Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchMontelukastMontelukast (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Montelukast and Telmisartan as Inhibitors of SARS-CoV-2 Omicron Variant

Mulgaonkar et al., Pharmaceutics, doi:10.3390/pharmaceutics15071891
Jul 2023  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
29th treatment shown to reduce risk in November 2021, now with p = 0.0041 from 9 studies.
Lower risk for hospitalization and cases.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
In Silico and In Vitro study showing that montelukast and telmisartan inhibit SARS-CoV-2 wild-type and the omicron variant. In Silico analysis found montelukast and telmisartan bind to the SARS-CoV-2 spike protein receptor binding domain (RBD) at the ACE2 binding interface. In Vitro, both drugs inhibited wild-type SARS-CoV-2 plaque formation in Vero cells at 50μM. For the omicron variant, montelukast showed inhibition at 1-50μM while telmisartan was only effective at 50μM.
4 preclinical studies support the efficacy of montelukast for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2 with montelukast or metabolites via binding to the spikeA,1 (and specifically the receptor binding domainB,2), MproC,1, RNA-dependent RNA polymeraseD,1, PLproE,1, nucleocapsidF,1, and helicaseG,1 proteins. Montelukast inhibits SARS-CoV-2 omicron infection in Vero cells at 1μM2 and inhibits platelet activation induced by plasma from COVID-19 patients3.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The receptor binding domain is a specific region of the spike protein that binds ACE2 and is a major target of neutralizing antibodies. Focusing on the precise binding site allows highly specific disruption of viral attachment with reduced potential for off-target effects.
c. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
d. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
e. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
f. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
g. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
Mulgaonkar et al., 5 Jul 2023, USA, peer-reviewed, 9 authors. Contact: sfernando@tamu.edu (corresponding author).
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperMontelukastAll
Montelukast and Telmisartan as Inhibitors of SARS-CoV-2 Omicron Variant
Nirmitee Mulgaonkar, Haoqi Wang, Junrui Zhang, Christopher M Roundy, Wendy Tang, Sankar Prasad Chaki, Alex Pauvolid-Corrêa, Gabriel L Hamer, Sandun Fernando
Pharmaceutics, doi:10.3390/pharmaceutics15071891
Earlier studies with montelukast (M) and telmisartan (T) have revealed their potential antiviral properties against SARS-CoV-2 wild-type (WT) but have not assessed their efficacy against emerging Variants of Concern (VOCs) such as Omicron. Our research fills this gap by investigating these drugs' impact on VOCs, a topic that current scientific literature has largely overlooked. We employed computational methodologies, including molecular mechanics and machine learning tools, to identify drugs that could potentially disrupt the SARS-CoV-2 spike RBD-ACE2 protein interaction. This led to the identification of two FDA-approved small molecule drugs, M and T, conventionally used for treating asthma and hypertension, respectively. Our study presents an additional potential use for these drugs as antivirals. Our results show that both M and T can inhibit not only the WT SARS-CoV-2 but also, in the case of M, the Omicron variant, without reaching cytotoxic concentrations. This novel finding fills an existing gap in the literature and introduces the possibility of repurposing these drugs for SARS-CoV-2 VOCs, an essential step in responding to the evolving global pandemic.
Supplementary Materials: The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/pharmaceutics15071891/s1, Figure S1 : Protein information of SARS-CoV-2 RBD-ACE2 complex (PDB: 6VW1) with secondary structure assessment; Table S1 : RMSD and RMSF evaluation for the last 25 ns and entire MD simulation trajectory, respectively; Table S2 : Prime/MM-GBSA binding free energy calculations for MD of screened compounds with SARS-CoV-2 RBD-ACE2 complex from wild type (WT), and omicron variant; Figure S2: (A Conflicts of Interest: The authors declare no conflict of interest.
References
Alyammahi, Abdin, Alhamad, Elgendy, Altell et al., The dynamic association between COVID-19 and chronic disorders: An updated insight into prevalence, mechanisms and therapeutic modalities, Infect. Genet. Evol, doi:10.1016/j.meegid.2020.104647
Autoqsar, Schrödinger Release 2023-1
Banerjee, Yadav, Banerjee, Fakayode, Parvathareddy et al., Drug Repurposing to Identify Nilotinib as a Potential SARS-CoV-2 Main Protease Inhibitor: Insights from a Computational and In Vitro Study, J. Chem. Inf. Model, doi:10.1021/acs.jcim.1c00524
Berman, Westbrook, Feng, Gilliland, Bhat et al., The Protein Data Bank, Nucleic Acids Res, doi:10.1093/nar/28.1.235
Bocci, Bradfute, Ye, Garcia, Parvathareddy et al., Virtual and In Vitro Antiviral Screening Revive Therapeutic Drugs for COVID-19, ACS Pharmacol. Translat. Sci, doi:10.1021/acsptsci.0c00131
Cagno, Magliocco, Tapparel, Daali, The tyrosine kinase inhibitor nilotinib inhibits SARS-CoV-2 In Vitro, Basic Clin. Pharmacol. Toxicol
Cdc), Centers for Disaese Control and Prevention. SARS-CoV-2 Variant Classifications and Definitions
Chaki, Kahl-Mcdonagh, Neuman, Zuelke, Receptor-Binding-Motif-Targeted Sanger Sequencing: A Quick and Cost-Effective Strategy for Molecular Surveillance of SARS-CoV-2 Variants, Microbiol. Spectr, doi:10.1128/spectrum.00665-22
Chen, Li, Wang, Zou, Montelukast, an Anti-asthmatic Drug, Inhibits Zika Virus Infection by Disrupting Viral Integrity, Front. Microbiol, doi:10.3389/fmicb.2019.03079
Cohen, Incredible Milestone for Science'. Pfizer and BioNTech Update Their Promising COVID-19 Vaccine Result, doi:10.1126/science.abf7754
Cohen, Kupferschmidt, Very, Very Bad Look' for Remdesivir
David, Jacobs, Principal component analysis: A method for determining the essential dynamics of proteins
De, Mamidi, Ghosh, Keshry, Mahish et al., Telmisartan restricts Chikungunya virus infection in vitro and in vivo through the AT1/PPAR-γ/MAPKs pathways, Antimicrob. Agents Chemother, doi:10.1128/AAC.01489-21
Dixon, Duan, Smith, Von Bargen, Sherman et al., An automated machine learning tool for best-practice quantitative structure-activity relationship modeling, Future Med. Chem, doi:10.4155/fmc-2016-0093
Docea, Tsatsakis, Albulescu, Cristea, Zlatian et al., A new threat from an old enemy: Re-emergence of coronavirus, Int. J. Mol. Med, doi:10.3892/ijmm.2020.4555
Dong, Du, Gardner, An interactive web-based dashboard to track COVID-19 in real time, Lancet Infect. Dis, doi:10.1016/S1473-3099(20)30120-1
Duarte, Pelorosso, Nicolosi, Salgado, Vetulli et al., Telmisartan for treatment of Covid-19 patients: An open multicenter randomized clinical trial, EClinicalMedicine, doi:10.1016/j.eclinm.2021.100962
Durdagi, Avsar, Orhan, Serhatli, Balcioglu et al., The neutralization effect of montelukast on SARS-CoV-2 is shown by multiscale in silico simulations and combined in vitro studies, Mol. Ther, doi:10.1016/j.ymthe.2021.10.014
Fda, FDA Approves First Treatment for COVID-19
Ge, Tian, Huang, Wan, Li et al., An integrative drug repositioning framework discovered a potential therapeutic agent targeting COVID-19, Signal Transduct. Target. Ther, doi:10.1038/s41392-021-00568-6
Geng, Shi, Ye, Zhang, Aihara et al., Structural Basis for Human Receptor Recognition by SARS-CoV-2 Omicron Variant BA. 1, J. Virol, doi:10.1128/jvi.00249-22
Guimarães, Cardozo, MM-GB/SA rescoring of docking poses in structure-based lead optimization, J. Chem. Inf. Model, doi:10.1021/ci800004w
Han, Jia, Takeda, Shiraishi, Okamoto et al., Montelukast during primary infection prevents airway hyperresponsiveness and inflammation after reinfection with respiratory syncytial virus, Am. J. Respir. Crit. Care Med, doi:10.1164/rccm.200912-1811OC
Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell, doi:10.1016/j.cell.2020.02.052
Hou, Wang, Li, Wang, Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations, J. Chem. Inf. Model, doi:10.1021/ci100275a
Humphrey, Dalke, Schulten, Vmd, Visual molecular dynamics, J. Mol. Graph, doi:10.1016/0263-7855(96)00018-5
Hunter, Matplotlib: A 2D graphics environment, Comput. Sci. Eng, doi:10.1109/MCSE.2007.55
Khan, Misdary, Yegya-Raman, Kim, Narayanan et al., Montelukast in hospitalized patients diagnosed with COVID-19, J. Asthma, doi:10.1080/02770903.2021.1881967
Kloepfer, Demore, Vrtis, Swenson, Gaworski et al., Effects of montelukast on patients with asthma after experimental inoculation with human rhinovirus 16, Ann. Allergy Asthma Immunol, doi:10.1016/j.anai.2010.11.021
Kow, Hasan, The Potential Benefit of Telmisartan to Protect Overweight Patients with COPD from the Acquisition of COVID-19, Obesity, doi:10.1002/oby.22976
Kumar, Singh, Kumari, Kumar, Agnihotri et al., Identification of multipotent drugs for COVID-19 therapeutics with the evaluation of their SARS-CoV2 inhibitory activity, Comput. Struct. Biotechnol. J, doi:10.1016/j.csbj.2021.04.014
Lan, Ge, Yu, Shan, Zhou et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature, doi:10.1038/s41586-020-2180-5
Landeras-Bueno, Fernández, Falcón, Oliveros, Ortín, Chemical genomics identifies the PERK-mediated unfolded protein stress response as a cellular target for influenza virus inhibition, MBio, doi:10.1128/mBio.00085-16
Letko, Marzi, Munster, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses, Nat. Microbiol, doi:10.1038/s41564-020-0688-y
Li, Abel, Zhu, Cao, Zhao et al., The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling, Proteins Struct. Funct. Bioinform
Li, Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections, J. Virol, doi:10.1128/JVI.00442-08
Liu, Zhang, Han, Guo, Wu et al., Genome-wide analyses reveal the detrimental impacts of SARS-CoV-2 viral gene Orf9c on human pluripotent stem cell-derived cardiomyocytes, Stem Cell Rep, doi:10.1016/j.stemcr.2022.01.014
Luedemann, Stadler, Cheng, Protzer, Knolle et al., Montelukast is a dual-purpose inhibitor of SARS-CoV-2 infection and virus-induced IL-6 expression identified by structure-based drug repurposing, Comput. Struct. Biotechnol. J, doi:10.1016/j.csbj.2022.01.024
Malayala, Raza, A case of COVID-19-induced vestibular neuritis, Cureus, doi:10.7759/cureus.8918
May, Gallivan, Levocetirizine and montelukast in the COVID-19 treatment paradigm, Int. Immunopharmacol, doi:10.1016/j.intimp.2021.108412
Mcgibbon, Beauchamp, Harrigan, Klein, Swails et al., A modern open library for the analysis of molecular dynamics trajectories, Biophys. J, doi:10.1016/j.bpj.2015.08.015
Mulgaonkar, Wang, Mallawarachchi, Martina, Fernando, In silico and in vitro evaluation of imatinib as an inhibitor for SARS-CoV-2, J. Biomol. Struct. Dyn, doi:10.1080/07391102.2022.2045221
Musarrat, Chouljenko, Dahal, Nabi, Chouljenko et al., The anti-HIV Drug Nelfinavir Mesylate (Viracept) is a Potent Inhibitor of Cell Fusion Caused by the SARS-CoV-2 Spike (S) Glycoprotein Warranting further Evaluation as an Antiviral against COVID-19 infections, J. Med. Virol, doi:10.1002/jmv.25985
Petersen, Koopmans, Go, Hamer, Petrosillo et al., Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics, Lancet Infect. Dis, doi:10.1016/S1473-3099(20)30484-9
Pushpakom, Iorio, Eyers, Escott, Hopper et al., Drug repurposing: Progress, challenges and recommendations, Nat. Rev. Drug Discov, doi:10.1038/nrd.2018.168
Reiss, Altman, Chervinsky, Bewtra, Stricker et al., Effects of montelukast (MK-0476), a new potent cysteinyl leukotriene (LTD 4) receptor antagonist, in patients with chronic asthma, J. Allergy Clin. Immunol, doi:10.1016/S0091-6749(96)70086-6
Reus, Schneider, Ulshöfer, Henke, Bojkova et al., Characterization of ACE Inhibitors and AT1R Antagonists with Regard to Their Effect on ACE2 Expression and Infection with SARS-CoV-2 Using a Caco-2 Cell Model, Life, doi:10.3390/life11080810
Roos, Wu, Damm, Reboul, Stevenson et al., OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules, J. Chem. Theory Comput, doi:10.1021/acs.jctc.8b01026
Rothlin, Vetulli, Duarte, Pelorosso, Telmisartan as tentative angiotensin receptor blocker therapeutic for COVID-19, Drug Dev. Res, doi:10.1002/ddr.21679
Ruiz, Nevers, Hernández, Ahnou, Brillet et al., MK-571, a cysteinyl leukotriene receptor 1 antagonist, inhibits hepatitis C virus replication, Antimicrob. Agents Chemother, doi:10.1128/AAC.02078-19
Saberi, Gulyaeva, Brubacher, Newmark, Gorbalenya, A planarian nidovirus expands the limits of RNA genome size, PLoS Pathog, doi:10.1371/journal.ppat.1007314
Sacco, Hu, Gongora, Meilleur, Kemp et al., The P132H mutation in the main protease of Omicron SARS-CoV-2 decreases thermal stability without compromising catalysis or small-molecule drug inhibition, Cell Res, doi:10.1038/s41422-022-00640-y
Shang, Ye, Shi, Wan, Luo et al., Structural basis of receptor recognition by SARS-CoV-2, Nature, doi:10.1038/s41586-020-2179-y
Sharpe, Jarvis, Goa, Telmisartan, None, Drugs, doi:10.2165/00003495-200161100-00009
Sitzmann, Weidlich, Filippov, Liao, Peach et al., PDB ligand conformational energies calculated quantum-mechanically, J. Chem. Inf. Model, doi:10.1021/ci200595n
Srinivasan, Cheatham, Cieplak, Kollman, Case, Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices, J. Am. Chem. Soc, doi:10.1021/ja981844+
Su, Wong, Shi, Liu, Lai et al., Epidemiology, genetic recombination, and pathogenesis of coronaviruses, Trends Microbiol, doi:10.1016/j.tim.2016.03.003
Van Der Walt, Colbert, Varoquaux, The NumPy Array: A Structure for Efficient Numerical Computation, Comput. Sci. Eng, doi:10.1109/MCSE.2011.37
Wang, Sun, Wang, Wang, Liu et al., End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design, Chem. Rev, doi:10.1021/acs.chemrev.9b00055
Weiss, Navas-Martin, Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus, Microbiol. Mol. Biol. Rev
Who, WHO|Novel Coronavirus-China
Wishart, Knox, Guo, Cheng, Shrivastava et al., DrugBank: A knowledgebase for drugs, drug actions and drug targets, Nucleic Acids Res, doi:10.1093/nar/gkm958
Wizard, Epik, Version 2.8; Schrödinger
Wrapp, Wang, Corbett, Goldsmith, Hsieh et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science, doi:10.1126/science.abb2507
Wu, Chik, Chan, Li, Tsang et al., Anti-inflammatory effects of high-dose montelukast in an animal model of acute asthma, Clin. Exp. Allergy, doi:10.1046/j.1365-2222.2003.01615.x
Wu, Peng, Wilken, Geraghty, Li, Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus, J. Biol. Chem, doi:10.1074/jbc.M111.325803
Zhou, Yang, Wang, Hu, Zhang et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, doi:10.1038/s41586-020-2012-7
Zhu, Zhang, Wang, Li, Yang et al., A Novel Coronavirus from Patients with Pneumonia in China, N. Eng. J. Med, doi:10.1056/NEJMoa2001017
{ 'indexed': {'date-parts': [[2024, 5, 10]], 'date-time': '2024-05-10T07:48:29Z', 'timestamp': 1715327309786}, 'reference-count': 72, 'publisher': 'MDPI AG', 'issue': '7', 'license': [ { 'start': { 'date-parts': [[2023, 7, 5]], 'date-time': '2023-07-05T00:00:00Z', 'timestamp': 1688515200000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0/'}], 'funder': [{'name': 'Texas A&M AgriLife Research Insect Vector Diseases Grant Program'}], 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'abstract': '<jats:p>Earlier studies with montelukast (M) and telmisartan (T) have revealed their ' 'potential antiviral properties against SARS-CoV-2 wild-type (WT) but have not assessed their ' 'efficacy against emerging Variants of Concern (VOCs) such as Omicron. Our research fills this ' 'gap by investigating these drugs’ impact on VOCs, a topic that current scientific literature ' 'has largely overlooked. We employed computational methodologies, including molecular ' 'mechanics and machine learning tools, to identify drugs that could potentially disrupt the ' 'SARS-CoV-2 spike RBD-ACE2 protein interaction. This led to the identification of two ' 'FDA-approved small molecule drugs, M and T, conventionally used for treating asthma and ' 'hypertension, respectively. Our study presents an additional potential use for these drugs as ' 'antivirals. Our results show that both M and T can inhibit not only the WT SARS-CoV-2 but ' 'also, in the case of M, the Omicron variant, without reaching cytotoxic concentrations. This ' 'novel finding fills an existing gap in the literature and introduces the possibility of ' 'repurposing these drugs for SARS-CoV-2 VOCs, an essential step in responding to the evolving ' 'global pandemic.</jats:p>', 'DOI': '10.3390/pharmaceutics15071891', 'type': 'journal-article', 'created': {'date-parts': [[2023, 7, 6]], 'date-time': '2023-07-06T04:34:30Z', 'timestamp': 1688618070000}, 'page': '1891', 'source': 'Crossref', 'is-referenced-by-count': 3, 'title': 'Montelukast and Telmisartan as Inhibitors of SARS-CoV-2 Omicron Variant', 'prefix': '10.3390', 'volume': '15', 'author': [ { 'ORCID': 'http://orcid.org/0000-0003-4607-8391', 'authenticated-orcid': False, 'given': 'Nirmitee', 'family': 'Mulgaonkar', 'sequence': 'first', 'affiliation': [ { 'name': 'Biological and Agricultural Engineering Department, Texas A&M ' 'University, College Station, TX 77843, USA'}]}, { 'given': 'Haoqi', 'family': 'Wang', 'sequence': 'additional', 'affiliation': [ { 'name': 'Biological and Agricultural Engineering Department, Texas A&M ' 'University, College Station, TX 77843, USA'}]}, { 'given': 'Junrui', 'family': 'Zhang', 'sequence': 'additional', 'affiliation': [ { 'name': 'Biological and Agricultural Engineering Department, Texas A&M ' 'University, College Station, TX 77843, USA'}]}, { 'given': 'Christopher M.', 'family': 'Roundy', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Entomology, Texas A&M University, College Station, ' 'TX 77843, USA'}]}, { 'given': 'Wendy', 'family': 'Tang', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Entomology, Texas A&M University, College Station, ' 'TX 77843, USA'}]}, { 'ORCID': 'http://orcid.org/0000-0002-8130-6997', 'authenticated-orcid': False, 'given': 'Sankar Prasad', 'family': 'Chaki', 'sequence': 'additional', 'affiliation': [ { 'name': 'Texas A&M Global Health Research Complex, Division of Research, ' 'Texas A&M University, College Station, TX 77843, USA'}]}, { 'ORCID': 'http://orcid.org/0000-0002-6924-157X', 'authenticated-orcid': False, 'given': 'Alex', 'family': 'Pauvolid-Corrêa', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Veterinary Integrative Biosciences, Texas A&M ' 'University, College Station, TX 77843, USA'}]}, { 'given': 'Gabriel L.', 'family': 'Hamer', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Entomology, Texas A&M University, College Station, ' 'TX 77843, USA'}]}, { 'ORCID': 'http://orcid.org/0000-0002-7692-2170', 'authenticated-orcid': False, 'given': 'Sandun', 'family': 'Fernando', 'sequence': 'additional', 'affiliation': [ { 'name': 'Biological and Agricultural Engineering Department, Texas A&M ' 'University, College Station, TX 77843, USA'}]}], 'member': '1968', 'published-online': {'date-parts': [[2023, 7, 5]]}, 'reference': [ { 'key': 'ref_1', 'first-page': '1631', 'article-title': 'A new threat from an old enemy: Re-emergence of coronavirus', 'volume': '45', 'author': 'Docea', 'year': '2020', 'journal-title': 'Int. J. Mol. Med.'}, { 'key': 'ref_2', 'doi-asserted-by': 'crossref', 'first-page': '635', 'DOI': '10.1128/MMBR.69.4.635-664.2005', 'article-title': 'Coronavirus pathogenesis and the emerging pathogen severe acute ' 'respiratory syndrome coronavirus', 'volume': '69', 'author': 'Weiss', 'year': '2005', 'journal-title': 'Microbiol. Mol. Biol. Rev.'}, { 'key': 'ref_3', 'doi-asserted-by': 'crossref', 'unstructured': 'Saberi, A., Gulyaeva, A.A., Brubacher, J.L., Newmark, P.A., and ' 'Gorbalenya, A.E. (2018). A planarian nidovirus expands the limits of RNA ' 'genome size. PLoS Pathog., 14.', 'DOI': '10.1101/299776'}, { 'key': 'ref_4', 'doi-asserted-by': 'crossref', 'first-page': '490', 'DOI': '10.1016/j.tim.2016.03.003', 'article-title': 'Epidemiology, genetic recombination, and pathogenesis of coronaviruses', 'volume': '24', 'author': 'Su', 'year': '2016', 'journal-title': 'Trends Microbiol.'}, { 'key': 'ref_5', 'doi-asserted-by': 'crossref', 'first-page': '727', 'DOI': '10.1056/NEJMoa2001017', 'article-title': 'A Novel Coronavirus from Patients with Pneumonia in China, 2019', 'volume': '382', 'author': 'Zhu', 'year': '2020', 'journal-title': 'N. Eng. J. Med.'}, {'key': 'ref_6', 'unstructured': 'WHO (2020). WHO|Novel Coronavirus–China, WHO.'}, { 'key': 'ref_7', 'doi-asserted-by': 'crossref', 'first-page': '533', 'DOI': '10.1016/S1473-3099(20)30120-1', 'article-title': 'An interactive web-based dashboard to track COVID-19 in real time', 'volume': '20', 'author': 'Dong', 'year': '2020', 'journal-title': 'Lancet Infect. Dis.'}, { 'key': 'ref_8', 'unstructured': '(CDC), Centers for Disaese Control and Prevention (2023, April 05). ' 'SARS-CoV-2 Variant Classifications and Definitions, Available online: ' 'https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html.'}, { 'key': 'ref_9', 'doi-asserted-by': 'crossref', 'first-page': '271', 'DOI': '10.1016/j.cell.2020.02.052', 'article-title': 'SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a ' 'clinically proven protease inhibitor', 'volume': '181', 'author': 'Hoffmann', 'year': '2020', 'journal-title': 'Cell'}, { 'key': 'ref_10', 'doi-asserted-by': 'crossref', 'first-page': '562', 'DOI': '10.1038/s41564-020-0688-y', 'article-title': 'Functional assessment of cell entry and receptor usage for SARS-CoV-2 ' 'and other lineage B betacoronaviruses', 'volume': '5', 'author': 'Letko', 'year': '2020', 'journal-title': 'Nat. Microbiol.'}, { 'key': 'ref_11', 'doi-asserted-by': 'crossref', 'first-page': '270', 'DOI': '10.1038/s41586-020-2012-7', 'article-title': 'A pneumonia outbreak associated with a new coronavirus of probable bat ' 'origin', 'volume': '579', 'author': 'Zhou', 'year': '2020', 'journal-title': 'Nature'}, { 'key': 'ref_12', 'doi-asserted-by': 'crossref', 'first-page': '1260', 'DOI': '10.1126/science.abb2507', 'article-title': 'Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation', 'volume': '367', 'author': 'Wrapp', 'year': '2020', 'journal-title': 'Science'}, { 'key': 'ref_13', 'doi-asserted-by': 'crossref', 'first-page': '215', 'DOI': '10.1038/s41586-020-2180-5', 'article-title': 'Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ' 'ACE2 receptor', 'volume': '581', 'author': 'Lan', 'year': '2020', 'journal-title': 'Nature'}, { 'key': 'ref_14', 'doi-asserted-by': 'crossref', 'first-page': 'e00249-22', 'DOI': '10.1128/jvi.00249-22', 'article-title': 'Structural Basis for Human Receptor Recognition by SARS-CoV-2 Omicron ' 'Variant BA. 1', 'volume': '96', 'author': 'Geng', 'year': '2022', 'journal-title': 'J. Virol.'}, { 'key': 'ref_15', 'doi-asserted-by': 'crossref', 'unstructured': 'Cohen, J. (2020). ‘Incredible Milestone for Science’. Pfizer and ' 'BioNTech Update Their Promising COVID-19 Vaccine Result, American ' 'Association for the Advancement of Science.', 'DOI': '10.1126/science.abf7754'}, { 'key': 'ref_16', 'unstructured': 'The New York Times (2022, August 31). Coronavirus Vaccine Tracker. ' 'Available online: ' 'https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.'}, { 'key': 'ref_17', 'doi-asserted-by': 'crossref', 'unstructured': '(FDA) U.S. Food and Drug Administration (2020, October 22). FDA Approves ' 'First Treatment for COVID-19, Available online: ' 'https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19.', 'DOI': '10.1002/cpu.30542'}, { 'key': 'ref_18', 'doi-asserted-by': 'crossref', 'unstructured': 'Cohen, J., and Kupferschmidt, K. (2020). ‘A Very, Very Bad Look’ for ' 'Remdesivir, American Association for the Advancement of Science.', 'DOI': '10.1126/science.370.6517.642'}, { 'key': 'ref_19', 'doi-asserted-by': 'crossref', 'first-page': '963', 'DOI': '10.1016/j.ymthe.2021.10.014', 'article-title': 'The neutralization effect of montelukast on SARS-CoV-2 is shown by ' 'multiscale in silico simulations and combined in vitro studies', 'volume': '30', 'author': 'Durdagi', 'year': '2022', 'journal-title': 'Mol. Ther.'}, { 'key': 'ref_20', 'doi-asserted-by': 'crossref', 'first-page': '799', 'DOI': '10.1016/j.csbj.2022.01.024', 'article-title': 'Montelukast is a dual-purpose inhibitor of SARS-CoV-2 infection and ' 'virus-induced IL-6 expression identified by structure-based drug ' 'repurposing', 'volume': '20', 'author': 'Luedemann', 'year': '2022', 'journal-title': 'Comput. Struct. Biotechnol. J.'}, { 'key': 'ref_21', 'doi-asserted-by': 'crossref', 'unstructured': 'Reus, P., Schneider, A.-K., Ulshöfer, T., Henke, M., Bojkova, D., ' 'Cinatl, J., Ciesek, S., Geisslinger, G., Laux, V., and Grättinger, M. ' '(2021). Characterization of ACE Inhibitors and AT1R Antagonists with ' 'Regard to Their Effect on ACE2 Expression and Infection with SARS-CoV-2 ' 'Using a Caco-2 Cell Model. Life, 11.', 'DOI': '10.3390/life11080810'}, { 'key': 'ref_22', 'doi-asserted-by': 'crossref', 'first-page': '221', 'DOI': '10.1038/s41586-020-2179-y', 'article-title': 'Structural basis of receptor recognition by SARS-CoV-2', 'volume': '581', 'author': 'Shang', 'year': '2020', 'journal-title': 'Nature'}, { 'key': 'ref_23', 'doi-asserted-by': 'crossref', 'first-page': '235', 'DOI': '10.1093/nar/28.1.235', 'article-title': 'The Protein Data Bank', 'volume': '28', 'author': 'Berman', 'year': '2000', 'journal-title': 'Nucleic Acids Res.'}, { 'key': 'ref_24', 'unstructured': 'Wizard, P.P. (2014). Epik, Schrödinger, LLC. Version 2.8.'}, { 'key': 'ref_25', 'doi-asserted-by': 'crossref', 'first-page': '3052', 'DOI': '10.1080/07391102.2022.2045221', 'article-title': 'In silico and in vitro evaluation of imatinib as an inhibitor for ' 'SARS-CoV-2', 'volume': '41', 'author': 'Mulgaonkar', 'year': '2022', 'journal-title': 'J. Biomol. Struct. Dyn.'}, {'key': 'ref_26', 'unstructured': 'Release, S. (2018). 4: Glide, Schrödinger, LLC.'}, { 'key': 'ref_27', 'doi-asserted-by': 'crossref', 'first-page': '958', 'DOI': '10.1021/ci800004w', 'article-title': 'MM-GB/SA rescoring of docking poses in structure-based lead ' 'optimization', 'volume': '48', 'author': 'Cardozo', 'year': '2008', 'journal-title': 'J. Chem. Inf. Model.'}, { 'key': 'ref_28', 'unstructured': 'Release, S. (2017). 4: Desmond Molecular Dynamics System, DE Shaw ' 'Research.'}, { 'key': 'ref_29', 'doi-asserted-by': 'crossref', 'first-page': '1863', 'DOI': '10.1021/acs.jctc.8b01026', 'article-title': 'OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules', 'volume': '15', 'author': 'Roos', 'year': '2019', 'journal-title': 'J. Chem. Theory Comput.'}, { 'key': 'ref_30', 'unstructured': 'David, C.C., and Jacobs, D.J. (2014). Protein Dynamics, Springer.'}, { 'key': 'ref_31', 'doi-asserted-by': 'crossref', 'first-page': '33', 'DOI': '10.1016/0263-7855(96)00018-5', 'article-title': 'VMD: Visual molecular dynamics', 'volume': '14', 'author': 'Humphrey', 'year': '1996', 'journal-title': 'J. Mol. Graph.'}, { 'key': 'ref_32', 'doi-asserted-by': 'crossref', 'first-page': '1528', 'DOI': '10.1016/j.bpj.2015.08.015', 'article-title': 'MDTraj: A modern open library for the analysis of molecular dynamics ' 'trajectories', 'volume': '109', 'author': 'McGibbon', 'year': '2015', 'journal-title': 'Biophys. J.'}, { 'key': 'ref_33', 'doi-asserted-by': 'crossref', 'first-page': '90', 'DOI': '10.1109/MCSE.2007.55', 'article-title': 'Matplotlib: A 2D graphics environment', 'volume': '9', 'author': 'Hunter', 'year': '2007', 'journal-title': 'Comput. Sci. Eng.'}, { 'key': 'ref_34', 'doi-asserted-by': 'crossref', 'first-page': '22', 'DOI': '10.1109/MCSE.2011.37', 'article-title': 'The NumPy Array: A Structure for Efficient Numerical Computation', 'volume': '13', 'author': 'Colbert', 'year': '2011', 'journal-title': 'Comput. Sci. Eng.'}, { 'key': 'ref_35', 'doi-asserted-by': 'crossref', 'first-page': '9401', 'DOI': '10.1021/ja981844+', 'article-title': 'Continuum solvent studies of the stability of DNA, RNA, and ' 'phosphoramidate—DNA helices', 'volume': '120', 'author': 'Srinivasan', 'year': '1998', 'journal-title': 'J. Am. Chem. Soc.'}, { 'key': 'ref_36', 'doi-asserted-by': 'crossref', 'first-page': '2794', 'DOI': '10.1002/prot.23106', 'article-title': 'The VSGB 2.0 model: A next generation energy model for high resolution ' 'protein structure modeling', 'volume': '79', 'author': 'Li', 'year': '2011', 'journal-title': 'Proteins Struct. Funct. Bioinform.'}, { 'key': 'ref_37', 'doi-asserted-by': 'crossref', 'first-page': '69', 'DOI': '10.1021/ci100275a', 'article-title': 'Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The ' 'accuracy of binding free energy calculations based on molecular ' 'dynamics simulations', 'volume': '51', 'author': 'Hou', 'year': '2011', 'journal-title': 'J. Chem. Inf. Model.'}, { 'key': 'ref_38', 'doi-asserted-by': 'crossref', 'first-page': '9478', 'DOI': '10.1021/acs.chemrev.9b00055', 'article-title': 'End-point binding free energy calculation with MM/PBSA and MM/GBSA: ' 'Strategies and applications in drug design', 'volume': '119', 'author': 'Wang', 'year': '2019', 'journal-title': 'Chem. Rev.'}, { 'key': 'ref_39', 'unstructured': 'AutoQSAR (2021). Schrödinger Release 2023-1, Schrödinger, LLC.'}, { 'key': 'ref_40', 'doi-asserted-by': 'crossref', 'first-page': 'e00665-22', 'DOI': '10.1128/spectrum.00665-22', 'article-title': 'Receptor-Binding-Motif-Targeted Sanger Sequencing: A Quick and ' 'Cost-Effective Strategy for Molecular Surveillance of SARS-CoV-2 ' 'Variants', 'volume': '10', 'author': 'Chaki', 'year': '2022', 'journal-title': 'Microbiol. Spectr.'}, { 'key': 'ref_41', 'doi-asserted-by': 'crossref', 'first-page': '6984', 'DOI': '10.1128/JVI.00442-08', 'article-title': 'Structural analysis of major species barriers between humans and palm ' 'civets for severe acute respiratory syndrome coronavirus infections', 'volume': '82', 'author': 'Li', 'year': '2008', 'journal-title': 'J. Virol.'}, { 'key': 'ref_42', 'doi-asserted-by': 'crossref', 'first-page': '8904', 'DOI': '10.1074/jbc.M111.325803', 'article-title': 'Mechanisms of host receptor adaptation by severe acute respiratory ' 'syndrome coronavirus', 'volume': '287', 'author': 'Wu', 'year': '2012', 'journal-title': 'J. Biol. Chem.'}, { 'key': 'ref_43', 'doi-asserted-by': 'crossref', 'first-page': '739', 'DOI': '10.1021/ci200595n', 'article-title': 'PDB ligand conformational energies calculated quantum-mechanically', 'volume': '52', 'author': 'Sitzmann', 'year': '2012', 'journal-title': 'J. Chem. Inf. Model.'}, { 'key': 'ref_44', 'doi-asserted-by': 'crossref', 'first-page': '1825', 'DOI': '10.4155/fmc-2016-0093', 'article-title': 'AutoQSAR: An automated machine learning tool for best-practice ' 'quantitative structure–activity relationship modeling', 'volume': '8', 'author': 'Dixon', 'year': '2016', 'journal-title': 'Future Med. Chem.'}, { 'key': 'ref_45', 'doi-asserted-by': 'crossref', 'first-page': 'e01489-21', 'DOI': '10.1128/AAC.01489-21', 'article-title': 'Telmisartan restricts Chikungunya virus infection in vitro and in vivo ' 'through the AT1/PPAR-γ/MAPKs pathways', 'volume': '66', 'author': 'De', 'year': '2022', 'journal-title': 'Antimicrob. Agents Chemother.'}, { 'key': 'ref_46', 'doi-asserted-by': 'crossref', 'first-page': 'e238', 'DOI': '10.1016/S1473-3099(20)30484-9', 'article-title': 'Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics', 'volume': '20', 'author': 'Petersen', 'year': '2020', 'journal-title': 'Lancet Infect. Dis.'}, { 'key': 'ref_47', 'doi-asserted-by': 'crossref', 'first-page': '41', 'DOI': '10.1038/nrd.2018.168', 'article-title': 'Drug repurposing: Progress, challenges and recommendations', 'volume': '18', 'author': 'Pushpakom', 'year': '2019', 'journal-title': 'Nat. Rev. Drug Discov.'}, { 'key': 'ref_48', 'doi-asserted-by': 'crossref', 'first-page': 'D901', 'DOI': '10.1093/nar/gkm958', 'article-title': 'DrugBank: A knowledgebase for drugs, drug actions and drug targets', 'volume': '36', 'author': 'Wishart', 'year': '2008', 'journal-title': 'Nucleic Acids Res.'}, { 'key': 'ref_49', 'doi-asserted-by': 'crossref', 'first-page': '1278', 'DOI': '10.1021/acsptsci.0c00131', 'article-title': 'Virtual and In Vitro Antiviral Screening Revive Therapeutic Drugs for ' 'COVID-19', 'volume': '3', 'author': 'Bocci', 'year': '2020', 'journal-title': 'ACS Pharmacol. Translat. Sci.'}, { 'key': 'ref_50', 'doi-asserted-by': 'crossref', 'first-page': '621', 'DOI': '10.1111/bcpt.13537', 'article-title': 'The tyrosine kinase inhibitor nilotinib inhibits SARS-CoV-2 In Vitro', 'volume': '128', 'author': 'Cagno', 'year': '2020', 'journal-title': 'Basic Clin. Pharmacol. Toxicol.'}, { 'key': 'ref_51', 'doi-asserted-by': 'crossref', 'first-page': '2087', 'DOI': '10.1002/jmv.25985', 'article-title': 'The anti-HIV Drug Nelfinavir Mesylate (Viracept) is a Potent Inhibitor ' 'of Cell Fusion Caused by the SARS-CoV-2 Spike (S) Glycoprotein ' 'Warranting further Evaluation as an Antiviral against COVID-19 ' 'infections', 'volume': '92', 'author': 'Musarrat', 'year': '2020', 'journal-title': 'J. Med. Virol.'}, { 'key': 'ref_52', 'doi-asserted-by': 'crossref', 'first-page': '1998', 'DOI': '10.1016/j.csbj.2021.04.014', 'article-title': 'Identification of multipotent drugs for COVID-19 therapeutics with the ' 'evaluation of their SARS-CoV2 inhibitory activity', 'volume': '19', 'author': 'Kumar', 'year': '2021', 'journal-title': 'Comput. Struct. Biotechnol. J.'}, { 'key': 'ref_53', 'doi-asserted-by': 'crossref', 'first-page': '5469', 'DOI': '10.1021/acs.jcim.1c00524', 'article-title': 'Drug Repurposing to Identify Nilotinib as a Potential SARS-CoV-2 Main ' 'Protease Inhibitor: Insights from a Computational and In Vitro Study', 'volume': '61', 'author': 'Banerjee', 'year': '2021', 'journal-title': 'J. Chem. Inf. Model.'}, { 'key': 'ref_54', 'first-page': '1', 'article-title': 'An integrative drug repositioning framework discovered a potential ' 'therapeutic agent targeting COVID-19', 'volume': '6', 'author': 'Ge', 'year': '2021', 'journal-title': 'Signal Transduct. Target. Ther.'}, { 'key': 'ref_55', 'first-page': 'e8918', 'article-title': 'A case of COVID-19-induced vestibular neuritis', 'volume': '12', 'author': 'Malayala', 'year': '2020', 'journal-title': 'Cureus'}, { 'key': 'ref_56', 'doi-asserted-by': 'crossref', 'first-page': '522', 'DOI': '10.1016/j.stemcr.2022.01.014', 'article-title': 'Genome-wide analyses reveal the detrimental impacts of SARS-CoV-2 viral ' 'gene Orf9c on human pluripotent stem cell-derived cardiomyocytes', 'volume': '17', 'author': 'Liu', 'year': '2022', 'journal-title': 'Stem Cell Rep.'}, { 'key': 'ref_57', 'doi-asserted-by': 'crossref', 'first-page': '780', 'DOI': '10.1080/02770903.2021.1881967', 'article-title': 'Montelukast in hospitalized patients diagnosed with COVID-19', 'volume': '59', 'author': 'Khan', 'year': '2020', 'journal-title': 'J. Asthma'}, { 'key': 'ref_58', 'doi-asserted-by': 'crossref', 'first-page': '108412', 'DOI': '10.1016/j.intimp.2021.108412', 'article-title': 'Levocetirizine and montelukast in the COVID-19 treatment paradigm', 'volume': '103', 'author': 'May', 'year': '2022', 'journal-title': 'Int. Immunopharmacol.'}, { 'key': 'ref_59', 'doi-asserted-by': 'crossref', 'first-page': '498', 'DOI': '10.1038/s41422-022-00640-y', 'article-title': 'The P132H mutation in the main protease of Omicron SARS-CoV-2 decreases ' 'thermal stability without compromising catalysis or small-molecule drug ' 'inhibition', 'volume': '32', 'author': 'Sacco', 'year': '2022', 'journal-title': 'Cell Res.'}, { 'key': 'ref_60', 'doi-asserted-by': 'crossref', 'first-page': '100962', 'DOI': '10.1016/j.eclinm.2021.100962', 'article-title': 'Telmisartan for treatment of Covid-19 patients: An open multicenter ' 'randomized clinical trial', 'volume': '37', 'author': 'Duarte', 'year': '2021', 'journal-title': 'EClinicalMedicine'}, { 'key': 'ref_61', 'doi-asserted-by': 'crossref', 'first-page': '104647', 'DOI': '10.1016/j.meegid.2020.104647', 'article-title': 'The dynamic association between COVID-19 and chronic disorders: An ' 'updated insight into prevalence, mechanisms and therapeutic modalities', 'volume': '87', 'author': 'Alyammahi', 'year': '2021', 'journal-title': 'Infect. Genet. Evol.'}, { 'key': 'ref_62', 'doi-asserted-by': 'crossref', 'first-page': '2035', 'DOI': '10.1002/oby.22976', 'article-title': 'The Potential Benefit of Telmisartan to Protect Overweight Patients ' 'with COPD from the Acquisition of COVID-19', 'volume': '28', 'author': 'Kow', 'year': '2020', 'journal-title': 'Obesity'}, { 'key': 'ref_63', 'doi-asserted-by': 'crossref', 'first-page': '768', 'DOI': '10.1002/ddr.21679', 'article-title': 'Telmisartan as tentative angiotensin receptor blocker therapeutic for ' 'COVID-19', 'volume': '81', 'author': 'Rothlin', 'year': '2020', 'journal-title': 'Drug Dev. Res.'}, { 'key': 'ref_64', 'doi-asserted-by': 'crossref', 'first-page': '359', 'DOI': '10.1046/j.1365-2222.2003.01615.x', 'article-title': 'Anti-inflammatory effects of high-dose montelukast in an animal model ' 'of acute asthma', 'volume': '33', 'author': 'Wu', 'year': '2003', 'journal-title': 'Clin. Exp. Allergy'}, { 'key': 'ref_65', 'doi-asserted-by': 'crossref', 'first-page': '3079', 'DOI': '10.3389/fmicb.2019.03079', 'article-title': 'Montelukast, an Anti-asthmatic Drug, Inhibits Zika Virus Infection by ' 'Disrupting Viral Integrity', 'volume': '10', 'author': 'Chen', 'year': '2020', 'journal-title': 'Front. Microbiol.'}, { 'key': 'ref_66', 'doi-asserted-by': 'crossref', 'first-page': '455', 'DOI': '10.1164/rccm.200912-1811OC', 'article-title': 'Montelukast during primary infection prevents airway ' 'hyperresponsiveness and inflammation after reinfection with respiratory ' 'syncytial virus', 'volume': '182', 'author': 'Han', 'year': '2010', 'journal-title': 'Am. J. Respir. Crit. Care Med.'}, { 'key': 'ref_67', 'doi-asserted-by': 'crossref', 'first-page': '252', 'DOI': '10.1016/j.anai.2010.11.021', 'article-title': 'Effects of montelukast on patients with asthma after experimental ' 'inoculation with human rhinovirus 16', 'volume': '106', 'author': 'Kloepfer', 'year': '2011', 'journal-title': 'Ann. Allergy Asthma Immunol.'}, { 'key': 'ref_68', 'first-page': '10', 'article-title': 'Chemical genomics identifies the PERK-mediated unfolded protein stress ' 'response as a cellular target for influenza virus inhibition', 'volume': '7', 'author': 'Oliveros', 'year': '2016', 'journal-title': 'MBio'}, { 'key': 'ref_69', 'doi-asserted-by': 'crossref', 'first-page': '10', 'DOI': '10.1128/AAC.02078-19', 'article-title': 'MK-571, a cysteinyl leukotriene receptor 1 antagonist, inhibits ' 'hepatitis C virus replication', 'volume': '64', 'author': 'Ruiz', 'year': '2020', 'journal-title': 'Antimicrob. Agents Chemother.'}, { 'key': 'ref_70', 'doi-asserted-by': 'crossref', 'first-page': '1501', 'DOI': '10.2165/00003495-200161100-00009', 'article-title': 'Telmisartan', 'volume': '61', 'author': 'Sharpe', 'year': '2001', 'journal-title': 'Drugs'}, { 'key': 'ref_71', 'doi-asserted-by': 'crossref', 'first-page': '528', 'DOI': '10.1016/S0091-6749(96)70086-6', 'article-title': 'Effects of montelukast (MK-0476), a new potent cysteinyl leukotriene ' '(LTD 4) receptor antagonist, in patients with chronic asthma', 'volume': '98', 'author': 'Reiss', 'year': '1996', 'journal-title': 'J. Allergy Clin. Immunol.'}, { 'key': 'ref_72', 'unstructured': '(FDA) U.S. Food and Drug Administration (2020, March 04). FDA Requires ' 'Boxed Warning about Serious Mental Health Side Effects for Asthma and ' 'Allergy Drug Montelukast (Singulair); Advises Restricting Use for ' 'Allergic Rhinitis, Available online: ' 'https://www.fda.gov/drugs/drug-safety-and-availability/fda-requires-boxed-warning-about-serious-mental-health-side-effects-asthma-and-allergy-drug.'}], 'container-title': 'Pharmaceutics', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.mdpi.com/1999-4923/15/7/1891/pdf', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2023, 7, 6]], 'date-time': '2023-07-06T05:11:16Z', 'timestamp': 1688620276000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.mdpi.com/1999-4923/15/7/1891'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2023, 7, 5]]}, 'references-count': 72, 'journal-issue': {'issue': '7', 'published-online': {'date-parts': [[2023, 7]]}}, 'alternative-id': ['pharmaceutics15071891'], 'URL': 'http://dx.doi.org/10.3390/pharmaceutics15071891', 'relation': {}, 'ISSN': ['1999-4923'], 'subject': [], 'container-title-short': 'Pharmaceutics', 'published': {'date-parts': [[2023, 7, 5]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit