Inosine for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Inosine may be beneficial for
COVID-19 according to the studies below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed inosine in detail.
, Understanding the high electronic quantum similarity of a series of ligands used as inhibitors of the SARS-CoV-2 virus by molecular mechanics and density functional theory approaches, F1000Research, doi:10.12688/f1000research.127061.2
<ns3:p>Background A coronavirus identified in 2019, SARS-CoV-2, has caused a pandemic of respiratory illness, called COVID-19. Most people with COVID-19 experience mild to moderate symptoms and recover without the need for special treatments. The SARS‑CoV‑2 RNA‑dependent RNA polymerase (RdRp) plays a crucial role in the viral life cycle. The active site of the RdRp is a very accessible region, so targeting this region to study the inhibition of viral replication may be an effective therapeutic approach. For this reason, this study has selected and analysed a series of ligands used as SARS-CoV-2 virus inhibitors, namely: Darunavir (Daru), Dexamethasona (Dexame), Dolutegravir (Dolu), Fosamprenavir (Fosam), Ganciclovir (Gan), Insoine (Inso), Lopinavir (Lop), Ritonavir (Rito) and Tipranavir (Tipra). Methods These ligands were analyzed using molecular docking, molecular quantum similarity using four similarity indices like overlap, Coulomb and their Euclidean distances. On the other hand, these outcomes were supported with chemical reactivity indices defined within a conceptual density functional theory framework. Results The results show the conformations with the highest root-mean-square deviation (RMSD), have π-π stacking interaction with residue LYS621, ARG555 and ASP623, CYS622, ASP760, among others. In the molecular quantum similarity, the highest indices have been obtained in the electronic similarity in comparison with the structural similarity. Conclusions These studies allow the identification of the main stabilizing interactions using the crystal structure of SARS‑CoV‑2 RNA‑dependent RNA polymerase. In this order of ideas, this study provides new insights into these ligands that can be used in the design of new COVID-19 treatments. The studies allowed us to find an explanation supported in the Density Functional Theory about the chemical reactivity and the stabilization in the active site of the ligands.</ns3:p>