Spatial and Temporal Correlations of COVID-19 Mortality in Europe with Atmospheric Cloudiness and Solar Radiation
Adrian Iftime, Secil Omer, Victor-Andrei Burcea, Octavian Călinescu, Ramona-Madalina Babeș
ISPRS International Journal of Geo-Information, doi:10.3390/ijgi14080283
Previous studies reported the links between the COVID-19 incidence and weather factors, but few investigated their impact and timing on mortality, at a continental scale. We systematically investigated the temporal relationship of COVID-19 mortality in the European countries in the 1st year of pandemic (March-December 2020) with (i) solar insolation (W/m 2 ) at the ground level and (ii) objective sky cloudiness (as decimal cloud fraction), both derived from satellite measurements. We checked the correlations of these factors within a sliding window of two months for the whole period. Linear-mixed effect modeling revealed that overall, for the European countries (adjusted for latitude), COVID-19 mortality was substantially negatively correlated with solar insolation in the previous month (std. beta -0.69). Separately, mortality was significantly correlated with the cloudiness in both the previous month (std. beta +0.14) and the respective month (std. beta +0.32). This time gap of ∼1 month between the COVID-19 mortality and correlated weather factors was previously unreported. The long-term monitoring of these factors might be important for epidemiological policy decisions especially in the initial period of potential future pandemics when effective medical treatment might not yet be available.
Author Contributions: Conceptualization, Adrian Iftime and Secil Omer; methodology, Adrian Iftime, Secil Omer; formal analysis and data visualization, Adrian Iftime; data curation and storage, Victor-Andrei Burcea; writing-original draft preparation, Adrian Iftime, Secil Omer; writing-review and editing, Adrian Iftime, Secil Omer, Victor-Andrei Burcea, Octavian Cȃlinescu, Ramona-Madalina Babes , ; validation, Octavian Cȃlinescu, Ramona-Madalina Babes , ; clinical virology expertise: Victor-Andrei Burcea; biology expertise, Ramona-Madalina Babes , ; clinical care expertise, Secil Omer. All authors have read and agreed to the published version of the manuscript.
Conflicts of Interest: The authors declare no conflicts of interest.
Abbreviations The following abbreviations are used in this manuscript: (deaths/million) 3 and 5a ).
References
Allison, Multiple Regression: A Primer
Antoniou, Vassilakis, Hatzaki, Is Crowdsourcing a Reliable Method for Mass Data Acquisition? The Case of COVID-19 Spread in Greece During Spring 2020, ISPRS Int. J. Geo-Inf,
doi:10.3390/ijgi9100605
Arnastauskait Ė, Ruzgas, Braž Ėnas, An Exhaustive Power Comparison of Normality Tests, Mathematics,
doi:10.3390/math9070788
Asyary, Veruswati, Sunlight Exposure Increased COVID-19 Recovery Rates: A Study in the Central Pandemic Area of Indonesia, Sci. Total Environ,
doi:10.1016/j.scitotenv.2020.139016
Atamenta, Cherie, Alemu, Time to death and its predictors among adult patients with COVID-19: A retrospective cohort study in Ethiopia, Front. Epidemiol,
doi:10.3389/fepid.2022.1065184
Badker, Miller, Pardee, Oppenheim, Stephenson et al., Challenges in reported COVID-19 data: Best practices and recommendations for future epidemics, BMJ Glob. Health,
doi:10.1136/bmjgh-2021-005542
Ben-Shachar, Lüdecke, Makowski, effectsize: Estimation of Effect Size Indices and Standardized Parameters, J. Open Source Softw,
doi:10.21105/joss.02815
Bergman, Sella, Agre, Casadevall, Oscillations in U.S. COVID-19 Incidence and Mortality Data Reflect Diagnostic and Reporting Factors, mSystems,
doi:10.1128/mSystems.00544-20
Bivand, Pebesma, Gomez-Rubio, Applied Spatial Data Analysis with R
Bourdrel, Annesi-Maesano, Alahmad, Maesano, Bind, The impact of outdoor air pollution on COVID-19: A review of evidence fromin vitro, animal, and human studies, Eur. Respir. Rev,
doi:10.1183/16000617.0242-2020
Burra, Soto-Díaz, Chalen, Gonzalez-Ricon, Istanto et al., Temperature and Latitude Correlate with SARS-CoV-2 Epidemiological Variables but not with Genomic Change Worldwide, Evol. Bioinform,
doi:10.1177/1176934321989695
Casanova, Jeon, Rutala, Weber, Sobsey, Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces, Appl. Environ. Microbiol,
doi:10.1128/AEM.02291-09
Chen, Huang, Cai, Li, Yang, Association between meteorological factors and COVID-19: A systematic review, Int. J. Environ. Health Res,
doi:10.1080/09603123.2022.2083090
Chen, Jin, Zhang, Zhang, Chen et al., Comparison of Different Missing-Imputation Methods for MAIAC (Multiangle Implementation of Atmospheric Correction) AOD in Estimating Daily PM2.5 Levels, Remote Sens,
doi:10.3390/rs12183008
Chi, Wu, Liao, Ren, Handling Missing Data in Large-Scale MODIS AOD Products Using a Two-Step Model, Remote Sens,
doi:10.3390/rs12223786
Choucair, Waked, Saliba, Haddad, Haddad et al., Discrepancy in reports of COVID-19 onset of symptoms: Are faulty data being collected?, Clin. Microbiol. Infect,
doi:10.1016/j.cmi.2020.05.039
Coker, Cavalli, Fabrizi, Guastella, Lippo et al., The Effects of Air Pollution on COVID-19 Related Mortality in Northern Italy, Environ. Resour. Econ,
doi:10.1007/s10640-020-00486-1
Core, Log: Logarithms and Exponentials; R Foundation for Statistical Computing
Core, R: A Language and Environment for Statistical Computing
De La Fuente, Armas, Barroso-Arévalo, Gortázar, García-Seco et al., Good and bad get together: Inactivation of SARS-CoV-2 in particulate matter pollution from different fuels, Sci. Total Environ,
doi:10.1016/j.scitotenv.2022.157241
De Roquetaillade, Bredin, Lascarrou, Soumagne, Cojocaru et al., Timing and causes of death in severe COVID-19 patients, Crit. Care,
doi:10.1186/s13054-021-03639-w
Ellis, The Essential Guide to Effect Sizes
Erbs, Klein, Duffie, Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation, Sol. Energy,
doi:10.1016/0038-092X(82)90302-4
Estupiñán, Raman, Crescenti, Streicher, Barnard, Effects of clouds and haze on UV-B radiation, J. Geophys. Res. Atmos,
doi:10.1029/96JD01170
Faes, Abrams, Van Beckhoven, Meyfroidt, Vlieghe et al., Time between Symptom Onset, Hospitalisation and Recovery or Death: Statistical Analysis of Belgian COVID-19 Patients, Int. J. Environ. Res. Public Health,
doi:10.3390/ijerph17207560
Ford, Zavaleta-Cortijo, Ainembabazi, Anza-Ramirez, Arotoma-Rojas et al., Interactions between climate and COVID-19, Lancet Planet. Health,
doi:10.1016/S2542-5196(22)00174-7
Fox, Weisberg, An R Companion to Applied Regression
Gatrell, Bailey, Diggle, Rowlingson, Spatial Point Pattern Analysis and Its Application in Geographical Epidemiology, Trans. Inst. Br. Geogr,
doi:10.2307/622936
Gong, Song, Hu, Che, Guo et al., Natural and socio-environmental factors in the transmission of COVID-19: A comprehensive analysis of epidemiology and mechanisms, BMC Public Health,
doi:10.1186/s12889-024-19749-3
Herman, Biegel, Huang, Inactivation times from 290 to 315 nm UVB in sunlight for SARS coronaviruses CoV and CoV-2 using OMI satellite data for the sunlit Earth, Air Qual. Atmos. Health,
doi:10.1007/s11869-020-00927-2
Hijmans, Raster: Geographic Data Analysis and Modeling; Comprehensive R Archive Network, R Package Version
Hlavac, stargazer: Well-Formatted Regression and Summary Statistics Tables
Iftime, Omer, Burcea, Calinescu, Babes, Monthly Values of Solar Irradiance, Cloud Fraction, COVID-19 Mortality, for European Countries in
Islam, Ranking of Normality Tests: An Appraisal through Skewed Alternative Space, Symmetry,
doi:10.3390/sym11070872
Jacovides, Steven, Asimakopoulos, Spectral Solar Irradiance and Some Optical Properties for Various Polluted Atmospheres, Sol. Energy,
doi:10.1016/S0038-092X(00)00062-1
Jiang, Su, Huang, Wang, Massie et al., Contrasting Effects on Deep Convective Clouds by Different Types of Aerosols, Nat. Commun,
doi:10.1038/s41467-018-06280-4
Johnston, Jones, Manley, Confounding and collinearity in regression analysis: A cautionary tale and an alternative procedure, illustrated by studies of British voting behaviour, Qual. Quant,
doi:10.1007/s11135-017-0584-6
Jung, Akhmetzhanov, Hayashi, Linton, Yang et al., Real-Time Estimation of the Risk of Death from Novel Coronavirus (COVID-19) Infection: Inference Using Exported Cases, J. Clin. Med,
doi:10.3390/jcm9020523
Karapiperis, Kouklis, Papastratos, Chasapi, Danchin et al., A Strong Seasonality Pattern for Covid-19 Incidence Rates Modulated by UV Radiation Levels, Viruses,
doi:10.3390/v13040574
Kassambara, Rstatix: Pipe-Friendly Framework for Basic Statistical Tests, R Package Version
Kerr, Badr, Gardner, Perez-Saez, Zaitchik, Associations between meteorology and COVID-19 in early studies: Inconsistencies, uncertainties, and recommendations, ONE Health,
doi:10.1016/j.onehlt.2021.100225
Kohn, Nelson, Sunlight-Mediated Inactivation of MS2 Coliphage via Exogenous Singlet Oxygen Produced by Sensitizers in Natural Waters, Environ. Sci. Technol,
doi:10.1021/es061716i
Korman, Tkachev, Reis, Komada, Kitamura et al., Effects of Aerosols and Clouds on the Levels of Surface Solar Radiation and Solar Energy in Cyprus, J. Sleep Res,
doi:10.3390/rs13122319
Lenth, Emmeans, Estimated Marginal Means, aka Least-Squares Means, R package Version
Li, Niu, Fan, Liu, Rosenfeld et al., Long-term impacts of aerosols on the vertical development of clouds and precipitation, Nat. Geosci,
doi:10.1038/ngeo1313
Li, Yang, Wang, Liao, Sun et al., A meta-analysis result: Uneven influences of season, geo-spatial scale and latitude on relationship between meteorological factors and the COVID-19 transmission, Environ. Res,
doi:10.1016/j.envres.2022.113297
Liu, Lu, Jiang, Qin, Yao, Filling Gaps of Monthly Terra/MODIS Daytime Land Surface Temperature Using Discrete Cosine Transform Method, Remote Sens,
doi:10.3390/rs12030361
Luzzatto-Fegiz, Temprano-Coleto, Peaudecerf, Landel, Zhu et al., UVB Radiation Alone May Not Explain Sunlight Inactivation of SARS-CoV-2, J. Infect. Dis,
doi:10.1093/infdis/jiab070
Lüdecke, ggeffects: Tidy Data Frames of Marginal Effects from Regression Models, J. Open Source Softw,
doi:10.21105/joss.00772
Lüdecke, sjPlot: Data Visualization for Statistics in Social Science, R Package Version
Ma, Zhao, Liu, He, Wang et al., Effects of Temperature Variation and Humidity on the Death of COVID-19 in Wuhan, China, Sci. Total Environ,
doi:10.1016/j.scitotenv.2020.138226
Makowski, Lüdecke, Patil, Thériault, Ben-Shachar et al., Automated Results Reporting as a Practical Tool to Improve Reproducibility and Methodological Best Practices Adoption
Martínez-Portillo, Garcia-Garcia, Leon, Ramis-Prieto, Gómez-Barroso, Latitude and longitude as drivers of COVID-19 waves' behavior in Europe: A time-space perspective of the pandemic, PLoS ONE,
doi:10.1371/journal.pone.0291618
Massicotte, South, Rnaturalearth: World Map Data from Natural Earth, R Package Version
Nandin De Carvalho, Latitude impact on pandemic Sars-CoV-2 2020 outbreaks and possible utility of UV indexes in predictions of regional daily infections and deaths, J. Photochem. Photobiol,
doi:10.1016/j.jpap.2022.100108
Nelson, Boehm, Davies-Colley, Dodd, Kohn et al., Sunlight-mediated inactivation of health-relevant microorganisms in water: A review of mechanisms and modeling approaches, Environ. Sci. Process. Impacts,
doi:10.1039/C8EM00047F
Nicastro, Sironi, Antonello, Bianco, Biasin et al., Solar UV-B/A radiation is highly effective in inactivating SARS-CoV-2, Sci. Rep,
doi:10.1038/s41598-021-94417-9
Nichols, Gillingham, Macintyre, Vardoulakis, Hajat et al., Coronavirus seasonality, respiratory infections and weather, BMC Infect. Dis,
doi:10.1186/s12879-021-06785-2
Patterson, Kelso, Furno, Buckingham, Buckingham et al., Made with Natural Earth. Free Vector and Raster Map Data @ naturalearthdata
Pawliczek, Kurowska-Pysz, Smilnak, Relation between Globe Latitude and the Quality of Life: Insights for Public Policy Management, Sustainability,
doi:10.3390/su14031461
Pebesma, Bivand, Classes and methods for spatial data in R, R News
Penuelas, Fernández-Martínez, Cobo, Badiella, Sardans, Does urban particulate matter hinder COVID-19 transmission rate?, Air Qual. Atmos. Health,
doi:10.1007/s11869-024-01574-7
Pryor, Cowley, Simonds, The Physiological Effects of Air Pollution: Particulate Matter, Physiology and Disease, Front. Public Health,
doi:10.3389/fpubh.2022.882569
Raiteux, Eschlimann, Marangon, Rogée, Dadvisard et al., Inactivation of SARS-CoV-2 by Simulated Sunlight on Contaminated Surfaces, Microbiol. Spectr,
doi:10.1128/Spectrum.00333-21
Ratnesar-Shumate, Williams, Green, Krause, Holland et al., Simulated Sunlight Rapidly Inactivates SARS-CoV-2 on Surfaces, J. Infect. Dis,
doi:10.1093/infdis/jiaa274
Rhodes, Dunstan, Laird, Subramanian, Kenny, COVID-19 Mortality Increases with Northerly Latitude after Adjustment for Age Suggesting a Link with Ultraviolet and Vitamin D, BMJ Nutr. Prev. Health,
doi:10.1136/bmjnph-2020-000110
Riddell, Goldie, Hill, Eagles, Drew, The Effect of Temperature on Persistence of SARS-CoV-2 on Common Surfaces, Virol. J,
doi:10.1186/s12985-020-01418-7
Sabburg, Calbó, Five years of cloud enhanced surface UV radiation measurements at two sites (in the Northern and Southern Hemispheres), Atmos. Res,
doi:10.1016/j.atmosres.2009.05.003
Sagripanti, Lytle, Estimated Inactivation of Coronaviruses by Solar Radiation With Special Reference to COVID-19, Photochem. Photobiol,
doi:10.1111/php.13293
Sajadi, Habibzadeh, Vintzileos, Shokouhi, Miralles-Wilhelm et al., Temperature and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19, SSRN Electron. J,
doi:10.2139/ssrn.3550308
Shao, Ge, Jones, Santosh, Silva et al., The role of airborne particles and environmental considerations in the transmission of SARS-CoV-2, Geosci. Front,
doi:10.1016/j.gsf.2021.101189
Solimini, Filipponi, Fegatelli, Caputo, De Marco et al., A global association between COVID-19 cases and airborne particulate matter at regional level, Sci. Rep,
doi:10.1038/s41598-021-85751-z
Twohy, Coakley, Tahnk, Effect of changes in relative humidity on aerosol scattering near clouds, J. Geophys. Res. Atmos,
doi:10.1029/2008JD010991
Tyrovolas, Tsiampalis, Morena, Leung, Faka et al., COVID-19 Mortality in Europe, by Latitude and Obesity Status: A Geo-Spatial Analysis in 40 Countries, Nutrients,
doi:10.3390/nu14030471
Van Heerwaarden, Guerau De Arellano, Relative Humidity as an Indicator for Cloud Formation over Heterogeneous Land Surfaces, J. Atmos. Sci,
doi:10.1175/2008JAS2591.1
Vandenberg, Martiny, Rochas, Van Belkum, Kozlakidis, Considerations for diagnostic COVID-19 tests, Nat. Rev. Microbiol,
doi:10.1038/s41579-020-00461-z
Venables, Ripley, Modern Applied Statistics with S
Walkowiak, Walkowiak, Underestimation in Reporting Excess COVID-19 Death Data in Poland during the First Three Pandemic Waves, Int. J. Environ. Res. Public Health,
doi:10.3390/ijerph19063692
Walrand, Autumn COVID-19 surge dates in Europe correlated to latitudes, not to temperature-humidity, pointing to vitamin D as contributing factor, Sci. Rep,
doi:10.1038/s41598-021-81419-w
Wang, Zhou, Ao, Xiao, Yan et al., Gap-Filling and Missing Information Recovery for Time Series of MODIS Data Using Deep Learning-Based Methods, Remote Sens,
doi:10.3390/rs14194692
West, Welch, Galecki, Linear Mixed Models: A Practical Guide Using Statistical Software
Wickham, Averick, Bryan, Chang, Mcgowan et al., Welcome to the Tidyverse, J. Open Source Softw,
doi:10.21105/joss.01686
Wickham, ggplot2: Elegant Graphics for Data Analysis
Wili Ński, Kupracz, Senejko, Chrzastek, Average time from infection to death in Poland, USA, India and Germany, Qual. Quant,
doi:10.1007/s11135-022-01340-w
Worldometers, Info, COVID-19 Coronavirus Pandemic
Yang, Li, Cao, Influence of Meteorological Factors on the COVID-19 Transmission with Season and Geographic Location, Int. J. Environ. Res. Public Health,
doi:10.3390/ijerph18020484
Yang, Su, Li, Ma, Qi et al., Impacts of socio-economic determinants, spatial distance and climate factors on the confirmed cases and deaths of COVID-19 in China, PLoS ONE,
doi:10.1371/journal.pone.0255229
Zeileis, Hothorn, Diagnostic Checking in Regression Relationships, R News
Zhao, Yao, Zhang, Wang, Wang, Study on the influence of fog and haze on solar radiation based on scatteringweakening effect, Renew. Energy,
doi:10.1016/j.renene.2018.11.027
DOI record:
{
"DOI": "10.3390/ijgi14080283",
"ISSN": [
"2220-9964"
],
"URL": "http://dx.doi.org/10.3390/ijgi14080283",
"abstract": "<jats:p>Previous studies reported the links between the COVID-19 incidence and weather factors, but few investigated their impact and timing on mortality, at a continental scale. We systematically investigated the temporal relationship of COVID-19 mortality in the European countries in the 1st year of pandemic (March–December 2020) with (i) solar insolation (W/m2) at the ground level and (ii) objective sky cloudiness (as decimal cloud fraction), both derived from satellite measurements. We checked the correlations of these factors within a sliding window of two months for the whole period. Linear-mixed effect modeling revealed that overall, for the European countries (adjusted for latitude), COVID-19 mortality was substantially negatively correlated with solar insolation in the previous month (std. beta −0.69). Separately, mortality was significantly correlated with the cloudiness in both the previous month (std. beta +0.14) and the respective month (std. beta +0.32). This time gap of ∼1 month between the COVID-19 mortality and correlated weather factors was previously unreported. The long-term monitoring of these factors might be important for epidemiological policy decisions especially in the initial period of potential future pandemics when effective medical treatment might not yet be available.</jats:p>",
"alternative-id": [
"ijgi14080283"
],
"author": [
{
"ORCID": "https://orcid.org/0000-0002-5987-1789",
"affiliation": [
{
"name": "Biophysics Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania"
}
],
"authenticated-orcid": false,
"family": "Iftime",
"given": "Adrian",
"sequence": "first"
},
{
"ORCID": "https://orcid.org/0000-0002-6797-3902",
"affiliation": [
{
"name": "MedLife Life Memorial Hospital, Calea Griviței 365, 010719 Bucharest, Romania"
}
],
"authenticated-orcid": false,
"family": "Omer",
"given": "Secil",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0002-3269-5375",
"affiliation": [
{
"name": "Biophysics Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania"
},
{
"name": "Ștefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania"
}
],
"authenticated-orcid": false,
"family": "Burcea",
"given": "Victor-Andrei",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0001-8003-0442",
"affiliation": [
{
"name": "Biophysics Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania"
}
],
"authenticated-orcid": false,
"family": "Călinescu",
"given": "Octavian",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0002-7161-7118",
"affiliation": [
{
"name": "Biophysics Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania"
}
],
"authenticated-orcid": false,
"family": "Babeș",
"given": "Ramona-Madalina",
"sequence": "additional"
}
],
"container-title": "ISPRS International Journal of Geo-Information",
"container-title-short": "IJGI",
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2025,
7,
22
]
],
"date-time": "2025-07-22T15:00:42Z",
"timestamp": 1753196442000
},
"deposited": {
"date-parts": [
[
2025,
7,
22
]
],
"date-time": "2025-07-22T15:11:33Z",
"timestamp": 1753197093000
},
"indexed": {
"date-parts": [
[
2025,
7,
23
]
],
"date-time": "2025-07-23T00:07:46Z",
"timestamp": 1753229266913,
"version": "3.41.2"
},
"is-referenced-by-count": 0,
"issue": "8",
"issued": {
"date-parts": [
[
2025,
7,
22
]
]
},
"journal-issue": {
"issue": "8",
"published-online": {
"date-parts": [
[
2025,
8
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2025,
7,
22
]
],
"date-time": "2025-07-22T00:00:00Z",
"timestamp": 1753142400000
}
}
],
"link": [
{
"URL": "https://www.mdpi.com/2220-9964/14/8/283/pdf",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "1968",
"original-title": [],
"page": "283",
"prefix": "10.3390",
"published": {
"date-parts": [
[
2025,
7,
22
]
]
},
"published-online": {
"date-parts": [
[
2025,
7,
22
]
]
},
"publisher": "MDPI AG",
"reference": [
{
"DOI": "10.1016/j.heliyon.2022.e10333",
"article-title": "Correlation between COVID-19 and weather variables: A meta-analysis",
"author": "Islam",
"doi-asserted-by": "crossref",
"first-page": "e10333",
"journal-title": "Heliyon",
"key": "ref_1",
"volume": "8",
"year": "2022"
},
{
"DOI": "10.1016/j.envres.2022.113297",
"article-title": "A meta-analysis result: Uneven influences of season, geo-spatial scale and latitude on relationship between meteorological factors and the COVID-19 transmission",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "113297",
"journal-title": "Environ. Res.",
"key": "ref_2",
"volume": "212",
"year": "2022"
},
{
"DOI": "10.1080/09603123.2022.2083090",
"article-title": "Association between meteorological factors and COVID-19: A systematic review",
"author": "Chen",
"doi-asserted-by": "crossref",
"first-page": "1254",
"journal-title": "Int. J. Environ. Health Res.",
"key": "ref_3",
"volume": "33",
"year": "2022"
},
{
"DOI": "10.1016/S2542-5196(22)00174-7",
"article-title": "Interactions between climate and COVID-19",
"author": "Ford",
"doi-asserted-by": "crossref",
"first-page": "e825",
"journal-title": "Lancet Planet. Health",
"key": "ref_4",
"volume": "6",
"year": "2022"
},
{
"DOI": "10.1016/j.scitotenv.2020.143783",
"article-title": "Meteorological factors and COVID-19 incidence in 190 countries: An observational study",
"author": "Guo",
"doi-asserted-by": "crossref",
"first-page": "143783",
"journal-title": "Sci. Total Environ.",
"key": "ref_5",
"volume": "757",
"year": "2021"
},
{
"DOI": "10.1128/AEM.02291-09",
"article-title": "Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces",
"author": "Casanova",
"doi-asserted-by": "crossref",
"first-page": "2712",
"journal-title": "Appl. Environ. Microbiol.",
"key": "ref_6",
"volume": "76",
"year": "2010"
},
{
"DOI": "10.1016/j.scitotenv.2020.138226",
"article-title": "Effects of Temperature Variation and Humidity on the Death of COVID-19 in Wuhan, China",
"author": "Ma",
"doi-asserted-by": "crossref",
"first-page": "138",
"journal-title": "Sci. Total Environ.",
"key": "ref_7",
"volume": "724",
"year": "2020"
},
{
"DOI": "10.1371/journal.pone.0255229",
"doi-asserted-by": "crossref",
"key": "ref_8",
"unstructured": "Yang, X.D., Su, X.Y., Li, H.L., Ma, R.F., Qi, F.J., and Cao, Y.E. (2021). Impacts of socio-economic determinants, spatial distance and climate factors on the confirmed cases and deaths of COVID-19 in China. PLoS ONE, 16."
},
{
"DOI": "10.1371/journal.pone.0291618",
"doi-asserted-by": "crossref",
"key": "ref_9",
"unstructured": "Martínez-Portillo, A., Garcia-Garcia, D., Leon, I., Ramis-Prieto, R., and Gómez-Barroso, D. (2023). Latitude and longitude as drivers of COVID-19 waves’ behavior in Europe: A time-space perspective of the pandemic. PLoS ONE, 18."
},
{
"DOI": "10.1136/bmjnph-2020-000110",
"article-title": "COVID-19 Mortality Increases with Northerly Latitude after Adjustment for Age Suggesting a Link with Ultraviolet and Vitamin D",
"author": "Rhodes",
"doi-asserted-by": "crossref",
"first-page": "118",
"journal-title": "BMJ Nutr. Prev. Health",
"key": "ref_10",
"volume": "3",
"year": "2020"
},
{
"DOI": "10.1177/1176934321989695",
"doi-asserted-by": "crossref",
"key": "ref_11",
"unstructured": "Burra, P., Soto-Díaz, K., Chalen, I., Gonzalez-Ricon, R.J., Istanto, D., and Caetano-Anollés, G. (2021). Temperature and Latitude Correlate with SARS-CoV-2 Epidemiological Variables but not with Genomic Change Worldwide. Evol. Bioinform., 17."
},
{
"DOI": "10.2139/ssrn.3550308",
"doi-asserted-by": "crossref",
"key": "ref_12",
"unstructured": "Sajadi, M.M., Habibzadeh, P., Vintzileos, A., Shokouhi, S., Miralles-Wilhelm, F., and Amoroso, A. (2020). Temperature and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19. SSRN Electron. J."
},
{
"DOI": "10.1038/s41598-021-81419-w",
"doi-asserted-by": "crossref",
"key": "ref_13",
"unstructured": "Walrand, S. (2021). Autumn COVID-19 surge dates in Europe correlated to latitudes, not to temperature-humidity, pointing to vitamin D as contributing factor. Sci. Rep., 11."
},
{
"DOI": "10.1093/infdis/jiaa274",
"article-title": "Simulated Sunlight Rapidly Inactivates SARS-CoV-2 on Surfaces",
"author": "Williams",
"doi-asserted-by": "crossref",
"first-page": "214",
"journal-title": "J. Infect. Dis.",
"key": "ref_14",
"volume": "222",
"year": "2020"
},
{
"DOI": "10.1111/php.13293",
"article-title": "Estimated Inactivation of Coronaviruses by Solar Radiation With Special Reference to COVID-19",
"author": "Sagripanti",
"doi-asserted-by": "crossref",
"first-page": "731",
"journal-title": "Photochem. Photobiol.",
"key": "ref_15",
"volume": "96",
"year": "2020"
},
{
"DOI": "10.1128/Spectrum.00333-21",
"article-title": "Inactivation of SARS-CoV-2 by Simulated Sunlight on Contaminated Surfaces",
"author": "Raiteux",
"doi-asserted-by": "crossref",
"first-page": "10-1128",
"journal-title": "Microbiol. Spectr.",
"key": "ref_16",
"volume": "9",
"year": "2021"
},
{
"DOI": "10.3390/photonics9020113",
"doi-asserted-by": "crossref",
"key": "ref_17",
"unstructured": "Hessling, M., Lau, B., and Vatter, P. (2022). Review of Virus Inactivation by Visible Light. Photonics, 9."
},
{
"DOI": "10.3390/photonics9100686",
"doi-asserted-by": "crossref",
"key": "ref_18",
"unstructured": "Ailioaie, L.M., Ailioaie, C., and Litscher, G. (2022). Light as a Cure in COVID-19: A Challenge for Medicine. Photonics, 9."
},
{
"DOI": "10.1186/s43593-022-00029-9",
"article-title": "Viral inactivation by light",
"author": "Sadraeian",
"doi-asserted-by": "crossref",
"first-page": "18",
"journal-title": "eLight",
"key": "ref_19",
"volume": "2",
"year": "2022"
},
{
"DOI": "10.1038/s41598-021-94417-9",
"doi-asserted-by": "crossref",
"key": "ref_20",
"unstructured": "Nicastro, F., Sironi, G., Antonello, E., Bianco, A., Biasin, M., Brucato, J.R., Ermolli, I., Pareschi, G., Salvati, M., and Tozzi, P. (2021). Solar UV-B/A radiation is highly effective in inactivating SARS-CoV-2. Sci. Rep., 11."
},
{
"DOI": "10.1007/s11869-020-00927-2",
"article-title": "Inactivation times from 290 to 315 nm UVB in sunlight for SARS coronaviruses CoV and CoV-2 using OMI satellite data for the sunlit Earth",
"author": "Herman",
"doi-asserted-by": "crossref",
"first-page": "217",
"journal-title": "Air Qual. Atmos. Health",
"key": "ref_21",
"volume": "14",
"year": "2020"
},
{
"DOI": "10.3390/v13040574",
"doi-asserted-by": "crossref",
"key": "ref_22",
"unstructured": "Karapiperis, C., Kouklis, P., Papastratos, S., Chasapi, A., Danchin, A., Angelis, L., and Ouzounis, C.A. (2021). A Strong Seasonality Pattern for Covid-19 Incidence Rates Modulated by UV Radiation Levels. Viruses, 13."
},
{
"DOI": "10.3390/ijerph18020484",
"doi-asserted-by": "crossref",
"key": "ref_23",
"unstructured": "Yang, X.D., Li, H.L., and Cao, Y.E. (2021). Influence of Meteorological Factors on the COVID-19 Transmission with Season and Geographic Location. Int. J. Environ. Res. Public Health, 18."
},
{
"DOI": "10.1016/j.chemosphere.2020.128297",
"article-title": "COVID-19 and air pollution and meteorology-an intricate relationship: A review",
"author": "Srivastava",
"doi-asserted-by": "crossref",
"first-page": "128297",
"journal-title": "Chemosphere",
"key": "ref_24",
"volume": "263",
"year": "2021"
},
{
"DOI": "10.1016/j.onehlt.2021.100225",
"article-title": "Associations between meteorology and COVID-19 in early studies: Inconsistencies, uncertainties, and recommendations",
"author": "Kerr",
"doi-asserted-by": "crossref",
"first-page": "100225",
"journal-title": "ONE Health",
"key": "ref_25",
"volume": "12",
"year": "2021"
},
{
"DOI": "10.1016/j.gsf.2021.101189",
"article-title": "The role of airborne particles and environmental considerations in the transmission of SARS-CoV-2",
"author": "Shao",
"doi-asserted-by": "crossref",
"first-page": "101189",
"journal-title": "Geosci. Front.",
"key": "ref_26",
"volume": "12",
"year": "2021"
},
{
"DOI": "10.1007/s10311-022-01557-z",
"article-title": "Unanswered questions on the airborne transmission of COVID-19",
"author": "Gu",
"doi-asserted-by": "crossref",
"first-page": "725",
"journal-title": "Environ. Chem. Lett.",
"key": "ref_27",
"volume": "21",
"year": "2023"
},
{
"DOI": "10.1016/j.scitotenv.2020.138605",
"article-title": "Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality",
"author": "Ogen",
"doi-asserted-by": "crossref",
"first-page": "138605",
"journal-title": "Sci. Total Environ.",
"key": "ref_28",
"volume": "726",
"year": "2020"
},
{
"DOI": "10.1183/16000617.0242-2020",
"article-title": "The impact of outdoor air pollution on COVID-19: A review of evidence fromin vitro, animal, and human studies",
"author": "Bourdrel",
"doi-asserted-by": "crossref",
"first-page": "200242",
"journal-title": "Eur. Respir. Rev.",
"key": "ref_29",
"volume": "30",
"year": "2021"
},
{
"DOI": "10.1038/s41598-021-85751-z",
"doi-asserted-by": "crossref",
"key": "ref_30",
"unstructured": "Solimini, A., Filipponi, F., Fegatelli, D.A., Caputo, B., De Marco, C.M., Spagnoli, A., and Vestri, A.R. (2021). A global association between COVID-19 cases and airborne particulate matter at regional level. Sci. Rep., 11."
},
{
"DOI": "10.1007/s11869-024-01574-7",
"article-title": "Does urban particulate matter hinder COVID-19 transmission rate?",
"author": "Penuelas",
"doi-asserted-by": "crossref",
"first-page": "2307",
"journal-title": "Air Qual. Atmos. Health",
"key": "ref_31",
"volume": "17",
"year": "2024"
},
{
"DOI": "10.1093/infdis/jiab070",
"article-title": "UVB Radiation Alone May Not Explain Sunlight Inactivation of SARS-CoV-2",
"author": "Peaudecerf",
"doi-asserted-by": "crossref",
"first-page": "1500",
"journal-title": "J. Infect. Dis.",
"key": "ref_32",
"volume": "223",
"year": "2021"
},
{
"DOI": "10.1039/C8EM00047F",
"article-title": "Sunlight-mediated inactivation of health-relevant microorganisms in water: A review of mechanisms and modeling approaches",
"author": "Nelson",
"doi-asserted-by": "crossref",
"first-page": "1089",
"journal-title": "Environ. Sci. Process. Impacts",
"key": "ref_33",
"volume": "20",
"year": "2018"
},
{
"DOI": "10.1021/es061716i",
"article-title": "Sunlight-Mediated Inactivation of MS2 Coliphage via Exogenous Singlet Oxygen Produced by Sensitizers in Natural Waters",
"author": "Kohn",
"doi-asserted-by": "crossref",
"first-page": "192",
"journal-title": "Environ. Sci. Technol.",
"key": "ref_34",
"volume": "41",
"year": "2006"
},
{
"DOI": "10.3390/nu14030471",
"doi-asserted-by": "crossref",
"key": "ref_35",
"unstructured": "Tyrovolas, S., Tsiampalis, T., Morena, M., Leung, A.Y.M., Faka, A., Chalkias, C., Tsiodras, S., and Panagiotakos, D. (2022). COVID-19 Mortality in Europe, by Latitude and Obesity Status: A Geo-Spatial Analysis in 40 Countries. Nutrients, 14."
},
{
"DOI": "10.1016/j.ajic.2020.06.193",
"article-title": "COVID-19 Fatalities, Latitude, Sunlight, and Vitamin D",
"author": "Whittemore",
"doi-asserted-by": "crossref",
"first-page": "1042",
"journal-title": "Am. J. Infect. Control",
"key": "ref_36",
"volume": "48",
"year": "2020"
},
{
"DOI": "10.1101/2020.07.18.20156307",
"doi-asserted-by": "crossref",
"key": "ref_37",
"unstructured": "Faes, C., Abrams, S., Van Beckhoven, D., Meyfroidt, G., Vlieghe, E., and Hens, N. (2020). Time between Symptom Onset, Hospitalisation and Recovery or Death: Statistical Analysis of Belgian COVID-19 Patients. Int. J. Environ. Res. Public Health, 17."
},
{
"DOI": "10.3389/fepid.2022.1065184",
"doi-asserted-by": "crossref",
"key": "ref_38",
"unstructured": "Atamenta, T., Cherie, A., and Alemu, W. (2023). Time to death and its predictors among adult patients with COVID-19: A retrospective cohort study in Ethiopia. Front. Epidemiol., 2."
},
{
"DOI": "10.1186/s13054-021-03639-w",
"article-title": "Timing and causes of death in severe COVID-19 patients",
"author": "Bredin",
"doi-asserted-by": "crossref",
"first-page": "224",
"journal-title": "Crit. Care",
"key": "ref_39",
"volume": "25",
"year": "2021"
},
{
"DOI": "10.1007/s11135-022-01340-w",
"article-title": "COVID-19: Average time from infection to death in Poland, USA, India and Germany",
"author": "Kupracz",
"doi-asserted-by": "crossref",
"first-page": "4729",
"journal-title": "Qual. Quant.",
"key": "ref_40",
"volume": "56",
"year": "2022"
},
{
"DOI": "10.1175/2008JAS2591.1",
"article-title": "Relative Humidity as an Indicator for Cloud Formation over Heterogeneous Land Surfaces",
"doi-asserted-by": "crossref",
"first-page": "3263",
"journal-title": "J. Atmos. Sci.",
"key": "ref_41",
"volume": "65",
"year": "2008"
},
{
"DOI": "10.1038/ngeo1313",
"article-title": "Long-term impacts of aerosols on the vertical development of clouds and precipitation",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "888",
"journal-title": "Nat. Geosci.",
"key": "ref_42",
"volume": "4",
"year": "2011"
},
{
"DOI": "10.1029/2008JD010991",
"doi-asserted-by": "crossref",
"key": "ref_43",
"unstructured": "Twohy, C.H., Coakley, J.A., and Tahnk, W.R. (2009). Effect of changes in relative humidity on aerosol scattering near clouds. J. Geophys. Res. Atmos., 114."
},
{
"DOI": "10.1175/1520-0450(1995)034<2755:TTOSTC>2.0.CO;2",
"article-title": "The Transmission of Sunlight through Cloudy Skies: An Analysis Based on Standard Meteorological Information",
"author": "Frederick",
"doi-asserted-by": "crossref",
"first-page": "2755",
"journal-title": "J. Appl. Meteorol.",
"key": "ref_44",
"volume": "34",
"year": "1995"
},
{
"DOI": "10.1016/S0038-092X(00)00062-1",
"article-title": "Spectral Solar Irradiance and Some Optical Properties for Various Polluted Atmospheres",
"author": "Jacovides",
"doi-asserted-by": "crossref",
"first-page": "215",
"journal-title": "Sol. Energy",
"key": "ref_45",
"volume": "69",
"year": "2000"
},
{
"DOI": "10.1175/1520-0469(1997)054<2813:TAOSBH>2.0.CO;2",
"article-title": "The Attenuation of Sunlight by High-Latitude Clouds: Spectral Dependence and Its Physical Mechanisms",
"author": "Frederick",
"doi-asserted-by": "crossref",
"first-page": "2813",
"journal-title": "J. Atmos. Sci.",
"key": "ref_46",
"volume": "54",
"year": "1997"
},
{
"key": "ref_47",
"unstructured": "Patterson, T., Kelso, N.V., Furno, D., Buckingham, T., Buckingham, B., Springer, N., Cross, L., Zillmer, S., Haggit, C., and Bennet, S. (2022, February 01). Made with Natural Earth. Free Vector and Raster Map Data @ naturalearthdata.com. Available online: https://www.naturalearthdata.com/."
},
{
"key": "ref_48",
"unstructured": "R Core Team (2025). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing."
},
{
"key": "ref_49",
"unstructured": "Massicotte, P., and South, A. (2025, July 08). Rnaturalearth: World Map Data from Natural Earth; R Package Version 1.0.1; 2023. Available online: https://CRAN.R-project.org/package=rnaturalearth."
},
{
"article-title": "Classes and methods for spatial data in R",
"author": "Pebesma",
"first-page": "9",
"journal-title": "R News",
"key": "ref_50",
"volume": "5",
"year": "2005"
},
{
"DOI": "10.1007/978-1-4614-7618-4",
"doi-asserted-by": "crossref",
"key": "ref_51",
"unstructured": "Bivand, R.S., Pebesma, E., and Gomez-Rubio, V. (2013). Applied Spatial Data Analysis with R, Springer. [2nd ed.]."
},
{
"DOI": "10.32614/RJ-2018-009",
"article-title": "Simple Features for R: Standardized Support for Spatial Vector Data",
"author": "Pebesma",
"doi-asserted-by": "crossref",
"first-page": "439",
"journal-title": "R J.",
"key": "ref_52",
"volume": "10",
"year": "2018"
},
{
"DOI": "10.1201/9780429459016",
"doi-asserted-by": "crossref",
"key": "ref_53",
"unstructured": "Pebesma, E., and Bivand, R. (2023). Spatial Data Science: With Applications in R, Chapman and Hall/CRC."
},
{
"key": "ref_54",
"unstructured": "Hijmans, R.J. (2025, July 08). Raster: Geographic Data Analysis and Modeling; Comprehensive R Archive Network; R Package Version 3.6-32; 2025. Available online: https://CRAN.R-project.org/package=raster."
},
{
"key": "ref_55",
"unstructured": "Google Developers (2021, June 02). Dataset Publishing Language: Country Centroids. Available online: https://developers.google.com/public-data/docs/canonical/countries_csv."
},
{
"key": "ref_56",
"unstructured": "OpenStreetMap Contributors (2021, February 02). Planet Dump Retrieved from Planet OSM. Available online: https://www.openstreetmap.org."
},
{
"key": "ref_57",
"unstructured": "NASA, MODIS Atmosphere Science Team (2022, July 01). Cloud Fraction, Available online: https://neo.gsfc.nasa.gov/view.php?datasetId=MODAL2_M_CLD_FR."
},
{
"DOI": "10.1029/2002GL015345",
"article-title": "Climate Sensitivity of the Earth to Solar Irradiance",
"author": "Douglass",
"doi-asserted-by": "crossref",
"first-page": "33-1",
"journal-title": "Geophys. Res. Lett.",
"key": "ref_58",
"volume": "29",
"year": "2002"
},
{
"DOI": "10.1175/1520-0442(1998)011<3069:CFBCSR>2.0.CO;2",
"article-title": "Climate Forcing by Changing Solar Radiation",
"author": "Lean",
"doi-asserted-by": "crossref",
"first-page": "3069",
"journal-title": "J. Clim.",
"key": "ref_59",
"volume": "11",
"year": "1998"
},
{
"key": "ref_60",
"unstructured": "NASA, CERES/FLASHFlux Science Team (2022, July 01). Solar Insolation, Available online: https://neo.gsfc.nasa.gov/view.php?datasetId=CERES_INSOL_M."
},
{
"DOI": "10.1371/journal.pone.0251470",
"doi-asserted-by": "crossref",
"key": "ref_61",
"unstructured": "Miller, A.R., Charepoo, S., Yan, E., Frost, R.W., Sturgeon, Z.J., Gibbon, G., Balius, P.N., Thomas, C.S., Schmitt, M.A., and Sass, D.A. (2022). Reliability of COVID-19 data: An evaluation and reflection. PLoS ONE, 17."
},
{
"DOI": "10.3390/ijgi9100605",
"doi-asserted-by": "crossref",
"key": "ref_62",
"unstructured": "Antoniou, V., Vassilakis, E., and Hatzaki, M. (2020). Is Crowdsourcing a Reliable Method for Mass Data Acquisition? The Case of COVID-19 Spread in Greece During Spring 2020. ISPRS Int. J. Geo-Inf., 9."
},
{
"DOI": "10.1177/0043820020945683",
"article-title": "Research Note: Governance Indicators Explain Discrepancies in COVID-19 Data",
"author": "Baris",
"doi-asserted-by": "crossref",
"first-page": "216",
"journal-title": "World Aff.",
"key": "ref_63",
"volume": "183",
"year": "2020"
},
{
"DOI": "10.1016/j.cmi.2020.05.039",
"article-title": "Discrepancy in reports of COVID-19 onset of symptoms: Are faulty data being collected?",
"author": "Choucair",
"doi-asserted-by": "crossref",
"first-page": "1433",
"journal-title": "Clin. Microbiol. Infect.",
"key": "ref_64",
"volume": "26",
"year": "2020"
},
{
"DOI": "10.1136/bmjgh-2021-005542",
"article-title": "Challenges in reported COVID-19 data: Best practices and recommendations for future epidemics",
"author": "Badker",
"doi-asserted-by": "crossref",
"first-page": "e005542",
"journal-title": "BMJ Glob. Health",
"key": "ref_65",
"volume": "6",
"year": "2021"
},
{
"DOI": "10.3390/ijerph19063692",
"doi-asserted-by": "crossref",
"key": "ref_66",
"unstructured": "Walkowiak, M.P., and Walkowiak, D. (2022). Underestimation in Reporting Excess COVID-19 Death Data in Poland during the First Three Pandemic Waves. Int. J. Environ. Res. Public Health, 19."
},
{
"DOI": "10.1101/2020.01.29.20019547",
"doi-asserted-by": "crossref",
"key": "ref_67",
"unstructured": "Jung, S.m., Akhmetzhanov, A.R., Hayashi, K., Linton, N.M., Yang, Y., Yuan, B., Kobayashi, T., Kinoshita, R., and Nishiura, H. (2020). Real-Time Estimation of the Risk of Death from Novel Coronavirus (COVID-19) Infection: Inference Using Exported Cases. J. Clin. Med., 9."
},
{
"DOI": "10.1038/s41597-022-01245-1",
"article-title": "A worldwide epidemiological database for COVID-19 at fine-grained spatial resolution",
"author": "Guidotti",
"doi-asserted-by": "crossref",
"first-page": "112",
"journal-title": "Sci. Data",
"key": "ref_68",
"volume": "9",
"year": "2022"
},
{
"DOI": "10.21105/joss.02376",
"article-title": "COVID-19 Data Hub",
"author": "Guidotti",
"doi-asserted-by": "crossref",
"first-page": "2376",
"journal-title": "J. Open Source Softw.",
"key": "ref_69",
"volume": "5",
"year": "2020"
},
{
"key": "ref_70",
"unstructured": "(2021, June 01). Worldometers.info. COVID-19 Coronavirus Pandemic. Available online: http://web.archive.org/web/20210607000129/https://www.worldometers.info/coronavirus/."
},
{
"DOI": "10.1163/157180905774857916",
"article-title": "Death Certificates in Germany, England, The Netherlands, Belgium and the USA",
"author": "Das",
"doi-asserted-by": "crossref",
"first-page": "193",
"journal-title": "Eur. J. Health Law",
"key": "ref_71",
"volume": "12",
"year": "2005"
},
{
"DOI": "10.3390/math9070788",
"doi-asserted-by": "crossref",
"key": "ref_72",
"unstructured": "Arnastauskaitė, J., Ruzgas, T., and Bražėnas, M. (2021). An Exhaustive Power Comparison of Normality Tests. Mathematics, 9."
},
{
"DOI": "10.1177/00236772241276808",
"article-title": "Testing for normality: A user’s (cautionary) guide",
"author": "Gosselin",
"doi-asserted-by": "crossref",
"first-page": "433",
"journal-title": "Lab. Anim.",
"key": "ref_73",
"volume": "58",
"year": "2024"
},
{
"DOI": "10.20944/preprints201905.0190.v1",
"doi-asserted-by": "crossref",
"key": "ref_74",
"unstructured": "Islam, T.U. (2019). Ranking of Normality Tests: An Appraisal through Skewed Alternative Space. Symmetry, 11."
},
{
"DOI": "10.4097/kja.20137",
"article-title": "Data transformation: A focus on the interpretation",
"author": "Lee",
"doi-asserted-by": "crossref",
"first-page": "503",
"journal-title": "Korean J. Anesthesiol.",
"key": "ref_75",
"volume": "73",
"year": "2020"
},
{
"key": "ref_76",
"unstructured": "Osborne, J. (2002). Notes on the use of data transformations. Pract. Assess. Res. Eval., 8."
},
{
"DOI": "10.3390/stats5030042",
"article-title": "Reciprocal Data Transformations and Their Back-Transforms",
"author": "Griffith",
"doi-asserted-by": "crossref",
"first-page": "714",
"journal-title": "Stats",
"key": "ref_77",
"volume": "5",
"year": "2022"
},
{
"key": "ref_78",
"unstructured": "R Core Team (2025). Log: Logarithms and Exponentials, R Foundation for Statistical Computing."
},
{
"DOI": "10.18637/jss.v067.i01",
"article-title": "Fitting Linear Mixed-Effects Models Using lme4",
"author": "Bates",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "J. Stat. Softw.",
"key": "ref_79",
"volume": "67",
"year": "2015"
},
{
"DOI": "10.21105/joss.00772",
"article-title": "ggeffects: Tidy Data Frames of Marginal Effects from Regression Models",
"doi-asserted-by": "crossref",
"first-page": "772",
"journal-title": "J. Open Source Softw.",
"key": "ref_80",
"volume": "3",
"year": "2018"
},
{
"DOI": "10.1007/978-3-319-24277-4_9",
"doi-asserted-by": "crossref",
"key": "ref_81",
"unstructured": "Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis, Springer."
},
{
"key": "ref_82",
"unstructured": "Lenth, R.V. (2025, July 08). emmeans: Estimated Marginal Means, aka Least-Squares Means; R package Version 1.10.1; 2024. Available online: https://CRAN.R-project.org/package=emmeans."
},
{
"DOI": "10.21105/joss.02815",
"article-title": "effectsize: Estimation of Effect Size Indices and Standardized Parameters",
"author": "Makowski",
"doi-asserted-by": "crossref",
"first-page": "2815",
"journal-title": "J. Open Source Softw.",
"key": "ref_83",
"volume": "5",
"year": "2020"
},
{
"article-title": "Diagnostic Checking in Regression Relationships",
"author": "Zeileis",
"first-page": "7",
"journal-title": "R News",
"key": "ref_84",
"volume": "2",
"year": "2002"
},
{
"key": "ref_85",
"unstructured": "Makowski, D., Lüdecke, D., Patil, I., Thériault, R., Ben-Shachar, M.S., and Wiernik, B.M. (2025, July 08). Automated Results Reporting as a Practical Tool to Improve Reproducibility and Methodological Best Practices Adoption. CRAN, Available online: https://easystats.github.io/report/."
},
{
"key": "ref_86",
"unstructured": "Kassambara, A. (2025, July 08). Rstatix: Pipe-Friendly Framework for Basic Statistical Tests; R Package Version 0.7.2; 2023. Available online: https://CRAN.R-project.org/package=rstatix."
},
{
"key": "ref_87",
"unstructured": "Hlavac, M. (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables, Social Policy Institute. R Package Version 5.2.3."
},
{
"key": "ref_88",
"unstructured": "Lüdecke, D. (2025, July 08). sjPlot: Data Visualization for Statistics in Social Science; R Package Version 2.8.17; 2024. Available online: https://CRAN.R-project.org/package=sjPlot."
},
{
"DOI": "10.21105/joss.01686",
"article-title": "Welcome to the Tidyverse",
"author": "Wickham",
"doi-asserted-by": "crossref",
"first-page": "1686",
"journal-title": "J. Open Source Softw.",
"key": "ref_89",
"volume": "4",
"year": "2019"
},
{
"key": "ref_90",
"unstructured": "Fox, J., and Weisberg, S. (2019). An R Companion to Applied Regression, Sage. [3rd ed.]."
},
{
"DOI": "10.1016/j.jml.2020.104092",
"article-title": "Best practice guidance for linear mixed-effects models in psychological science",
"author": "Meteyard",
"doi-asserted-by": "crossref",
"first-page": "104092",
"journal-title": "J. Mem. Lang.",
"key": "ref_91",
"volume": "112",
"year": "2020"
},
{
"DOI": "10.1201/9781420010435",
"doi-asserted-by": "crossref",
"key": "ref_92",
"unstructured": "West, B.T., Welch, K.B., and Galecki, A.T. (2006). Linear Mixed Models: A Practical Guide Using Statistical Software, Chapman and Hall/CRC Press. [1st ed.]."
},
{
"article-title": "An Introduction to Linear Mixed-Effects Modeling in R",
"author": "Brown",
"first-page": "251524592096035",
"journal-title": "Adv. Methods Pract. Psychol. Sci.",
"key": "ref_93",
"volume": "4",
"year": "2021"
},
{
"DOI": "10.1111/j.2041-210x.2012.00261.x",
"article-title": "A general and simple method for obtaining R2 from generalized linear mixed-effects models",
"author": "Nakagawa",
"doi-asserted-by": "crossref",
"first-page": "133",
"journal-title": "Methods Ecol. Evol.",
"key": "ref_94",
"volume": "4",
"year": "2012"
},
{
"DOI": "10.3390/biomedinformatics2030028",
"article-title": "Application of Standardized Regression Coefficient in Meta-Analysis",
"author": "Nieminen",
"doi-asserted-by": "crossref",
"first-page": "434",
"journal-title": "BioMedInformatics",
"key": "ref_95",
"volume": "2",
"year": "2022"
},
{
"key": "ref_96",
"unstructured": "Ellis, P.D. (2013). The Essential Guide to Effect Sizes, Cambridge University Press. [6th ed.]."
},
{
"DOI": "10.1007/978-0-387-21706-2",
"doi-asserted-by": "crossref",
"key": "ref_97",
"unstructured": "Venables, V.N., and Ripley, B.D. (2002). Modern Applied Statistics with S, Springer. [4th ed.]."
},
{
"key": "ref_98",
"unstructured": "Allison, P.D. (1999). Multiple Regression: A Primer, Pine Forge Press. [1st ed.]."
},
{
"DOI": "10.1177/1536867X1801700412",
"article-title": "Testing for Granger Causality in Panel Data",
"author": "Lopez",
"doi-asserted-by": "crossref",
"first-page": "972",
"journal-title": "Stata J. Promot. Commun. Stat. Stata",
"key": "ref_99",
"volume": "17",
"year": "2017"
},
{
"DOI": "10.1016/0038-092X(82)90302-4",
"article-title": "Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation",
"author": "Erbs",
"doi-asserted-by": "crossref",
"first-page": "293",
"journal-title": "Sol. Energy",
"key": "ref_100",
"volume": "28",
"year": "1982"
},
{
"DOI": "10.3390/cli9120183",
"doi-asserted-by": "crossref",
"key": "ref_101",
"unstructured": "Kambezidis, H.D. (2021). The Solar Radiation Climate of Greece. Climate, 9."
},
{
"DOI": "10.1186/s12879-021-06785-2",
"doi-asserted-by": "crossref",
"key": "ref_102",
"unstructured": "Nichols, G.L., Gillingham, E.L., Macintyre, H.L., Vardoulakis, S., Hajat, S., Sarran, C.E., Amankwaah, D., and Phalkey, R. (2021). Coronavirus seasonality, respiratory infections and weather. BMC Infect. Dis., 21."
},
{
"DOI": "10.1016/j.scitotenv.2020.139016",
"article-title": "Sunlight Exposure Increased COVID-19 Recovery Rates: A Study in the Central Pandemic Area of Indonesia",
"author": "Asyary",
"doi-asserted-by": "crossref",
"first-page": "139016",
"journal-title": "Sci. Total Environ.",
"key": "ref_103",
"volume": "729",
"year": "2020"
},
{
"DOI": "10.1111/jsr.13471",
"article-title": "Outdoor daylight exposure and longer sleep promote wellbeing under COVID-19 mandated restrictions",
"author": "Korman",
"doi-asserted-by": "crossref",
"first-page": "e13471",
"journal-title": "J. Sleep Res.",
"key": "ref_104",
"volume": "31",
"year": "2021"
},
{
"DOI": "10.20944/preprints202105.0138.v1",
"doi-asserted-by": "crossref",
"key": "ref_105",
"unstructured": "Fountoulakis, I., Kosmopoulos, P., Papachristopoulou, K., Raptis, I.P., Mamouri, R.E., Nisantzi, A., Gkikas, A., Witthuhn, J., Bley, S., and Moustaka, A. (2021). Effects of Aerosols and Clouds on the Levels of Surface Solar Radiation and Solar Energy in Cyprus. Remote Sens., 13."
},
{
"DOI": "10.1016/j.renene.2018.11.027",
"article-title": "Study on the influence of fog and haze on solar radiation based on scattering-weakening effect",
"author": "Zhao",
"doi-asserted-by": "crossref",
"first-page": "178",
"journal-title": "Renew. Energy",
"key": "ref_106",
"volume": "134",
"year": "2019"
},
{
"DOI": "10.1029/96JD01170",
"article-title": "Effects of clouds and haze on UV-B radiation",
"author": "Raman",
"doi-asserted-by": "crossref",
"first-page": "16807",
"journal-title": "J. Geophys. Res. Atmos.",
"key": "ref_107",
"volume": "101",
"year": "1996"
},
{
"DOI": "10.1016/j.atmosres.2009.05.003",
"article-title": "Five years of cloud enhanced surface UV radiation measurements at two sites (in the Northern and Southern Hemispheres)",
"author": "Sabburg",
"doi-asserted-by": "crossref",
"first-page": "902",
"journal-title": "Atmos. Res.",
"key": "ref_108",
"volume": "93",
"year": "2009"
},
{
"DOI": "10.1038/s41467-018-06280-4",
"article-title": "Contrasting Effects on Deep Convective Clouds by Different Types of Aerosols",
"author": "Jiang",
"doi-asserted-by": "crossref",
"first-page": "3874",
"journal-title": "Nat. Commun.",
"key": "ref_109",
"volume": "9",
"year": "2018"
},
{
"DOI": "10.1007/s10640-020-00486-1",
"article-title": "The Effects of Air Pollution on COVID-19 Related Mortality in Northern Italy",
"author": "Coker",
"doi-asserted-by": "crossref",
"first-page": "611",
"journal-title": "Environ. Resour. Econ.",
"key": "ref_110",
"volume": "76",
"year": "2020"
},
{
"DOI": "10.1016/j.scitotenv.2022.157241",
"article-title": "Good and bad get together: Inactivation of SARS-CoV-2 in particulate matter pollution from different fuels",
"author": "Armas",
"doi-asserted-by": "crossref",
"first-page": "157241",
"journal-title": "Sci. Total Environ.",
"key": "ref_111",
"volume": "844",
"year": "2022"
},
{
"DOI": "10.3389/fpubh.2022.882569",
"doi-asserted-by": "crossref",
"key": "ref_112",
"unstructured": "Pryor, J.T., Cowley, L.O., and Simonds, S.E. (2022). The Physiological Effects of Air Pollution: Particulate Matter, Physiology and Disease. Front. Public Health, 10."
},
{
"DOI": "10.1175/1520-0442(2000)013<4341:TCITOR>2.0.CO;2",
"article-title": "Temporal Changes in the Observed Relationship between Cloud Cover and Surface Air Temperature",
"author": "Sun",
"doi-asserted-by": "crossref",
"first-page": "4341",
"journal-title": "J. Clim.",
"key": "ref_113",
"volume": "13",
"year": "2000"
},
{
"DOI": "10.1186/s12985-020-01418-7",
"article-title": "The Effect of Temperature on Persistence of SARS-CoV-2 on Common Surfaces",
"author": "Riddell",
"doi-asserted-by": "crossref",
"first-page": "145",
"journal-title": "Virol. J.",
"key": "ref_114",
"volume": "17",
"year": "2020"
},
{
"DOI": "10.1016/j.jpap.2022.100108",
"doi-asserted-by": "crossref",
"key": "ref_115",
"unstructured": "Nandin de Carvalho, H. (2022). Latitude impact on pandemic Sars-CoV-2 2020 outbreaks and possible utility of UV indexes in predictions of regional daily infections and deaths. J. Photochem. Photobiol., 10."
},
{
"DOI": "10.1073/pnas.0509842103",
"article-title": "Geography and macroeconomics: New data and new findings",
"author": "Nordhaus",
"doi-asserted-by": "crossref",
"first-page": "3510",
"journal-title": "Proc. Natl. Acad. Sci. USA",
"key": "ref_116",
"volume": "103",
"year": "2006"
},
{
"DOI": "10.3390/su14031461",
"doi-asserted-by": "crossref",
"key": "ref_117",
"unstructured": "Pawliczek, A., Kurowska-Pysz, J., and Smilnak, R. (2022). Relation between Globe Latitude and the Quality of Life: Insights for Public Policy Management. Sustainability, 14."
},
{
"DOI": "10.1186/s12889-024-19749-3",
"doi-asserted-by": "crossref",
"key": "ref_118",
"unstructured": "Gong, Z., Song, T., Hu, M., Che, Q., Guo, J., Zhang, H., Li, H., Wang, Y., Liu, B., and Shi, N. (2024). Natural and socio-environmental factors in the transmission of COVID-19: A comprehensive analysis of epidemiology and mechanisms. BMC Public Health, 24."
},
{
"DOI": "10.3390/rs14194692",
"doi-asserted-by": "crossref",
"key": "ref_119",
"unstructured": "Wang, Y., Zhou, X., Ao, Z., Xiao, K., Yan, C., and Xin, Q. (2022). Gap-Filling and Missing Information Recovery for Time Series of MODIS Data Using Deep Learning-Based Methods. Remote Sens., 14."
},
{
"DOI": "10.3390/rs12223786",
"doi-asserted-by": "crossref",
"key": "ref_120",
"unstructured": "Chi, Y., Wu, Z., Liao, K., and Ren, Y. (2020). Handling Missing Data in Large-Scale MODIS AOD Products Using a Two-Step Model. Remote Sens., 12."
},
{
"DOI": "10.3390/rs12030361",
"doi-asserted-by": "crossref",
"key": "ref_121",
"unstructured": "Liu, H., Lu, N., Jiang, H., Qin, J., and Yao, L. (2020). Filling Gaps of Monthly Terra/MODIS Daytime Land Surface Temperature Using Discrete Cosine Transform Method. Remote Sens., 12."
},
{
"DOI": "10.3390/rs12183008",
"doi-asserted-by": "crossref",
"key": "ref_122",
"unstructured": "Chen, Z.Y., Jin, J.Q., Zhang, R., Zhang, T.H., Chen, J.J., Yang, J., Ou, C.Q., and Guo, Y. (2020). Comparison of Different Missing-Imputation Methods for MAIAC (Multiangle Implementation of Atmospheric Correction) AOD in Estimating Daily PM2.5 Levels. Remote Sens., 12."
},
{
"DOI": "10.1177/001316447803800404",
"article-title": "On the Occurrence of Standardized Regression Coefficients Greater Than One",
"author": "Deegan",
"doi-asserted-by": "crossref",
"first-page": "873",
"journal-title": "Educ. Psychol. Meas.",
"key": "ref_123",
"volume": "38",
"year": "1978"
},
{
"DOI": "10.1007/s11135-017-0584-6",
"article-title": "Confounding and collinearity in regression analysis: A cautionary tale and an alternative procedure, illustrated by studies of British voting behaviour",
"author": "Johnston",
"doi-asserted-by": "crossref",
"first-page": "1957",
"journal-title": "Qual. Quant.",
"key": "ref_124",
"volume": "52",
"year": "2017"
},
{
"DOI": "10.2307/622936",
"article-title": "Spatial Point Pattern Analysis and Its Application in Geographical Epidemiology",
"author": "Gatrell",
"doi-asserted-by": "crossref",
"first-page": "256",
"journal-title": "Trans. Inst. Br. Geogr.",
"key": "ref_125",
"volume": "21",
"year": "1996"
},
{
"DOI": "10.1038/s41579-020-00461-z",
"article-title": "Considerations for diagnostic COVID-19 tests",
"author": "Vandenberg",
"doi-asserted-by": "crossref",
"first-page": "171",
"journal-title": "Nat. Rev. Microbiol.",
"key": "ref_126",
"volume": "19",
"year": "2020"
},
{
"DOI": "10.1007/s11606-020-05881-4",
"article-title": "COVID-19: Magnifying the Effect of Health Disparities",
"author": "Kim",
"doi-asserted-by": "crossref",
"first-page": "2441",
"journal-title": "J. Gen. Intern. Med.",
"key": "ref_127",
"volume": "35",
"year": "2020"
},
{
"DOI": "10.1038/s41576-021-00360-w",
"article-title": "Testing at scale during the COVID-19 pandemic",
"author": "Mercer",
"doi-asserted-by": "crossref",
"first-page": "415",
"journal-title": "Nat. Rev. Genet.",
"key": "ref_128",
"volume": "22",
"year": "2021"
},
{
"DOI": "10.1016/0160-8002(79)90046-7",
"article-title": "Problems of spatial analysis in geographical epidemiology",
"author": "King",
"doi-asserted-by": "crossref",
"first-page": "249",
"journal-title": "Soc. Sci. Med. Part D Med. Geogr.",
"key": "ref_129",
"volume": "13",
"year": "1979"
},
{
"DOI": "10.1186/s12889-023-16451-8",
"doi-asserted-by": "crossref",
"key": "ref_130",
"unstructured": "Manzoor, F., and Redelmeier, D.A. (2023). COVID-19 deaths on weekends. BMC Public Health, 23."
},
{
"DOI": "10.1128/mSystems.00544-20",
"article-title": "Oscillations in U.S. COVID-19 Incidence and Mortality Data Reflect Diagnostic and Reporting Factors",
"author": "Bergman",
"doi-asserted-by": "crossref",
"first-page": "10-1128",
"journal-title": "mSystems",
"key": "ref_131",
"volume": "5",
"year": "2020"
},
{
"key": "ref_132",
"unstructured": "Iftime, A., Omer, S., Burcea, V.A., Calinescu, O., and Babes, R.M. (2025, May 21). Monthly Values of Solar Irradiance, Cloud Fraction, COVID-19 Mortality, for European Countries in 2020. Zendo Open Data Repository. Available online: https://zenodo.org/records/15481351."
}
],
"reference-count": 132,
"references-count": 132,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.mdpi.com/2220-9964/14/8/283"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Spatial and Temporal Correlations of COVID-19 Mortality in Europe with Atmospheric Cloudiness and Solar Radiation",
"type": "journal-article",
"volume": "14"
}