal sprays against severe acute respiratory syndrome coronavirus-2, J. Hosp. Infect, doi:10.1016/j.jhin.2021.10.019
Menta, Vidal, Friedman, Hypochlorous Acid: A Blast from the Past, J. Drugs Dermatol
Merry, Ristow, Mitohormesis in exercise training, Free Radic. Biol. Med, doi:10.1016/j.freeradbiomed.2015.11.032
Mueller, Winter, Lippert, Hochauf-Stange, Renner, Double-Blind, Randomised, Placebo-Controlled Study to Investigate the Efficacy of Nasal Spray and Mouth Wash Containing Hypochlorous Acid in SARS-CoV-2 Infected Patients
Mueller, Winter, Renner, A Concept for the Reduction of Mucosal SARS-CoV-2 Load using Hypochloric Acid Solutions, Drug Res, doi:10.1055/a-1467-5956
Nadhan, Patra, Krishnan, Rajan, Gopala et al., Perspectives on mechanistic implications of ROS inducers for targeting viral infections, Eur. J. Pharmacol, doi:10.1016/j.ejphar.2020.173621
Natarelli, Nong, Maloh, Sivamani, Hypochlorous Acid: Applications in Dermatology, J. Integr. Dermatol
Nguyen, Green, Mecsas, Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance, Front. Cell Infect. Microbiol, doi:10.3389/fcimb.2017.00373
Nizer Wsda, Inkovskiy, Overhage, Surviving reactive chlorine stress: Responses of gram-negative bacteria to hypochlorous acid, Microorganisms, doi:10.3390/microorganisms8081220
Noszticzius, Wittmann, Kály-Kullai, Beregvári, Kiss et al., Chlorine dioxide is a size-selective antimicrobial agent, PLoS ONE, doi:10.1371/journal.pone.0079157
Park, Boston, Kase, Sampson, Sobsey, Evaluation of liquid-and fog-based application of sterilox hypochlorous acid solution for surface inactivation of human norovirus, Appl. Environ. Microbiol, doi:10.1128/AEM.02839-06
Posch, Vosper, Noureen, Zaderer, Witting et al., C5aR inhibition of nonimmune cells suppresses inflammation and maintains epithelial integrity in SARS-CoV-2-infected primary human airway epithelia, J. Allergy Clin. Immunol, doi:10.1016/j.jaci.2021.03.038
Qadir Tantry, Ali, Mahmood, Hypochlorous acid decreases antioxidant power, inhibits plasma membrane redox system and pathways of glucose metabolism in human red blood cells, Toxicol Res, doi:10.1093/toxres/tfaa111
Rasmussen, Robins, Stone, Williams, Inhalation of Microaerosolized Hypochlorous Acid (HOCl): Biochemical, Antimicrobial, and Pathological Assessment, Arch. Intern. Med. Res, doi:10.26502/aimr.0111
Rayner, Zhang, Brown, Reyes, Cogger et al., Role of hypochlorous acid (HOCl) and other inflammatory mediators in the induction of macrophage extracellular trap formation, Free Radic. Biol. Med, doi:10.1016/j.freeradbiomed.2018.09.001
Robins, Keim, Robins, Edgar, Meschke et al., Modifications of IL-6 by Hypochlorous Acids: Effects on Receptor Binding, ACS Omega, doi:10.1021/acsomega.1c05297
Schaffer, El Idrissi, Murakami, None, doi:10.1007/978-3-030-93337-1_8
Schrödinger, The PyMOL Molecular Graphics System
Sender, Fuchs, Milo, Revised Estimates for the Number of Human and Bacteria Cells in the Body, PLoS Biol, doi:10.1371/journal.pbio.1002533
Severing, Rembe, Koester, Stuermer, Safety and efficacy profiles of different commercial sodium hypochlorite/hypochlorous acid solutions (NaClO/HClO): Antimicrobial efficacy, cytotoxic impact and physicochemical parameters in vitro, J. Antimicrob. Chemother, doi:10.1093/jac/dky432
Sismanoglu, Ercal, The cytotoxic effects of various endodontic irrigants on the viability of dental mesenchymal stem cells, Aust. Endod. J, doi:10.1111/aej.12570
Snell, Jandova, Wondrak, Hypochlorous Acid: From Innate Immune Factor and Environmental Toxicant to Chemopreventive Agent Targeting Solar UV-Induced Skin Cancer, Front. Oncol, doi:10.3389/fonc.2022.887220
Storkey, Davies, Pattison, Reevaluation of the rate constants for the reaction of hypochlorous acid (HOCl) with cysteine, methionine, and peptide derivatives using a new competition kinetic approach, Free Radic. Biol. Med, doi:10.1016/j.freeradbiomed.2014.04.024
Stroman, Mintun, Epstein, Brimer, Patel et al., Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin, Clin. Ophthalmol, doi:10.2147/OPTH.S132851
Tamaki, Bui, Ngo, Ogawa, Imai, Virucidal effect of acidic electrolyzed water and neutral electrolyzed water on avian influenza viruses, Arch. Virol, doi:10.1007/s00705-013-1840-2
Tanaka, Narazaki, Kishimoto, IL-6 in Inflammation, Immunity, and Disease, Cold Spring Harb. Perspect. Biol, doi:10.1101/cshperspect.a016295
Tazawa, Jadhav, Azuma, Fenno, Mcdonald et al., Hypochlorous acid inactivates oral pathogens and a SARS-CoV-2-surrogate, BMC Oral Health, doi:10.1186/s12903-023-02820-7
Tribble, Angelov, Weltman, Wang, Eswaran et al., Frequency of tongue cleaning impacts the human tongue microbiome composition and enterosalivary circulation of nitrate, Front. Cell. Infect. Microbiol, doi:10.3389/fcimb.2019.00039
Ulfig, Leichert, The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens, Cell. Mol. Life Sci, doi:10.1007/s00018-020-03591-y
Urushidani, Kawayoshi, Kotaki, Saeki, Mori et al., Inactivation of SARS-CoV-2 and influenza A virus by dry fogging hypochlorous acid solution and hydrogen peroxide solution, PLoS ONE, doi:10.1371/journal.pone.0261802
Venkitanarayanan, Ezeike, Hung, Doyle, Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on Plastic Kitchen Cutting Boards by Electrolyzed Oxidizing Water, J. Food Prot, doi:10.4315/0362-028X-62.8.857
Whitsett, Alenghat, Respiratory epithelial cells orchestrate pulmonary innate immunity, Nat. Immunol, doi:10.1038/ni.3045
Woof, Mestecky, Mucosal immunoglobulins, Immunol. Rev, doi:10.1111/j.0105-2896.2005.00290.x
Worbs, Hammerschmidt, Förster, Dendritic cell migration in health and disease, Nat. Rev. Immunol, doi:10.1038/nri.2016.116
Wright, Immunoregulatory functions of surfactant proteins, Nat. Rev. Immunol, doi:10.1038/nri1528
Yang, Chuang, Huang, Fang, Inactivation of Avian Influenza Virus Aerosol Using Membrane-Less Electrolyzed Water Spraying, Aerobiology, doi:10.3390/aerobiology1020006
Yu, Park, Kwon, Jang, The Effect of a Low Concentration of Hypochlorous Acid on Rhinovirus Infection of Nasal Epithelial Cells, Am. J. Rhinol. Allergy, doi:10.2500/ajra.2011.25.3545
Zayed, Vertommen, Simoens, Bernaerts, Boon et al., How well do antimicrobial mouth rinses prevent dysbiosis in an in vitro periodontitis biofilm model?, J. Periodontol, doi:10.1002/JPER.23-0674
Zgliczy Ński, Stelmaszy Ńska, Doma Ński, Ostrowski, Chloramines as intermediates of oxidation reaction of amino acids by myeloperoxidase, Biochim. Biophys. Acta (BBA) Enzymol, doi:10.1016/0005-2744(71)90281-6
Zhao, Xin, Zhao, Zheng, Tian et al., Free chlorine loss during spraying of membraneless acidic electrolyzed water and its antimicrobial effect on airborne bacteria from poultry house, Ann. Agric. Environ. Med, doi:10.5604/1232-1966.1108585
Zwicker, Freitag, Heidel, Kocher, Kramer, Antiseptic efficacy of two mouth rinses in the oral cavity to identify a suitable rinsing solution in radiation-or chemotherapy induced mucositis, BMC Oral Health, doi:10.1186/s12903-023-02884-5
DOI record: { "DOI": "10.3390/v17091219", "ISSN": [ "1999-4915" ], "URL": "http://dx.doi.org/10.3390/v17091219", "abstract": "<jats:p>The COVID-19 pandemic has inflicted unprecedented pressure on communities and healthcare systems around the world. An outstandingly broad and intensive investigation of possible therapeutic interventions is currently taking place to prevent similar future threats to the global population. Investigating the related mechanisms of action is often complex and time consuming. Moreover, research on biochemical interactions of new drugs involves a considerable amount of effort, consequently bearing inherent financial and operational risks for pharmaceutical companies. An interesting approach to counteract colonization and infection is the concept of antiseptic treatment in vivo. Antiseptics are cost-effective and globally accessible, due to their ease of production, transportation and handling. A broad spectrum of active agents with different properties is readily available. One of these substances is hypochlorous acid (HOCl), which is also a naturally occurring biocidal agent and as such part of the innate immune system. Its successful history of medical use in wound treatment, combined with low cytotoxicity and documented efficacy against various pathogens, suggests that HOCl might be an effective agent for treating the respiratory mucosa. This could potentially enable therapeutic inhalation for combating bacterial infections and viral pathogens such as human respiratory syncytial, influenza, and SARS-CoV-2 viruses, which will be discussed in the present article.</jats:p>", "alternative-id": [ "v17091219" ], "author": [ { "ORCID": "https://orcid.org/0000-0003-4667-576X", "affiliation": [ { "name": "Team Winter Kompetenztraining, 1030 Vienna, Austria" } ], "authenticated-orcid": false, "family": "Winter", "given": "Michael", "sequence": "first" }, { "affiliation": [ { "name": "TOTO Consulting LLC, Campbell, CA 95080, USA" } ], "family": "Boecker", "given": "Dirk", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0001-8955-7654", "affiliation": [ { "name": "Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstrasse 41/R311, 6020 Innsbruck, Austria" } ], "authenticated-orcid": false, "family": "Posch", "given": "Wilfried", "sequence": "additional" } ], "container-title": "Viruses", "container-title-short": "Viruses", "content-domain": { "crossmark-restriction": false, "domain": [] }, "created": { "date-parts": [ [ 2025, 9, 8 ] ], "date-time": "2025-09-08T08:06:32Z", "timestamp": 1757318792000 }, "deposited": { "date-parts": [ [ 2025, 10, 9 ] ], "date-time": "2025-10-09T18:41:27Z", "timestamp": 1760035287000 }, "funder": [ { "name": "Austrian Science Fund (FWF)" } ], "indexed": { "date-parts": [ [ 2025, 10, 10 ] ], "date-time": "2025-10-10T01:41:57Z", "timestamp": 1760060517203, "version": "build-2065373602" }, "is-referenced-by-count": 0, "issue": "9", "issued": { "date-parts": [ [ 2025, 9, 7 ] ] }, "journal-issue": { "issue": "9", "published-online": { "date-parts": [ [ 2025, 9 ] ] } }, "language": "en", "license": [ { "URL": "https://creativecommons.org/licenses/by/4.0/", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 9, 7 ] ], "date-time": "2025-09-07T00:00:00Z", "timestamp": 1757203200000 } } ], "link": [ { "URL": "https://www.mdpi.com/1999-4915/17/9/1219/pdf", "content-type": "unspecified", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "1968", "original-title": [], "page": "1219", "prefix": "10.3390", "published": { "date-parts": [ [ 2025, 9, 7 ] ] }, "published-online": { "date-parts": [ [ 2025, 9, 7 ] ] }, "publisher": "MDPI AG", "reference": [ { "DOI": "10.1038/s41429-023-00629-8", "article-title": "Antibiotics in the clinical pipeline as of December 2022", "author": "Butler", "doi-asserted-by": "crossref", "first-page": "431", "journal-title": "J. Antibiot.", "key": "ref_1", "volume": "76", "year": "2023" }, { "DOI": "10.1186/s12903-023-02820-7", "doi-asserted-by": "crossref", "key": "ref_2", "unstructured": "Tazawa, K., Jadhav, R., Azuma, M.M., Fenno, J.C., McDonald, N.J., and Sasaki, H. (2023). Hypochlorous acid inactivates oral pathogens and a SARS-CoV-2-surrogate. BMC Oral Health, 23." }, { "article-title": "Antimicrobial efficacy, mode of action and in vivo use of hypochlorous acid (HOCl) for prevention or therapeutic support of infections", "author": "Boecker", "first-page": "Doc07", "journal-title": "GMS Hyg. Infect Control", "key": "ref_3", "volume": "18", "year": "2023" }, { "DOI": "10.1038/s41598-019-38968-y", "doi-asserted-by": "crossref", "key": "ref_4", "unstructured": "Kiamco, M.M., Zmuda, H.M., Mohamed, A., Call, D.R., Raval, Y.S., Patel, R., and Beyenal, H. (2019). Hypochlorous-Acid-Generating Electrochemical Scaffold for Treatment of Wound Biofilms. Sci. Rep., 9." }, { "DOI": "10.1186/s13756-022-01178-9", "article-title": "Effect of povidone-iodine and propanol-based mecetronium ethyl sulphate on antimicrobial resistance and virulence in Staphylococcus aureus", "author": "Barakat", "doi-asserted-by": "crossref", "first-page": "139", "journal-title": "Antimicrob. Resist. Infect. Control", "key": "ref_5", "volume": "11", "year": "2022" }, { "DOI": "10.3390/ijms17071161", "doi-asserted-by": "crossref", "key": "ref_6", "unstructured": "Chen, C.J., Chen, C.C., and Ding, S.J. (2016). Effectiveness of hypochlorous acid to reduce the biofilms on titanium alloy surfaces in vitro. Int. J. Mol. Sci., 17." }, { "DOI": "10.3390/jof8070682", "doi-asserted-by": "crossref", "key": "ref_7", "unstructured": "Hacioglu, M., Oyardi, O., Yilmaz, F.N., and Nagl, M. (2022). Comparative Fungicidal Activities of N-Chlorotaurine and Conventional Antiseptics against Candida spp. isolated from vulvovaginal candidiasis. J. Fungi, 8." }, { "DOI": "10.1007/s00705-013-1840-2", "article-title": "Virucidal effect of acidic electrolyzed water and neutral electrolyzed water on avian influenza viruses", "author": "Tamaki", "doi-asserted-by": "crossref", "first-page": "405", "journal-title": "Arch. Virol.", "key": "ref_8", "volume": "159", "year": "2014" }, { "DOI": "10.1007/s12070-022-03106-0", "article-title": "Virucidal Effect of Povidone Iodine on SARS-CoV-2 in Nasopharynx: An Open-Label Randomized Clinical Trial", "author": "Banu", "doi-asserted-by": "crossref", "first-page": "3283", "journal-title": "Indian. J. Otolaryngol. Head. Neck Surg.", "key": "ref_9", "volume": "74", "year": "2022" }, { "DOI": "10.1093/infdis/jiaa471", "article-title": "Virucidal efficacy of different oral rinses against severe acute respiratory syndrome Coronavirus 2", "author": "Meister", "doi-asserted-by": "crossref", "first-page": "1289", "journal-title": "J. Infect. Dis.", "key": "ref_10", "volume": "222", "year": "2020" }, { "article-title": "Recommendation of the German Society of Hospital Hygiene (DGKH): Prevention of COVID-19 by virucidal gargling and virucidal nasal spray—Updated version April 2022", "author": "Kramer", "first-page": "Doc13", "journal-title": "GMS Hyg. Infect. Control", "key": "ref_11", "volume": "17", "year": "2022" }, { "DOI": "10.3329/brc.v7i1.54245", "article-title": "Effect of 1% Povidone Iodine Mouthwash/Gargle, Nasal and Eye Drop in COVID-19 patient", "author": "Choudhury", "doi-asserted-by": "crossref", "first-page": "919", "journal-title": "Biores. Commun.", "key": "ref_12", "volume": "7", "year": "2021" }, { "DOI": "10.1099/jgv.0.001578", "article-title": "Effective in vitro inactivation of SARS-CoV-2 by commercially available mouthwashes", "author": "Davies", "doi-asserted-by": "crossref", "first-page": "001578", "journal-title": "J. Gen. Virol.", "key": "ref_13", "volume": "102", "year": "2021" }, { "DOI": "10.1186/1465-9921-14-124", "article-title": "Efficacy of a Carrageenan nasal spray in patients with common cold: A randomized controlled trial", "author": "Ludwig", "doi-asserted-by": "crossref", "first-page": "124", "journal-title": "Respir. Res.", "key": "ref_14", "volume": "14", "year": "2013" }, { "DOI": "10.1016/j.jhin.2021.10.019", "article-title": "Virucidal activity of nasal sprays against severe acute respiratory syndrome coronavirus-2", "author": "Meister", "doi-asserted-by": "crossref", "first-page": "9", "journal-title": "J. Hosp. Infect.", "key": "ref_15", "volume": "120", "year": "2022" }, { "DOI": "10.1007/978-3-030-93337-1_8", "article-title": "Current Opinion on the Therapeutic Capacity of Taurine-Containing Halogen Derivatives in Infectious and Inflammatory Diseases", "author": "Schaffer", "doi-asserted-by": "crossref", "first-page": "83", "journal-title": "Taurine 12", "key": "ref_16", "volume": "Volume 1370", "year": "2022" }, { "DOI": "10.1183/09031936.00141514", "article-title": "The innate immune function of airway epithelial cells in inflammatory lung disease", "author": "Hiemstra", "doi-asserted-by": "crossref", "first-page": "1150", "journal-title": "Eur. Respir. J.", "key": "ref_17", "volume": "45", "year": "2015" }, { "DOI": "10.1007/s00405-015-3739-x", "article-title": "Eradication of MRSA skull base osteitis by combined treatment with antibiotics and sinonasal irrigation with sodium hypochlorite", "author": "Kramer", "doi-asserted-by": "crossref", "first-page": "1951", "journal-title": "Eur. Arch. Oto-Rhino-Laryngol.", "key": "ref_18", "volume": "273", "year": "2016" }, { "DOI": "10.3389/fcimb.2017.00373", "doi-asserted-by": "crossref", "key": "ref_19", "unstructured": "Nguyen, G.T., Green, E.R., and Mecsas, J. (2017). Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front. Cell Infect. Microbiol., 7." }, { "DOI": "10.3390/ijms231810735", "doi-asserted-by": "crossref", "key": "ref_20", "unstructured": "Andrés, C.M.C., Pérez de la Lastra, J.M., Juan, C.A., Plou, F.J., and Pérez-Lebeña, E. (2022). Hypochlorous Acid Chemistry in Mammalian Cells—Influence on Infection and Role in Various Pathologies. Int. J. Mol. Sci., 23." }, { "DOI": "10.1007/s00018-020-03591-y", "article-title": "The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens", "author": "Ulfig", "doi-asserted-by": "crossref", "first-page": "385", "journal-title": "Cell. Mol. Life Sci.", "key": "ref_21", "volume": "78", "year": "2021" }, { "DOI": "10.1016/j.joms.2020.06.029", "article-title": "Hypochlorous Acid: A Review", "author": "Block", "doi-asserted-by": "crossref", "first-page": "1461", "journal-title": "J. Oral Maxillofac. Surg.", "key": "ref_22", "volume": "78", "year": "2020" }, { "DOI": "10.1016/j.jwpe.2021.102228", "article-title": "Electrolyzed water as a disinfectant: A systematic review of factors affecting the production and efficiency of hypochlorous acid", "author": "Ampiaw", "doi-asserted-by": "crossref", "first-page": "102228", "journal-title": "J. Water Process Eng.", "key": "ref_23", "volume": "43", "year": "2021" }, { "key": "ref_24", "unstructured": "USDA (2024, April 06). Hypochlorous Acid. Technical Evaluation Report, Available online: https://www.ams.usda.gov/sites/default/files/media/Hypochlorous%20Acid%20TR%2008%2013%2015.pdf." }, { "key": "ref_25", "unstructured": "Briotech, Inc. (2025, September 04). Application for Inclusion in the 2021 WHO Essential Medicines List. Available online: https://www.who.int/groups/expert-committee-on-selection-and-use-of-essential-medicines/23rd-expert-committee/a18-hypochlorous." }, { "DOI": "10.1366/000370206777887062", "article-title": "Monitoring the Speciation of Aqueous Free Chlorine from pH 1 to 12 with Raman Spectroscopy to Determine the Identity of the Potent Low-pH Oxidant", "author": "Cherney", "doi-asserted-by": "crossref", "first-page": "764", "journal-title": "Appl. Spectrosc.", "key": "ref_26", "volume": "60", "year": "2006" }, { "DOI": "10.1111/jocd.13280", "article-title": "Topical stabilized hypochlorous acid: The future gold standard for wound care and scar management in dermatologic and plastic surgery procedures", "author": "Gold", "doi-asserted-by": "crossref", "first-page": "270", "journal-title": "J. Cosmet. Dermatol.", "key": "ref_27", "volume": "19", "year": "2020" }, { "DOI": "10.1016/j.freeradbiomed.2018.09.001", "article-title": "Role of hypochlorous acid (HOCl) and other inflammatory mediators in the induction of macrophage extracellular trap formation", "author": "Rayner", "doi-asserted-by": "crossref", "first-page": "25", "journal-title": "Free Radic. Biol. Med.", "key": "ref_28", "volume": "129", "year": "2018" }, { "DOI": "10.20944/preprints202309.1883.v1", "doi-asserted-by": "crossref", "key": "ref_29", "unstructured": "Islam, M.d.M., and Takeyama, N. (2023). Role of Neutrophil Extracellular Traps in Health and Disease Pathophysiology: Recent Insights and Advances. Int. J. Mol. Sci., 24." }, { "DOI": "10.1371/journal.pone.0123293", "doi-asserted-by": "crossref", "key": "ref_30", "unstructured": "Biedroń, R., Konopiński, M.K., Marcinkiewicz, J., and Józefowski, S. (2015). Oxidation by Neutrophils-Derived HOCl Increases Immunogenicity of Proteins by Converting Them into Ligands of Several Endocytic Receptors Involved in Antigen Uptake by Dendritic Cells and Macrophages. PLoS ONE, 10." }, { "DOI": "10.1016/0005-2744(71)90281-6", "article-title": "Chloramines as intermediates of oxidation reaction of amino acids by myeloperoxidase", "author": "Ostrowski", "doi-asserted-by": "crossref", "first-page": "419", "journal-title": "Biochim. Biophys. Acta (BBA) Enzymol.", "key": "ref_31", "volume": "235", "year": "1971" }, { "DOI": "10.1101/036103", "doi-asserted-by": "crossref", "key": "ref_32", "unstructured": "Sender, R., Fuchs, S., and Milo, R. (2016). Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol., 14." }, { "DOI": "10.1038/nature11234", "doi-asserted-by": "crossref", "key": "ref_33", "unstructured": "Human Microbiome Project Consortium (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214." }, { "DOI": "10.1038/nrmicro796", "article-title": "Chlamydia pneumoniae—An infectious risk factor for atherosclerosis?", "author": "Campbell", "doi-asserted-by": "crossref", "first-page": "23", "journal-title": "Nat. Rev. Microbiol.", "key": "ref_34", "volume": "2", "year": "2004" }, { "DOI": "10.1371/journal.pone.0151081", "doi-asserted-by": "crossref", "key": "ref_35", "unstructured": "Ide, M., Harris, M., Stevens, A., Sussams, R., Hopkins, V., Culliford, D., Fuller, J., Ibbett, P., Raybould, R., and Thomas, R. (2016). Periodontitis and Cognitive Decline in Alzheimer’s Disease. PLoS ONE, 11." }, { "DOI": "10.1126/sciadv.aau3333", "article-title": "Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors", "author": "Dominy", "doi-asserted-by": "crossref", "first-page": "eaau3333", "journal-title": "Sci. Adv.", "key": "ref_36", "volume": "5", "year": "2019" }, { "DOI": "10.1038/nrdp.2017.38", "article-title": "Periodontal diseases", "author": "Kinane", "doi-asserted-by": "crossref", "first-page": "17038", "journal-title": "Nat. Rev. Dis. Primers", "key": "ref_37", "volume": "3", "year": "2017" }, { "DOI": "10.1038/nrd2466", "article-title": "The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics", "author": "Lundberg", "doi-asserted-by": "crossref", "first-page": "156", "journal-title": "Nat. Rev. Drug Discov.", "key": "ref_38", "volume": "7", "year": "2008" }, { "DOI": "10.3389/fcimb.2019.00039", "doi-asserted-by": "crossref", "key": "ref_39", "unstructured": "Tribble, G.D., Angelov, N., Weltman, R., Wang, B.Y., Eswaran, S.V., Gay, I.C., Parthasarathy, K., Dao, D.H.V., Richardson, K.N., and Ismail, N.M. (2019). Frequency of tongue cleaning impacts the human tongue microbiome composition and enterosalivary circulation of nitrate. Front. Cell. Infect. Microbiol., 9." }, { "DOI": "10.1016/j.smrv.2012.01.006", "article-title": "Nitric oxide in the regulation of the sleep-wake states", "author": "Cespuglio", "doi-asserted-by": "crossref", "first-page": "265", "journal-title": "Sleep. Med. Rev.", "key": "ref_40", "volume": "16", "year": "2012" }, { "DOI": "10.1056/NEJMra0910061", "article-title": "Airway Mucus Function and Dysfunction", "author": "Fahy", "doi-asserted-by": "crossref", "first-page": "2233", "journal-title": "N. Engl. J. Med.", "key": "ref_41", "volume": "363", "year": "2010" }, { "DOI": "10.1038/nri.2016.116", "article-title": "Dendritic cell migration in health and disease", "author": "Worbs", "doi-asserted-by": "crossref", "first-page": "30", "journal-title": "Nat. Rev. Immunol.", "key": "ref_42", "volume": "17", "year": "2017" }, { "DOI": "10.1038/ni.3045", "article-title": "Respiratory epithelial cells orchestrate pulmonary innate immunity", "author": "Whitsett", "doi-asserted-by": "crossref", "first-page": "27", "journal-title": "Nat. Immunol.", "key": "ref_43", "volume": "16", "year": "2015" }, { "DOI": "10.1016/j.cell.2006.02.015", "article-title": "Pathogen Recognition and Innate Immunity", "author": "Akira", "doi-asserted-by": "crossref", "first-page": "783", "journal-title": "Cell", "key": "ref_44", "volume": "124", "year": "2006" }, { "DOI": "10.1038/ni.1863", "article-title": "The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors", "author": "Kawai", "doi-asserted-by": "crossref", "first-page": "373", "journal-title": "Nat. Immunol.", "key": "ref_45", "volume": "11", "year": "2010" }, { "DOI": "10.1101/cshperspect.a016295", "doi-asserted-by": "crossref", "key": "ref_46", "unstructured": "Tanaka, T., Narazaki, M., and Kishimoto, T. (2014). IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol., 6." }, { "DOI": "10.1038/nri1528", "article-title": "Immunoregulatory functions of surfactant proteins", "author": "Wright", "doi-asserted-by": "crossref", "first-page": "58", "journal-title": "Nat. Rev. Immunol.", "key": "ref_47", "volume": "5", "year": "2005" }, { "DOI": "10.1111/j.0105-2896.2005.00290.x", "article-title": "Mucosal immunoglobulins", "author": "Woof", "doi-asserted-by": "crossref", "first-page": "64", "journal-title": "Immunol. Rev.", "key": "ref_48", "volume": "206", "year": "2005" }, { "DOI": "10.1513/AnnalsATS.201501-029OC", "article-title": "Spatial Variation in the Healthy Human Lung Microbiome and the Adapted Island Model of Lung Biogeography", "author": "Dickson", "doi-asserted-by": "crossref", "first-page": "821", "journal-title": "Ann. Am. Thorac. Soc.", "key": "ref_49", "volume": "12", "year": "2015" }, { "DOI": "10.2147/OPTH.S132851", "article-title": "Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin", "author": "Stroman", "doi-asserted-by": "crossref", "first-page": "707", "journal-title": "Clin. Ophthalmol.", "key": "ref_50", "volume": "11", "year": "2017" }, { "DOI": "10.3390/microorganisms8111806", "doi-asserted-by": "crossref", "key": "ref_51", "unstructured": "Hong, I., Lee, H.G., Keum, H.L., Kim, M.J., Jung, U.W., Kim, K., Kim, S.Y., Park, T., Kim, H.J., and Kim, J.J. (2020). Clinical and microbiological efficacy of pyrophosphate containing toothpaste: A double-blinded placebo-controlled randomized clinical trial. Microorganisms, 8." }, { "DOI": "10.1002/JPER.23-0674", "article-title": "How well do antimicrobial mouth rinses prevent dysbiosis in an in vitro periodontitis biofilm model?", "author": "Zayed", "doi-asserted-by": "crossref", "first-page": "880", "journal-title": "J. Periodontol.", "key": "ref_52", "volume": "95", "year": "2024" }, { "key": "ref_53", "unstructured": "U.S. Food & Drug Administration (2025, July 03). 510(k) Premarket Notification—Spectricept Skin and Wound Cleanser (K213514), Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf21/K213514.pdf." }, { "key": "ref_54", "unstructured": "U.S. Food & Drug Administration (2025, July 02). 510(k) Premarket Notification—Microdacyn Wound Care Solution (K233399), Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf23/K233399.pdf." }, { "article-title": "Status Report on Topical Hypochlorous Acid: Clinical Relevance of Specific Formulations, Potential Modes of Action, and Study Outcomes", "author": "Bhatia", "first-page": "36", "journal-title": "J. Clin. Aesthetic Dermatol.", "key": "ref_55", "volume": "11", "year": "2018" }, { "article-title": "Hypochlorous Acid: A Blast from the Past", "author": "Menta", "first-page": "909", "journal-title": "J. Drugs Dermatol.", "key": "ref_56", "volume": "23", "year": "2024" }, { "key": "ref_57", "unstructured": "Regeno GmbH (2022). Patient Information Leaflet “Plasma Liquid Nasal Spray Gel.”, Regeno, GmbH." }, { "DOI": "10.1093/jac/dky432", "article-title": "Safety and efficacy profiles of different commercial sodium hypochlorite/hypochlorous acid solutions (NaClO/HClO): Antimicrobial efficacy, cytotoxic impact and physicochemical parameters in vitro", "author": "Severing", "doi-asserted-by": "crossref", "first-page": "365", "journal-title": "J. Antimicrob. Chemother.", "key": "ref_58", "volume": "74", "year": "2019" }, { "key": "ref_59", "unstructured": "(2024). Arbeitsplatzgrenzwerte (Standard No. TRGS 900)." }, { "key": "ref_60", "unstructured": "Actimaris, A.G. (2020). Patient Information Leaflet “Actimaris Nasal Spray.”, Actimaris, A.G." }, { "DOI": "10.1111/aej.12570", "article-title": "The cytotoxic effects of various endodontic irrigants on the viability of dental mesenchymal stem cells", "author": "Sismanoglu", "doi-asserted-by": "crossref", "first-page": "305", "journal-title": "Aust. Endod. J.", "key": "ref_61", "volume": "48", "year": "2022" }, { "article-title": "HOCl vs OCl−: Clarification on chlorine-based disinfectants used within clinical settings", "author": "Mehendale", "first-page": "e2023052", "journal-title": "J. Glob. Health Rep.", "key": "ref_62", "volume": "7", "year": "2023" }, { "DOI": "10.3390/ijerph192013163", "doi-asserted-by": "crossref", "key": "ref_63", "unstructured": "Benedusi, M., Tamburini, E., Sicurella, M., Summa, D., Ferrara, F., Marconi, P., Cervellati, F., Costa, S., and Valacchi, G. (2022). The Lesson Learned from the COVID-19 Pandemic: Can an Active Chemical Be Effective, Safe, Harmless-for-Humans and Low-Cost at a Time? Evidence on Aerosolized Hypochlorous Acid. Int. J. Environ. Res. Public Health, 19." }, { "DOI": "10.1371/journal.pone.0304602", "doi-asserted-by": "crossref", "key": "ref_64", "unstructured": "Lewandowski, R.B., Stȩpińska, M., Osuchowski, Ł., Kasprzycka, W., Dobrzyńska, M., Mierczyk, Z., and Trafny, E.A. (2024). The HOCl dry fog-is it safe for human cells?. PLoS ONE, 19." }, { "DOI": "10.1515/cdbme-2021-2130", "article-title": "Antimicrobial Activity in the Gasphase with Hypochloric Acid", "author": "Boecker", "doi-asserted-by": "crossref", "first-page": "511", "journal-title": "Curr. Dir. Biomed. Eng.", "key": "ref_65", "volume": "7", "year": "2021" }, { "DOI": "10.26502/aimr.0111", "article-title": "Inhalation of Microaerosolized Hypochlorous Acid (HOCl): Biochemical, Antimicrobial, and Pathological Assessment", "author": "Rasmussen", "doi-asserted-by": "crossref", "first-page": "311", "journal-title": "Arch. Intern. Med. Res.", "key": "ref_66", "volume": "05", "year": "2022" }, { "DOI": "10.1371/journal.pone.0079157", "doi-asserted-by": "crossref", "key": "ref_67", "unstructured": "Noszticzius, Z., Wittmann, M., Kály-Kullai, K., Beregvári, Z., Kiss, I., Rosivall, L., and Szegedi, J. (2013). Chlorine dioxide is a size-selective antimicrobial agent. PLoS ONE, 8." }, { "DOI": "10.1002/j.2040-4603.2020.tb00124.x", "article-title": "Bioengineering the blood-gas barrier", "author": "Leiby", "doi-asserted-by": "crossref", "first-page": "415", "journal-title": "Compr. Physiol.", "key": "ref_68", "volume": "10", "year": "2020" }, { "DOI": "10.1093/toxres/tfaa111", "article-title": "Hypochlorous acid decreases antioxidant power, inhibits plasma membrane redox system and pathways of glucose metabolism in human red blood cells", "author": "Ali", "doi-asserted-by": "crossref", "first-page": "264", "journal-title": "Toxicol Res.", "key": "ref_69", "volume": "10", "year": "2021" }, { "DOI": "10.3164/jcbn.08-262", "article-title": "Taurine chloramine activates Nrf2, increases HO-1 expression and protects cells from death caused by hydrogen peroxide", "author": "Jin", "doi-asserted-by": "crossref", "first-page": "37", "journal-title": "J. Clin. Biochem. Nutr.", "key": "ref_70", "volume": "45", "year": "2009" }, { "DOI": "10.1007/0-306-46838-7_60", "article-title": "Cytoprotective Effect of Taurine Against Hypochlorous Acid Toxicity to PC12 Cells", "author": "Huxtable", "doi-asserted-by": "crossref", "first-page": "563", "journal-title": "Taurine 4; Advances in Experimental Medicine and Biology", "key": "ref_71", "volume": "Volume 483", "year": "2002" }, { "article-title": "Physiology of nitric oxide in the respiratory system", "author": "Antosova", "first-page": "S159", "journal-title": "Physiol. Res. Czech Acad. Sci.", "key": "ref_72", "volume": "66", "year": "2017" }, { "DOI": "10.1016/j.freeradbiomed.2014.04.024", "article-title": "Reevaluation of the rate constants for the reaction of hypochlorous acid (HOCl) with cysteine, methionine, and peptide derivatives using a new competition kinetic approach", "author": "Storkey", "doi-asserted-by": "crossref", "first-page": "60", "journal-title": "Free Radic. Biol. Med.", "key": "ref_73", "volume": "73", "year": "2014" }, { "DOI": "10.1021/ja0438361", "article-title": "Redox Buffering of Hypochlorous Acid by Thiocyanate in Physiologic Fluids", "author": "Ashby", "doi-asserted-by": "crossref", "first-page": "15976", "journal-title": "J. Am. Chem. Soc.", "key": "ref_74", "volume": "126", "year": "2004" }, { "DOI": "10.3390/pathogens10020233", "doi-asserted-by": "crossref", "key": "ref_75", "unstructured": "Cegolon, L., Mirandola, M., Salaris, C., Salvati, M.V., Mastrangelo, G., and Salata, C. (2021). Hypothiocyanite and Hypothiocyanite/Lactoferrin Mixture Exhibit Virucidal Activity In Vitro against SARS-CoV-2. Pathogens, 10." }, { "DOI": "10.1016/bs.ircmb.2018.05.002", "article-title": "Mitohormesis, an Antiaging Paradigm", "author": "Mayoral", "doi-asserted-by": "crossref", "first-page": "35", "journal-title": "Int. Rev. Cell. Mol. Biol.", "key": "ref_76", "volume": "340", "year": "2018" }, { "DOI": "10.1016/j.freeradbiomed.2015.11.032", "article-title": "Mitohormesis in exercise training", "author": "Merry", "doi-asserted-by": "crossref", "first-page": "123", "journal-title": "Free Radic. Biol. Med.", "key": "ref_77", "volume": "98", "year": "2016" }, { "DOI": "10.1128/CMR.12.1.147", "article-title": "Antiseptics and Disinfectants: Activity, Action, and Resistance", "author": "McDonnell", "doi-asserted-by": "crossref", "first-page": "147", "journal-title": "Clin. Microbiol. Rev.", "key": "ref_78", "volume": "12", "year": "1999" }, { "DOI": "10.1042/bj2540685", "article-title": "The inhibition of bacterial growth by hypochlorous acid. Possible role in the bactericidal activity of phagocytes", "author": "McKenna", "doi-asserted-by": "crossref", "first-page": "685", "journal-title": "Biochem. J.", "key": "ref_79", "volume": "254", "year": "1988" }, { "DOI": "10.1016/j.ejphar.2020.173621", "article-title": "Perspectives on mechanistic implications of ROS inducers for targeting viral infections", "author": "Nadhan", "doi-asserted-by": "crossref", "first-page": "173621", "journal-title": "Eur. J. Pharmacol.", "key": "ref_80", "volume": "890", "year": "2021" }, { "DOI": "10.1038/s44298-025-00110-3", "article-title": "Effects of oxidative stress on viral infections: An overview", "author": "Kayesh", "doi-asserted-by": "crossref", "first-page": "27", "journal-title": "npj Viruses", "key": "ref_81", "volume": "3", "year": "2025" }, { "DOI": "10.1021/acsomega.0c02125", "article-title": "Impact of Thiol-Disulfide Balance on the Binding of Covid-19 Spike Protein with Angiotensin-Converting Enzyme 2 Receptor", "author": "Hati", "doi-asserted-by": "crossref", "first-page": "16292", "journal-title": "ACS Omega", "key": "ref_82", "volume": "5", "year": "2020" }, { "DOI": "10.1016/j.freeradbiomed.2020.04.023", "article-title": "Characterization of disulfide (cystine) oxidation by HOCl in a model peptide: Evidence for oxygen addition, disulfide bond cleavage and adduct formation with thiols", "author": "Karimi", "doi-asserted-by": "crossref", "first-page": "62", "journal-title": "Free Radic. Biol. Med.", "key": "ref_83", "volume": "154", "year": "2020" }, { "DOI": "10.3390/oxygen4040027", "article-title": "Lactate Dehydrogenase-B Oxidation and Inhibition by Singlet Oxygen and Hypochlorous Acid", "author": "Landino", "doi-asserted-by": "crossref", "first-page": "432", "journal-title": "Oxygen", "key": "ref_84", "volume": "4", "year": "2024" }, { "DOI": "10.1038/s41586-020-2180-5", "article-title": "Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor", "author": "Lan", "doi-asserted-by": "crossref", "first-page": "215", "journal-title": "Nature", "key": "ref_85", "volume": "581", "year": "2020" }, { "key": "ref_86", "unstructured": "Schrödinger, L.L.C. (2025, June 23). The PyMOL Molecular Graphics System. Available online: https://pymol.org." }, { "DOI": "10.1080/07391102.2023.2234031", "article-title": "Conformational perturbation of SARS-CoV-2 spike protein using N-acetyl cysteine: An exploration of probable mechanism of action to combat COVID-19", "author": "Debnath", "doi-asserted-by": "crossref", "first-page": "5042", "journal-title": "J. Biomol. Struct. Dyn.", "key": "ref_87", "volume": "42", "year": "2024" }, { "DOI": "10.3390/ijms232214049", "doi-asserted-by": "crossref", "key": "ref_88", "unstructured": "Andrés, C.M.C., Pérez de la Lastra, J.M., Andrés Juan, C., Plou, F.J., and Pérez-Lebeña, E. (2022). Impact of Reactive Species on Amino Acids—Biological Relevance in Proteins and Induced Pathologies. Int. J. Mol. Sci., 23." }, { "DOI": "10.1128/JVI.00621-18", "article-title": "Five Residues in the Apical Loop of the Respiratory Syncytial Virus Fusion Protein F2 Subunit Are Critical for Its Fusion Activity", "author": "Hicks", "doi-asserted-by": "crossref", "first-page": "e00621-18", "journal-title": "J. Virol.", "key": "ref_89", "volume": "92", "year": "2018" }, { "DOI": "10.1128/JVI.00555-11", "article-title": "Structure of Respiratory Syncytial Virus Fusion Glycoprotein in the Postfusion Conformation Reveals Preservation of Neutralizing Epitopes", "author": "McLellan", "doi-asserted-by": "crossref", "first-page": "7788", "journal-title": "J. Virol.", "key": "ref_90", "volume": "85", "year": "2011" }, { "DOI": "10.1126/science.1234914", "article-title": "Crystal Structure of Respiratory Syncytial Virus Fusion Glycoprotein Stabilized in the Prefusion Conformation by Human Antibody D25", "author": "McLellan", "doi-asserted-by": "crossref", "first-page": "1113", "journal-title": "Science", "key": "ref_91", "volume": "340", "year": "2013" }, { "DOI": "10.1089/ars.2021.0033", "article-title": "Influenza A Virus Hemagglutinin Is Produced in Different Disulfide-Bonded States", "author": "Florido", "doi-asserted-by": "crossref", "first-page": "1081", "journal-title": "Antioxid. Redox Signal.", "key": "ref_92", "volume": "35", "year": "2021" }, { "DOI": "10.3390/aerobiology1020006", "article-title": "Inactivation of Avian Influenza Virus Aerosol Using Membrane-Less Electrolyzed Water Spraying", "author": "Yang", "doi-asserted-by": "crossref", "first-page": "70", "journal-title": "Aerobiology", "key": "ref_93", "volume": "1", "year": "2023" }, { "DOI": "10.1371/journal.pone.0261802", "doi-asserted-by": "crossref", "key": "ref_94", "unstructured": "Urushidani, M., Kawayoshi, A., Kotaki, T., Saeki, K., Mori, Y., and Kameoka, M. (2022). Inactivation of SARS-CoV-2 and influenza A virus by dry fogging hypochlorous acid solution and hydrogen peroxide solution. PLoS ONE, 17." }, { "DOI": "10.5604/1232-1966.1108585", "article-title": "Free chlorine loss during spraying of membraneless acidic electrolyzed water and its antimicrobial effect on airborne bacteria from poultry house", "author": "Zhao", "doi-asserted-by": "crossref", "first-page": "249", "journal-title": "Ann. Agric. Environ. Med.", "key": "ref_95", "volume": "21", "year": "2014" }, { "DOI": "10.1111/cmi.12343", "article-title": "Influenza virus replication in lung epithelial cells depends on redox-sensitive pathways activated by NOX4-derived ROS", "author": "Amatore", "doi-asserted-by": "crossref", "first-page": "131", "journal-title": "Cell. Microbiol.", "key": "ref_96", "volume": "17", "year": "2015" }, { "DOI": "10.4315/0362-028X-62.8.857", "article-title": "Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on Plastic Kitchen Cutting Boards by Electrolyzed Oxidizing Water", "author": "Venkitanarayanan", "doi-asserted-by": "crossref", "first-page": "857", "journal-title": "J. Food Prot.", "key": "ref_97", "volume": "62", "year": "1999" }, { "DOI": "10.1007/s00595-014-1050-x", "article-title": "Efficacy and safety of strong acid electrolyzed water for peritoneal lavage to prevent surgical site infection in patients with perforated appendicitis", "author": "Kubota", "doi-asserted-by": "crossref", "first-page": "876", "journal-title": "Surg. Today", "key": "ref_98", "volume": "45", "year": "2015" }, { "article-title": "Intraabdominal Lavage of Hypochlorous Acid: A New Paradigm for the Septic and Open Abdomen", "author": "Matthews", "first-page": "107", "journal-title": "Wounds", "key": "ref_99", "volume": "32", "year": "2020" }, { "DOI": "10.3390/antibiotics8010013", "doi-asserted-by": "crossref", "key": "ref_100", "unstructured": "Kampf, G. (2019). Antibiotic Resistance Can Be Enhanced in Gram-Positive Species by Some Biocidal Agents Used for Disinfection. Antibiotics, 8." }, { "DOI": "10.3390/cells13050441", "doi-asserted-by": "crossref", "key": "ref_101", "unstructured": "Li, K., Deng, Z., Lei, C., Ding, X., Li, J., and Wang, C. (2024). The Role of Oxidative Stress in Tumorigenesis and Progression. Cells, 13." }, { "DOI": "10.1038/nrd4002", "article-title": "Modulation of oxidative stress as an anticancer strategy", "author": "Gorrini", "doi-asserted-by": "crossref", "first-page": "931", "journal-title": "Nat. Rev. Drug Discov.", "key": "ref_102", "volume": "12", "year": "2013" }, { "DOI": "10.1016/j.jinorgbio.2017.11.005", "article-title": "HOCl and the control of oncogenesis", "author": "Bauer", "doi-asserted-by": "crossref", "first-page": "10", "journal-title": "J. Inorg. Biochem.", "key": "ref_103", "volume": "179", "year": "2018" }, { "DOI": "10.1172/JCI70895", "article-title": "Topical hypochlorite ameliorates NF-κB-mediated skin diseases in mice", "author": "Leung", "doi-asserted-by": "crossref", "first-page": "5361", "journal-title": "J. Clin. Investig.", "key": "ref_104", "volume": "123", "year": "2013" }, { "key": "ref_105", "unstructured": "Natarelli, N., Nong, Y., Maloh, J., and Sivamani, R. Hypochlorous Acid: Applications in Dermatology. J. Integr. Dermatol., Available online: https://jintegrativederm.org/article/view/93/17." }, { "DOI": "10.1016/j.redox.2021.102042", "doi-asserted-by": "crossref", "key": "ref_106", "unstructured": "Jandova, J., Snell, J., Hua, A., Dickinson, S., Fimbres, J., and Wondrak, G.T. (2021). Topical hypochlorous acid (HOCl) blocks inflammatory gene expression and tumorigenic progression in UV-exposed SKH-1 high risk mouse skin. Redox Biol., 45." }, { "DOI": "10.3389/fonc.2022.887220", "doi-asserted-by": "crossref", "key": "ref_107", "unstructured": "Snell, J.A., Jandova, J., and Wondrak, G.T. (2022). Hypochlorous Acid: From Innate Immune Factor and Environmental Toxicant to Chemopreventive Agent Targeting Solar UV-Induced Skin Cancer. Front. Oncol., 12." }, { "DOI": "10.1186/s12903-023-02884-5", "doi-asserted-by": "crossref", "key": "ref_108", "unstructured": "Zwicker, P., Freitag, M., Heidel, F.H., Kocher, T., and Kramer, A. (2023). Antiseptic efficacy of two mouth rinses in the oral cavity to identify a suitable rinsing solution in radiation- or chemotherapy induced mucositis. BMC Oral Health, 23." }, { "DOI": "10.1021/acsomega.1c05297", "article-title": "Modifications of IL-6 by Hypochlorous Acids: Effects on Receptor Binding", "author": "Robins", "doi-asserted-by": "crossref", "first-page": "35593", "journal-title": "ACS Omega", "key": "ref_109", "volume": "6", "year": "2021" }, { "DOI": "10.1002/jlb.58.6.667", "article-title": "Taurine chloramine, a product of activated neutrophils, inhibits in vitro the generation of nitric oxide and other macrophage inflammatory mediators", "author": "Marcinkiewicz", "doi-asserted-by": "crossref", "first-page": "667", "journal-title": "J. Leukoc. Biol.", "key": "ref_110", "volume": "58", "year": "1995" }, { "DOI": "10.1055/a-1467-5956", "article-title": "A Concept for the Reduction of Mucosal SARS-CoV-2 Load using Hypochloric Acid Solutions", "author": "Mueller", "doi-asserted-by": "crossref", "first-page": "348", "journal-title": "Drug Res.", "key": "ref_111", "volume": "71", "year": "2021" }, { "key": "ref_112", "unstructured": "Mueller, C.A., Winter, M., Lippert, A., Hochauf-Stange, K., and Renner, B. (2024, April 24). Double-Blind, Randomised, Placebo-Controlled Study to Investigate the Efficacy of Nasal Spray and Mouth Wash Containing Hypochlorous Acid in SARS-CoV-2 Infected Patients; Deutsches Register Klinischer Studien (DRKS). Available online: https://drks.de/search/de/trial/DRKS00030721." }, { "key": "ref_113", "unstructured": "The Committee on Efficacy Assessment of Disinfecting Substances Alternative to Alcohol for Use Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) (2025, July 02). Final Report on Efficacy Assessment of Disinfecting Substances Alternative to Alcohol for Use Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Available online: https://www.nite.go.jp/data/000115863.pdf." }, { "DOI": "10.1128/AEM.02839-06", "article-title": "Evaluation of liquid- and fog-based application of sterilox hypochlorous acid solution for surface inactivation of human norovirus", "author": "Park", "doi-asserted-by": "crossref", "first-page": "4463", "journal-title": "Appl. Environ. Microbiol.", "key": "ref_114", "volume": "73", "year": "2007" }, { "DOI": "10.1186/s12903-022-02453-2", "doi-asserted-by": "crossref", "key": "ref_115", "unstructured": "Aherne, O., Ortiz, R., Fazli, M.M., and Davies, J.R. (2022). Effects of stabilized hypochlorous acid on oral biofilm bacteria. BMC Oral Health, 22." }, { "DOI": "10.3390/microorganisms8081220", "doi-asserted-by": "crossref", "key": "ref_116", "unstructured": "Nizer WSda, C., Inkovskiy, V., and Overhage, J. (2020). Surviving reactive chlorine stress: Responses of gram-negative bacteria to hypochlorous acid. Microorganisms, 8." }, { "DOI": "10.1016/j.jaci.2021.03.038", "article-title": "C5aR inhibition of nonimmune cells suppresses inflammation and maintains epithelial integrity in SARS-CoV-2–infected primary human airway epithelia", "author": "Posch", "doi-asserted-by": "crossref", "first-page": "2083", "journal-title": "J. Allergy Clin. Immunol.", "key": "ref_117", "volume": "147", "year": "2021" }, { "DOI": "10.3389/fimmu.2021.684014", "doi-asserted-by": "crossref", "key": "ref_118", "unstructured": "Lafon, E., Diem, G., Witting, C., Zaderer, V., Bellmann-Weiler, R.M., Reindl, M., Bauer, A., Griesmacher, A., Fux, V., and Hoermann, G. (2021). Potent SARS-CoV-2-Specific T Cell Immunity and Low Anaphylatoxin Levels Correlate with Mild Disease Progression in COVID-19 Patients. Front. Immunol., 12." }, { "DOI": "10.1021/ja00486a025", "article-title": "Mechanisms of chlorine oxidation of hydrogen peroxide", "author": "Held", "doi-asserted-by": "crossref", "first-page": "5732", "journal-title": "J. Am. Chem. Soc.", "key": "ref_119", "volume": "100", "year": "1978" }, { "DOI": "10.1292/jvms.14-0413", "article-title": "Evaluation of sprayed hypochlorous acid solutions for their virucidal activity against avian influenza virus through in vitro experiments", "author": "Hakim", "doi-asserted-by": "crossref", "first-page": "211", "journal-title": "J. Vet. Med. Sci.", "key": "ref_120", "volume": "77", "year": "2015" }, { "DOI": "10.2500/ajra.2011.25.3545", "article-title": "The Effect of a Low Concentration of Hypochlorous Acid on Rhinovirus Infection of Nasal Epithelial Cells", "author": "Yu", "doi-asserted-by": "crossref", "first-page": "40", "journal-title": "Am. J. Rhinol. Allergy", "key": "ref_121", "volume": "25", "year": "2011" }, { "DOI": "10.1177/00220345231169434", "article-title": "HOCl Rapidly Kills Corona, Flu, and Herpes to Prevent Aerosol Spread", "author": "Guan", "doi-asserted-by": "crossref", "first-page": "1031", "journal-title": "J. Dent. Res.", "key": "ref_122", "volume": "102", "year": "2023" }, { "DOI": "10.1016/S2213-2600(22)00086-8", "article-title": "Fast multiplex bacterial PCR of bronchoalveolar lavage for antibiotic stewardship in hospitalised patients with pneumonia at risk of Gram-negative bacterial infection (Flagship II): A multicentre, randomised controlled trial", "author": "Darie", "doi-asserted-by": "crossref", "first-page": "877", "journal-title": "Lancet Respir. Med.", "key": "ref_123", "volume": "10", "year": "2022" } ], "reference-count": 123, "references-count": 123, "relation": {}, "resource": { "primary": { "URL": "https://www.mdpi.com/1999-4915/17/9/1219" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "Hypochlorous Acid (HOCl) as a Promising Respiratory Antiseptic", "type": "journal-article", "update-policy": "https://doi.org/10.3390/mdpi_crossmark_policy", "volume": "17" }
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Submit