Acetylsalicylic Acid and Salicylic Acid Inhibit SARS-CoV-2 Replication in Precision-Cut Lung Slices
Nina Geiger, Eva-Maria König, Heike Oberwinkler, Valeria Roll, Viktoria Diesendorf, Sofie Fähr, Helena Obernolte, Katherina Sewald, Sabine Wronski, Maria Steinke, Jochen Bodem
Vaccines, doi:10.3390/vaccines10101619
Aspirin, with its active compound acetylsalicylic acid (ASA), shows antiviral activity against rhino-and influenza viruses at high concentrations. We sought to investigate whether ASA and its metabolite salicylic acid (SA) inhibit SARS-CoV-2 since it might use similar pathways to influenza viruses. The compound-treated cells were infected with SARS-CoV-2. Viral replication was analysed by RTqPCR. The compounds suppressed SARS-CoV-2 replication in cell culture cells and a patient-near replication system using human precision-cut lung slices by two orders of magnitude. While the compounds did not interfere with viral entry, it led to lower viral RNA expression after 24 h, indicating that post-entry pathways were inhibited by the compounds.
Funding: Bayer Vital GmbH funded a part of this study. This publication was supported by the Open Access Publication Fund of the University of Wuerzburg.
Conflicts of Interest: Bayer Vital GmbH funded a part of this study but had no role in the design of the study; in the collection, analysis or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.
References
Avota, Bodem, Chithelen, Mandasari, Beyersdorf et al., The Manifold Roles of Sphingolipids in Viral Infections, Front. Physiol,
doi:10.3389/fphys.2021.715527
Chow, Khanna, Kethireddy, Yamane, Levine et al., Aspirin Use Is Associated With Decreased Mechanical Ventilation, Intensive Care Unit Admission, and In-Hospital Mortality in Hospitalized Patients with Coronavirus Disease, Anesth. Analg,
doi:10.1213/ANE.0000000000005292
Geiger, Kersting, Schlegel, Stelz, Fahr et al., The Acid Ceramidase Is a SARS-CoV-2 Host Factor, Cells,
doi:10.3390/cells11162532
Glatthaar-Saalmuller, Mair, Saalmuller, Antiviral activity of aspirin against RNA viruses of the respiratory tract-an in vitro study, Influenza Respir. Viruses,
doi:10.1111/irv.12421
Goldman, Lye, Hui, Marks, Bruno et al., Remdesivir for 5 or 10 Days in Patients with Severe COVID-19, N. Engl. J. Med,
doi:10.1056/NEJMoa2015301
Hoffmann, Mosbauer, Hofmann-Winkler, Kaul, Kleine-Weber et al., Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2, Nature
Jancso, Cserepes, Gasz, Benko, Ferencz et al., Effect of acetylsalicylic acid on nuclear factor-kappaB activation and on late preconditioning against infarction in the myocardium, J. Cardiovasc. Pharm,
doi:10.1097/01.fjc.0000175240.64444.68
Khoo, Fitzgerald, Fletcher, Ewings, Jaki et al., Optimal dose and safety of molnupiravir in patients with early SARS-CoV-2: A Phase I, open-label, dose-escalating, randomized controlled study, J. Antimicrob. Chemother,
doi:10.1093/jac/dkab318
Kumar, Xin, Liang, Ly, Liang, NF-kappaB signaling differentially regulates influenza virus RNA synthesis, J. Virol,
doi:10.1128/JVI.00909-08
Liu, Han, Blair, Kenst, Qin et al., SARS-CoV-2 Infects Endothelial Cells In Vivo and In Vitro, Front. Cell. Infect. Microbiol,
doi:10.3389/fcimb.2021.701278
Liu, Huang, Li, Zhou, Liang et al., Effect of low-dose aspirin on mortality and viral duration of the hospitalized adults with COVID-19, Medicine,
doi:10.1097/MD.0000000000024544
Maisonnasse, Guedj, Contreras, Behillil, Solas et al., Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates, Nature,
doi:10.1038/s41586-020-2558-4
Mazur, Wurzer, Ehrhardt, Pleschka, Puthavathana et al., Acetylsalicylic acid (ASA) blocks influenza virus propagation via its NF-kappaB-inhibiting activity, Cell Microbiol,
doi:10.1111/j.1462-5822.2007.00902.x
Neuhaus, Danov, Konzok, Obernolte, Dehmel et al., Assessment of the Cytotoxic and Immunomodulatory Effects of Substances in Human Precision-cut Lung Slices, J. Vis. Exp,
doi:10.3791/57042
Nilsson-Payant, Uhl, Grimont, Doane, Cohen et al., The NF-kappaB Transcriptional Footprint Is Essential for SARS-CoV-2 Replication, J. Virol,
doi:10.1128/JVI.01257-21
Oskotsky, Maric, Tang, Oskotsky, Wong et al., Mortality Risk Among Patients With COVID-19 Prescribed Selective Serotonin Reuptake Inhibitor Antidepressants, JAMA Netw. Open,
doi:10.1001/jamanetworkopen.2021.33090
Perlman, Masters, Coronaviridae: The Viruses and Their Replication, Fields Virology
Schmidt, Lareau, Keshishian, Ganskih, Schneider et al., The SARS-CoV-2 RNA-protein interactome in infected human cells, Nat. Microbiol,
doi:10.1038/s41564-020-00846-z
Wang, Cao, Zhang, Yang, Liu et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res,
doi:10.1038/s41422-020-0282-0
Zimniak, Kirschner, Hilpert, Geiger, Danov et al., The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2 in human lung tissue, Sci. Rep,
doi:10.1038/s41598-021-85049-0
DOI record:
{
"DOI": "10.3390/vaccines10101619",
"ISSN": [
"2076-393X"
],
"URL": "http://dx.doi.org/10.3390/vaccines10101619",
"abstract": "<jats:p>Aspirin, with its active compound acetylsalicylic acid (ASA), shows antiviral activity against rhino- and influenza viruses at high concentrations. We sought to investigate whether ASA and its metabolite salicylic acid (SA) inhibit SARS-CoV-2 since it might use similar pathways to influenza viruses. The compound-treated cells were infected with SARS-CoV-2. Viral replication was analysed by RTqPCR. The compounds suppressed SARS-CoV-2 replication in cell culture cells and a patient-near replication system using human precision-cut lung slices by two orders of magnitude. While the compounds did not interfere with viral entry, it led to lower viral RNA expression after 24 h, indicating that post-entry pathways were inhibited by the compounds.</jats:p>",
"alternative-id": [
"vaccines10101619"
],
"author": [
{
"ORCID": "http://orcid.org/0000-0002-2974-6290",
"affiliation": [],
"authenticated-orcid": false,
"family": "Geiger",
"given": "Nina",
"sequence": "first"
},
{
"affiliation": [],
"family": "König",
"given": "Eva-Maria",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Oberwinkler",
"given": "Heike",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Roll",
"given": "Valeria",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Diesendorf",
"given": "Viktoria",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Fähr",
"given": "Sofie",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Obernolte",
"given": "Helena",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0002-7804-4527",
"affiliation": [],
"authenticated-orcid": false,
"family": "Sewald",
"given": "Katherina",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0002-2332-226X",
"affiliation": [],
"authenticated-orcid": false,
"family": "Wronski",
"given": "Sabine",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Steinke",
"given": "Maria",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0003-1908-4091",
"affiliation": [],
"authenticated-orcid": false,
"family": "Bodem",
"given": "Jochen",
"sequence": "additional"
}
],
"container-title": "Vaccines",
"container-title-short": "Vaccines",
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2022,
9,
29
]
],
"date-time": "2022-09-29T05:23:16Z",
"timestamp": 1664428996000
},
"deposited": {
"date-parts": [
[
2022,
10,
14
]
],
"date-time": "2022-10-14T08:00:33Z",
"timestamp": 1665734433000
},
"funder": [
{
"award": [
"-"
],
"name": "Bayer Vital GmbH"
}
],
"indexed": {
"date-parts": [
[
2022,
10,
14
]
],
"date-time": "2022-10-14T08:42:35Z",
"timestamp": 1665736955962
},
"is-referenced-by-count": 0,
"issue": "10",
"issued": {
"date-parts": [
[
2022,
9,
27
]
]
},
"journal-issue": {
"issue": "10",
"published-online": {
"date-parts": [
[
2022,
10
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2022,
9,
27
]
],
"date-time": "2022-09-27T00:00:00Z",
"timestamp": 1664236800000
}
}
],
"link": [
{
"URL": "https://www.mdpi.com/2076-393X/10/10/1619/pdf",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "1968",
"original-title": [],
"page": "1619",
"prefix": "10.3390",
"published": {
"date-parts": [
[
2022,
9,
27
]
]
},
"published-online": {
"date-parts": [
[
2022,
9,
27
]
]
},
"publisher": "MDPI AG",
"reference": [
{
"DOI": "10.1016/S1473-3099(20)30120-1",
"doi-asserted-by": "publisher",
"key": "ref1"
},
{
"DOI": "10.1093/jac/dkab318",
"doi-asserted-by": "publisher",
"key": "ref2"
},
{
"DOI": "10.1038/s41422-020-0282-0",
"doi-asserted-by": "publisher",
"key": "ref3"
},
{
"DOI": "10.1056/NEJMoa2015301",
"doi-asserted-by": "publisher",
"key": "ref4"
},
{
"DOI": "10.1038/s41598-021-85049-0",
"doi-asserted-by": "publisher",
"key": "ref5"
},
{
"DOI": "10.1001/jamanetworkopen.2021.33090",
"doi-asserted-by": "publisher",
"key": "ref6"
},
{
"DOI": "10.1038/s41586-020-2575-3",
"doi-asserted-by": "publisher",
"key": "ref7"
},
{
"DOI": "10.3390/cells11162532",
"doi-asserted-by": "publisher",
"key": "ref8"
},
{
"DOI": "10.1111/irv.12421",
"doi-asserted-by": "publisher",
"key": "ref9"
},
{
"DOI": "10.3390/biomedicines10020263",
"doi-asserted-by": "publisher",
"key": "ref10"
},
{
"DOI": "10.1097/MD.0000000000024544",
"doi-asserted-by": "publisher",
"key": "ref11"
},
{
"DOI": "10.1213/ANE.0000000000005292",
"doi-asserted-by": "publisher",
"key": "ref12"
},
{
"DOI": "10.3389/fcimb.2021.701278",
"doi-asserted-by": "publisher",
"key": "ref13"
},
{
"DOI": "10.3389/fphys.2021.715527",
"doi-asserted-by": "publisher",
"key": "ref14"
},
{
"article-title": "Coronaviridae: The Viruses and Their Replication",
"author": "Perlman",
"first-page": "410",
"key": "ref15",
"series-title": "Fields Virology",
"volume": "Volume 1",
"year": "2021"
},
{
"DOI": "10.1038/s41564-020-00846-z",
"doi-asserted-by": "publisher",
"key": "ref16"
},
{
"DOI": "10.3791/57042",
"doi-asserted-by": "publisher",
"key": "ref17"
},
{
"DOI": "10.1038/s41586-020-2558-4",
"doi-asserted-by": "publisher",
"key": "ref18"
},
{
"DOI": "10.1128/JVI.00909-08",
"doi-asserted-by": "publisher",
"key": "ref19"
},
{
"DOI": "10.1097/01.fjc.0000175240.64444.68",
"doi-asserted-by": "publisher",
"key": "ref20"
},
{
"DOI": "10.1111/j.1462-5822.2007.00902.x",
"doi-asserted-by": "publisher",
"key": "ref21"
},
{
"DOI": "10.1128/JVI.01257-21",
"doi-asserted-by": "publisher",
"key": "ref22"
}
],
"reference-count": 22,
"references-count": 22,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.mdpi.com/2076-393X/10/10/1619"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [
"Pharmacology (medical)",
"Infectious Diseases",
"Drug Discovery",
"Pharmacology",
"Immunology"
],
"subtitle": [],
"title": "Acetylsalicylic Acid and Salicylic Acid Inhibit SARS-CoV-2 Replication in Precision-Cut Lung Slices",
"type": "journal-article",
"volume": "10"
}