Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchAspirinAspirin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Diverse roles of SARS-CoV-2 Spike and Nucleocapsid proteins in EndMT stimulation through the TGF-β-MRTF axis inhibited by aspirin

Ciszewski et al., Cell Communication and Signaling, doi:10.1186/s12964-024-01665-z
May 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
In Vitro study showing that SARS-CoV-2 spike and nucleocapsid proteins induce endothelial-mesenchymal transition (EndMT) in endothelial cells, with the nucleocapsid protein having a more potent effect. The spike protein stimulates TGF-β1 secretion through ACE2 downregulation, while the nucleocapsid protein stimulates TGF-β2 secretion through the TLR4-ROS pathway. TGF-β1 and TGF-β2 then induce EndMT through MRTF-B and MRTF-A/B nuclear translocation, respectively. Authors find that aspirin inhibits and reverses the SARS-CoV-2 protein-induced EndMT by blocking TGF-β secretion and MRTF nuclear translocation. The results suggest that aspirin may reduce the risk of COVID-19-associated fibrosis.
3 preclinical studies support the efficacy of aspirin for COVID-19:
Ciszewski et al., 28 May 2024, peer-reviewed, 3 authors. Contact: katarzyna.sobierajska@umed.lodz.pl.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperAspirinAll
Diverse roles of SARS-CoV-2 Spike and Nucleocapsid proteins in EndMT stimulation through the TGF-β-MRTF axis inhibited by aspirin
Wojciech M Ciszewski, Lucyna A Woźniak, Katarzyna Sobierajska
Cell Communication and Signaling, doi:10.1186/s12964-024-01665-z
Background The SARS-CoV-2 virus causes severe COVID-19 in one-fifth of patients. In addition to high mortality, infection may induce respiratory failure and cardiovascular complications associated with inflammation. Acute or prolonged inflammation results in organ fibrosis, the cause of which might be endothelial disorders arising during the endothelial-mesenchymal transition (EndMT). Methods HUVECs and HMEC-1 cells were stimulated with SARS-CoV-2 S (Spike) and N (Nucleocapsid) proteins, and EndMT induction was evaluated by studying specific protein markers via Western blotting. Wound healing and tube formation assays were employed to assess the potential of SARS-CoV-2 to stimulate changes in cell behaviour. MRTF nuclear translocation, ROS generation, TLR4 inhibitors, TGF-β-neutralizing antibodies, and inhibitors of the TGF-βdependent pathway were used to investigate the role of the TGF-β-MRTF signalling axis in SARS-CoV-2-dependent EndMT stimulation. Results Both viral proteins stimulate myofibroblast trans-differentiation. However, the N protein is more effective at EndMT induction. The TGF-β-MRTF pathway plays a critical role in this process. The N protein preferentially favours action through TGF-β2, whose secretion is induced through TLR4-ROS action. TGF-β2 stimulates MRTF-A and MRTF-B nuclear translocation and strongly regulates EndMT. In contrast, the Spike protein stimulates TGF-β1 secretion as a result of ACE2 downregulation. TGF-β1 induces only MRTF-B, which, in turn, weakly regulates EndMT. Furthermore, aspirin, a common nonsteroidal anti-inflammatory drug, might prevent and reverse SARS-CoV-2-dependent EndMT induction through TGF-β-MRTF pathway deregulation. Conclusion The reported study revealed that SARS-CoV-2 infection induces EndMT. Moreover, it was demonstrated for the first time at the molecular level that the intensity of the EndMT triggered by SARS-CoV-2 infection may vary and depend on the viral protein involved. The N protein acts through TLR4-ROS-TGF-β2-MRTF-A/B, whereas the S protein acts through ACE2-TGF-β1-MRTF-B. Furthermore, we identified aspirin as a potential anti-fibrotic drug for treating patients with SARS-CoV-2 infection.
Supplementary Information The online version contains supplementary material available at https://doi. org/10.1186/s12964-024-01665-z. Supplementary Material 1 Author contributions WMC conducted the research, analysed and interpreted the data, and wrote the original manuscript. LAW analysed and interpreted the data, and made corrections to the original manuscript. KS designed the research, designed the experiments, analysed and interpreted the data, and contributed to writing the original manuscript. Declarations Competing interests The authors declare no competing interests. Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
Aboudounya, Heads, COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation, Mediators Inflamm
Ackermann, Verleden, Kuehnel, Haverich, Welte et al., Pulmonary vascular endothelialitis, thrombosis, and Angiogenesis in Covid-19, N Engl J Med
Ali, Ibrahim, Burzangi, Ghoneim, Aljohani et al., Scoping insight on antiviral drugs against COVID-19, Arab J Chem
Bai, Cao, Liu, Li, The SARS-CoV-2 nucleocapsid protein and its role in viral structure, Biological functions, and a potential target for drug or vaccine mitigation, Viruses
Batra, Tian, Zhang, Sacher, Miranda et al., Role of IgG against N-protein of SARS-CoV2 in COVID19 clinical outcomes, Sci Rep
Beyerstedt, Casaro, Rangel, COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection, Eur J Clin Microbiol Infect Dis
Bhattacharya, Sharma, Mallick, Sharma, Lee et al., Immunoinformatics approach to understand molecular interaction between multi-epitopic regions of SARS-CoV-2 spike-protein with TLR4/MD-2 complex, Infect Genet Evol
Castelli, Cimini, Ferri, Cytokine storm in COVID-19: when you come out of the storm, you won't be the same person who walked in, Front Immunol
Chen, Guan, Qiu, Xu, Bai et al., SARS-CoV-2 nucleocapsid protein triggers hyperinflammation via protein-protein interaction-mediated intracellular Cl(-) accumulation in respiratory epithelium, Signal Transduct Target Ther
Chou, Chuang, Lu, Guh, Interaction between TGF-beta and ACE2-Ang-(1-7)-Mas pathway in high glucose-cultured NRK-52E cells, Mol Cell Endocrinol
Ciszewski, Chmielewska-Kassassir, Wozniak, Sobierajska, Thymidylate synthase overexpression drives the invasive phenotype in Colon cancer cells, Biomedicines
Ciszewski, Wawro, Sacewicz-Hofman, Sobierajska, Cytoskeleton reorganization in EndMT-The role in Cancer and Fibrotic diseases, Int J Mol Sci
Ciszewski, Wozniak, Sobierajska, SARS-CoV-2 S and N protein peptides drive invasion abilities of colon cancer cells through TGF-beta1 regulation, Biochim Biophys Acta Mol Cell Res
Clere, Renault, Corre, Endothelial-to-mesenchymal transition in Cancer, Front Cell Dev Biol
Cocconcelli, Bernardinello, Giraudo, Castelli, Giorgino et al., Characteristics and prognostic factors of Pulmonary Fibrosis after COVID-19 Pneumonia, Front Med
Dejana, Hirschi, Simons, The molecular basis of endothelial cell plasticity, Nat Commun
Eapen, Lu, Gaikwad, Bhattarai, Chia et al., Endothelial to mesenchymal transition: a precursor to post-COVID-19 interstitial pulmonary fibrosis and vascular obliteration?, Eur Respir J
El-Shabasy, Nayel, Taher, Abdelmonem, Shoueir et al., Three waves changes, new variant strains, and vaccination effect against COVID-19 pandemic, Int J Biol Macromol
Fathizadeh, Afshar, Masoudi, Gholizadeh, Asgharzadeh et al., SARS-CoV-2 (Covid-19) vaccines structure, mechanisms and effectiveness: a review, Int J Biol Macromol
Ferreira-Gomes, Kruglov, Durek, Heinrich, Tizian et al., SARS-CoV-2 in severe COVID-19 induces a TGF-beta-dominated chronic immune response that does not target itself, Nat Commun
Gal, Brabek, Holub, Jakubek, Sedo et al., Autoimmunity, cancer and COVID-19 abnormally activate wound healing pathways: critical role of inflammation, Histochem Cell Biol
George, Wells, Jenkins, Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy, Lancet Respir Med
Hamming, Timens, Bulthuis, Lely, Navis et al., Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis, J Pathol
Henderson, Rieder, Wynn, Fibrosis: from mechanisms to medicines, Nature
Hoffmann, Kleine-Weber, Schroeder, Kruger, Herrler et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell
Huang, Yang, Xu, Xu, Liu, Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19, Acta Pharmacol Sin
Imig, SARS-CoV-2 spike protein causes cardiovascular disease independent of viral infection, Clin Sci (Lond)
Jackson, Farzan, Chen, Choe, Mechanisms of SARS-CoV-2 entry into cells, Nat Rev Mol Cell Biol
Jansen, Reimer, Nagai, Varghese, Overheul et al., SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids, Cell Stem Cell
Khan, Shafiei, Longoria, Schoggins, Savani et al., SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-kappaB pathway, Elife
Khanmohammadi, Rezaei, Role of toll-like receptors in the pathogenesis of COVID-19, J Med Virol
Kolesova, Vanaga, Laivacuma, Derovs, Kolesovs et al., Intriguing findings of liver fibrosis following COVID-19, BMC Gastroenterol
Kow, Hasan, Use of antiplatelet drugs and the risk of mortality in patients with COVID-19: a meta-analysis, J Thromb Thrombolysis
Kushner, Mccarberg, Grange, Kolosov, Haveric et al., The use of non-steroidal anti-inflammatory drugs (NSAIDs) in COVID-19, NPJ Prim Care Respir Med
Lee, Ko, Sy, Differential expression patterns of toll-like receptors in COVID-19 patients, Front Biosci
Lei, Zhang, Schiavon, He, Chen et al., SARS-CoV-2 spike protein impairs endothelial function via downregulation of ACE 2, Circ Res
Li, Wang, Wang, Li, Zhang et al., Serum SARS-COV-2 nucleocapsid protein: a sensitivity and specificity early diagnostic marker for SARS-COV-2 infection, Front Cell Infect Microbiol
Liu, Huang, Chen, Penninger, Lan, Loss of angiotensinconverting enzyme 2 enhances TGF-beta/Smad-mediated renal fibrosis and NF-kappaB-driven renal inflammation in a mouse model of obstructive nephropathy, Lab Invest
Ma, Sanchez-Duffhues, Goumans, Dijke, TGF-beta-Induced endothelial to mesenchymal transition in Disease and tissue Engineering, Front Cell Dev Biol
Merad, Blish, Sallusto, Iwasaki, The immunology and immunopathology of COVID-19, Science
Montazersaheb, Khatibi, Hejazi, Tarhriz, Farjami et al., COVID-19 infection: an overview on cytokine storm and related interventions, Virol J
Moretti, Stalfort, Barker, Abebayehu, The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation, J Biol Chem
Mothes, Pascual-Reguant, Koehler, Liebeskind, Liebheit et al., Distinct tissue niches direct lung immunopathology via CCL18 and CCL21 in severe COVID-19, Nat Commun
Mustroph, Hupf, Baier, Evert, Brochhausen et al., Cardiac Fibrosis is a risk factor for severe COVID-19, Front Immunol
Osborne, Veigulis, Arreola, Mahajan, Roosli et al., Association of mortality and aspirin prescription for COVID-19 patients at the Veterans Health Administration, PLoS ONE
Pardali, Sanchez-Duffhues, Mc, Dijke, TGF-beta-Induced endothelial-mesenchymal transition in Fibrotic diseases, Int J Mol Sci
Park, Epidemiology, virology, and clinical features of severe acute respiratory syndrome -coronavirus-2 (SARS-CoV-2; coronavirus Disease-19), Clin Exp Pediatr
Perna, Bruzzaniti, Piemonte, Maddaloni, Atripaldi et al., Serum levels of SARS-CoV-2 nucleocapsid antigen associate with inflammatory status and disease severity in COVID-19 patients, Clin Immunol
Pi, Zhang, Li, Guo, Cao et al., Inhibition of reactive oxygen species generation attenuates TLR4-mediated proinflammatory and proliferative phenotype of vascular smooth muscle cells, Lab Invest
Piera-Velazquez, Jimenez, Endothelial to mesenchymal transition: role in physiology and in the Pathogenesis of Human diseases, Physiol Rev
Poloni, Moretti, Medici, Turturici, Belli et al., COVID-19 Pathology in the Lung, Kidney, Heart and Brain: The Different Roles of T-Cells, Macrophages, and Microthrombosis, Cells
Qian, Lei, Patel, Lee, Monaghan-Nichols et al., Direct activation of endothelial cells by SARS-CoV-2 nucleocapsid protein is blocked by Simvastatin, J Virol
Robb, Goepp, Rossi, Yao, Non-steroidal anti-inflammatory drugs, prostaglandins, and COVID-19, Br J Pharmacol
Russell, Moss, Rigg, Van Hemelrijck, COVID-19 and treatment with NSAIDs and corticosteroids: should we be limiting their use in the clinical setting?, Ecancermedicalscience
Shen, Luo, Wang, Chen, Features of Cytokine Storm identified by distinguishing clinical manifestations in COVID-19, Front Public Health
Smadja, Mentzer, Fontenay, Laffan, Ackermann et al., COVID-19 is a systemic vascular hemopathy: insight for mechanistic and clinical aspects, Angiogenesis
Sobierajska, Ciszewski, Macierzynska-Piotrowska, Klopocka, Przygodzka et al., The New Model of snail expression regulation: the role of MRTFs in fast and slow endothelialmesenchymal transition, Int J Mol Sci
Sobierajska, Wawro, Ciszewski, Niewiarowska, Transforming growth factor-beta receptor internalization via Caveolae is regulated by Tubulin-beta2 and Tubulin-beta3 during endothelial-mesenchymal transition, Am J Pathol
Sobierajska, Wawro, Niewiarowska, Oxidative stress enhances the TGF-beta2-RhoA-MRTF-A/B Axis in cells entering endothelial-mesenchymal transition, Int J Mol Sci
Sun, Liu, Xie, Jiang, Xiao et al., Aspirin attenuates liver fibrosis by suppressing TGF-beta1/Smad signaling, Mol Med Rep
Takamatsu, Oshiro, Mizutani, Tada, Tabe et al., Correlation of COVID-19 Severity and Immunoglobulin Presence against Spike and Nucleocapsid Proteins in SARS-CoV-2, Viral Immunol
Tang, Lk, Lee, Gao, Xia et al., Smad3 initiates oxidative stress and proteolysis that underlies diaphragm dysfunction during mechanical ventilation, Sci Rep
Tawadros, Powers, Ailenberg, Birch, Marshall et al., Oxidative stress increases Surface Toll-Like receptor 4 expression in Murine macrophages Via Ceramide Generation, Shock
Varga, Flammer, Steiger, Haberecker, Andermatt et al., Endothelial cell infection and endotheliitis in COVID-19, Lancet
Wawro, Sobierajska, Ciszewski, Niewiarowska, Nonsteroidal anti-inflammatory drugs prevent Vincristine-Dependent Cancer-Associated fibroblasts formation, Int J Mol Sci
Wu, Cheng, Zhou, Sun, Zhang, The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics, Virol J
Yadav, Chowdhury, Effectivity of repurposed drugs against SARS-CoV-2 infections, a hope for COVID 19: inhibitor modelling studies docking and molecular dynamics, Heliyon
Yu, Nie, Wang, Yin, Huang et al., Toll-like receptor 4-mediated ROS signaling pathway involved in Ganoderma Atrum polysaccharide-induced tumor necrosis factor-alpha secretion during macrophage activation, Food Chem Toxicol
Zhang, Li, Deng, Yang, Xiang et al., Aspirin inhibits endometrial fibrosis by suppressing the TGF-beta1-Smad2/Smad3 pathway in intrauterine adhesions, Int J Mol Med
Zhang, Ong, Yun, Mo, Whitman et al., Diagnostic Value of Nucleocapsid Protein in blood for SARS-CoV-2 infection, Clin Chem
Zhang, Tang, Zhang, Tong, Xie et al., Single cell meta-analysis of EndMT and EMT state in COVID-19, Front Immunol
Zhao, Kuang, Li, Zhu, Jia et al., SARS-CoV-2 spike protein interacts with and activates TLR41, Cell Res
{ 'indexed': {'date-parts': [[2024, 5, 28]], 'date-time': '2024-05-28T17:40:18Z', 'timestamp': 1716918018065}, 'reference-count': 73, 'publisher': 'Springer Science and Business Media LLC', 'issue': '1', 'license': [ { 'start': { 'date-parts': [[2024, 5, 28]], 'date-time': '2024-05-28T00:00:00Z', 'timestamp': 1716854400000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}, { 'start': { 'date-parts': [[2024, 5, 28]], 'date-time': '2024-05-28T00:00:00Z', 'timestamp': 1716854400000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}], 'funder': [ { 'DOI': '10.13039/501100004281', 'name': 'Narodowe Centrum Nauki', 'doi-asserted-by': 'publisher', 'award': ['2017/01/X/NZ7/00499', '2017/01/X/NZ7/00499']}], 'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False}, 'abstract': '<jats:title>Abstract</jats:title><jats:sec>\n' ' <jats:title>Background</jats:title>\n' ' <jats:p>The SARS-CoV-2 virus causes severe COVID-19 in one-fifth of patients. ' 'In addition to high mortality, infection may induce respiratory failure and cardiovascular ' 'complications associated with inflammation. Acute or prolonged inflammation results in organ ' 'fibrosis, the cause of which might be endothelial disorders arising during the ' 'endothelial-mesenchymal transition (EndMT).</jats:p>\n' ' </jats:sec><jats:sec>\n' ' <jats:title>Methods</jats:title>\n' ' <jats:p>HUVECs and HMEC-1 cells were stimulated with SARS-CoV-2\xa0S (Spike) ' 'and N (Nucleocapsid) proteins, and EndMT induction was evaluated by studying specific protein ' 'markers via Western blotting. Wound healing and tube formation assays were employed to assess ' 'the potential of SARS-CoV-2 to stimulate changes in cell behaviour. MRTF nuclear ' 'translocation, ROS generation, TLR4 inhibitors, TGF-β-neutralizing antibodies, and inhibitors ' 'of the TGF-β-dependent pathway were used to investigate the role of the TGF-β-MRTF signalling ' 'axis in SARS-CoV-2-dependent EndMT stimulation.</jats:p>\n' ' </jats:sec><jats:sec>\n' ' <jats:title>Results</jats:title>\n' ' <jats:p>Both viral proteins stimulate myofibroblast trans-differentiation. ' 'However, the N protein is more effective at EndMT induction. The TGF-β-MRTF pathway plays a ' 'critical role in this process. The N protein preferentially favours action through TGF-β2, ' 'whose secretion is induced through TLR4-ROS action. TGF-β2 stimulates MRTF-A and MRTF-B ' 'nuclear translocation and strongly regulates EndMT. In contrast, the Spike protein stimulates ' 'TGF-β1 secretion as a result of ACE2 downregulation. TGF-β1 induces only MRTF-B, which, in ' 'turn, weakly regulates EndMT. Furthermore, aspirin, a common nonsteroidal anti-inflammatory ' 'drug, might prevent and reverse SARS-CoV-2-dependent EndMT induction through TGF-β-MRTF ' 'pathway deregulation.</jats:p>\n' ' </jats:sec><jats:sec>\n' ' <jats:title>Conclusion</jats:title>\n' ' <jats:p>The reported study revealed that SARS-CoV-2 infection induces EndMT. ' 'Moreover, it was demonstrated for the first time at the molecular level that the intensity of ' 'the EndMT triggered by SARS-CoV-2 infection may vary and depend on the viral protein ' 'involved. The N protein acts through TLR4-ROS-TGF-β2-MRTF-A/B, whereas the S protein acts ' 'through ACE2-TGF-β1-MRTF-B. Furthermore, we identified aspirin as a potential anti-fibrotic ' 'drug for treating patients with SARS-CoV-2 infection.</jats:p>\n' ' </jats:sec>', 'DOI': '10.1186/s12964-024-01665-z', 'type': 'journal-article', 'created': {'date-parts': [[2024, 5, 28]], 'date-time': '2024-05-28T15:08:55Z', 'timestamp': 1716908935000}, 'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Diverse roles of SARS-CoV-2 Spike and Nucleocapsid proteins in EndMT stimulation through the ' 'TGF-β-MRTF axis inhibited by aspirin', 'prefix': '10.1186', 'volume': '22', 'author': [ {'given': 'Wojciech M.', 'family': 'Ciszewski', 'sequence': 'first', 'affiliation': []}, {'given': 'Lucyna A.', 'family': 'Woźniak', 'sequence': 'additional', 'affiliation': []}, {'given': 'Katarzyna', 'family': 'Sobierajska', 'sequence': 'additional', 'affiliation': []}], 'member': '297', 'published-online': {'date-parts': [[2024, 5, 28]]}, 'reference': [ { 'key': '1665_CR1', 'doi-asserted-by': 'publisher', 'first-page': '119', 'DOI': '10.3345/cep.2020.00493', 'volume': '63', 'author': 'SE Park', 'year': '2020', 'unstructured': 'Park SE. Epidemiology, virology, and clinical features of severe acute ' 'respiratory syndrome -coronavirus-2 (SARS-CoV-2; coronavirus ' 'Disease-19). Clin Exp Pediatr. 2020;63:119–24.', 'journal-title': 'Clin Exp Pediatr'}, { 'key': '1665_CR2', 'unstructured': 'WorldHealthOrganization. Novel Coronavirus (2019-nCoV): situation ' 'report, 22. World Health Organization. 2022, ' 'https://iris.who.int/handle/10665/330991.'}, { 'key': '1665_CR3', 'doi-asserted-by': 'publisher', 'first-page': '740', 'DOI': '10.1016/j.ijbiomac.2021.08.076', 'volume': '188', 'author': 'H Fathizadeh', 'year': '2021', 'unstructured': 'Fathizadeh H, Afshar S, Masoudi MR, Gholizadeh P, Asgharzadeh M, ' 'Ganbarov K, Kose S, Yousefi M, Kafil HS. SARS-CoV-2 (Covid-19) vaccines ' 'structure, mechanisms and effectiveness: a review. Int J Biol Macromol. ' '2021;188:740–50.', 'journal-title': 'Int J Biol Macromol'}, { 'key': '1665_CR4', 'doi-asserted-by': 'publisher', 'first-page': '161', 'DOI': '10.1016/j.ijbiomac.2022.01.118', 'volume': '204', 'author': 'RM El-Shabasy', 'year': '2022', 'unstructured': 'El-Shabasy RM, Nayel MA, Taher MM, Abdelmonem R, Shoueir KR, Kenawy ER. ' 'Three waves changes, new variant strains, and vaccination effect against ' 'COVID-19 pandemic. Int J Biol Macromol. 2022;204:161–8.', 'journal-title': 'Int J Biol Macromol'}, { 'key': '1665_CR5', 'doi-asserted-by': 'publisher', 'first-page': '1122', 'DOI': '10.1126/science.abm8108', 'volume': '375', 'author': 'M Merad', 'year': '2022', 'unstructured': 'Merad M, Blish CA, Sallusto F, Iwasaki A. The immunology and ' 'immunopathology of COVID-19. Science. 2022;375:1122–7.', 'journal-title': 'Science'}, { 'key': '1665_CR6', 'doi-asserted-by': 'publisher', 'first-page': '92', 'DOI': '10.1186/s12985-022-01814-1', 'volume': '19', 'author': 'S Montazersaheb', 'year': '2022', 'unstructured': 'Montazersaheb S, Hosseiniyan Khatibi SM, Hejazi MS, Tarhriz V, Farjami ' 'A, Ghasemian Sorbeni F, Farahzadi R, Ghasemnejad T. COVID-19 infection: ' 'an overview on cytokine storm and related interventions. Virol J. ' '2022;19:92.', 'journal-title': 'Virol J'}, { 'key': '1665_CR7', 'doi-asserted-by': 'publisher', 'first-page': '823600', 'DOI': '10.3389/fmed.2021.823600', 'volume': '8', 'author': 'E Cocconcelli', 'year': '2021', 'unstructured': 'Cocconcelli E, Bernardinello N, Giraudo C, Castelli G, Giorgino A, Leoni ' 'D, Petrarulo S, Ferrari A, Saetta M, Cattelan A, et al. Characteristics ' 'and prognostic factors of Pulmonary Fibrosis after COVID-19 Pneumonia. ' 'Front Med (Lausanne). 2021;8:823600.', 'journal-title': 'Front Med (Lausanne)'}, { 'key': '1665_CR8', 'doi-asserted-by': 'crossref', 'unstructured': 'Poloni TE, Moretti M, Medici V, Turturici E, Belli G, Cavriani E, Visona ' 'SD, Rossi M, Fantini V, Ferrari RR et al. COVID-19 Pathology in the ' 'Lung, Kidney, Heart and Brain: The Different Roles of T-Cells, ' 'Macrophages, and Microthrombosis. Cells 2022, 11.', 'DOI': '10.3390/cells11193124'}, { 'key': '1665_CR9', 'doi-asserted-by': 'publisher', 'first-page': '755', 'DOI': '10.1007/s10456-021-09805-6', 'volume': '24', 'author': 'DM Smadja', 'year': '2021', 'unstructured': 'Smadja DM, Mentzer SJ, Fontenay M, Laffan MA, Ackermann M, Helms J, ' 'Jonigk D, Chocron R, Pier GB, Gendron N, et al. COVID-19 is a systemic ' 'vascular hemopathy: insight for mechanistic and clinical aspects. ' 'Angiogenesis. 2021;24:755–88.', 'journal-title': 'Angiogenesis'}, { 'key': '1665_CR10', 'doi-asserted-by': 'publisher', 'first-page': '14361', 'DOI': '10.1038/ncomms14361', 'volume': '8', 'author': 'E Dejana', 'year': '2017', 'unstructured': 'Dejana E, Hirschi KK, Simons M. The molecular basis of endothelial cell ' 'plasticity. Nat Commun. 2017;8:14361.', 'journal-title': 'Nat Commun'}, { 'key': '1665_CR11', 'doi-asserted-by': 'publisher', 'first-page': '1281', 'DOI': '10.1152/physrev.00021.2018', 'volume': '99', 'author': 'S Piera-Velazquez', 'year': '2019', 'unstructured': 'Piera-Velazquez S, Jimenez SA. Endothelial to mesenchymal transition: ' 'role in physiology and in the Pathogenesis of Human diseases. Physiol ' 'Rev. 2019;99:1281–324.', 'journal-title': 'Physiol Rev'}, { 'key': '1665_CR12', 'doi-asserted-by': 'publisher', 'first-page': '101530', 'DOI': '10.1016/j.jbc.2021.101530', 'volume': '298', 'author': 'L Moretti', 'year': '2022', 'unstructured': 'Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of ' 'fibroblasts, the extracellular matrix, and inflammation in scar ' 'formation. J Biol Chem. 2022;298:101530.', 'journal-title': 'J Biol Chem'}, { 'key': '1665_CR13', 'doi-asserted-by': 'publisher', 'first-page': '747', 'DOI': '10.3389/fcell.2020.00747', 'volume': '8', 'author': 'N Clere', 'year': '2020', 'unstructured': 'Clere N, Renault S, Corre I. Endothelial-to-mesenchymal transition in ' 'Cancer. Front Cell Dev Biol. 2020;8:747.', 'journal-title': 'Front Cell Dev Biol'}, { 'key': '1665_CR14', 'doi-asserted-by': 'crossref', 'unstructured': 'Eapen MS, Lu W, Gaikwad AV, Bhattarai P, Chia C, Hardikar A, Haug G, ' 'Sohal SS. Endothelial to mesenchymal transition: a precursor to ' 'post-COVID-19 interstitial pulmonary fibrosis and vascular obliteration? ' 'Eur Respir J 2020, 56.', 'DOI': '10.1183/13993003.03167-2020'}, { 'key': '1665_CR15', 'doi-asserted-by': 'publisher', 'first-page': '415', 'DOI': '10.1007/s00418-022-02140-x', 'volume': '158', 'author': 'P Gal', 'year': '2022', 'unstructured': 'Gal P, Brabek J, Holub M, Jakubek M, Sedo A, Lacina L, Strnadova K, ' 'Dubovy P, Hornychova H, Ryska A, Smetana K Jr. Autoimmunity, cancer and ' 'COVID-19 abnormally activate wound healing pathways: critical role of ' 'inflammation. Histochem Cell Biol. 2022;158:415–34.', 'journal-title': 'Histochem Cell Biol'}, { 'key': '1665_CR16', 'doi-asserted-by': 'publisher', 'first-page': '976512', 'DOI': '10.3389/fimmu.2022.976512', 'volume': '13', 'author': 'L Zhang', 'year': '2022', 'unstructured': 'Zhang L, Tang C, Zhang M, Tong X, Xie Y, Yan R, Wang X, Zhang X, Liu D, ' 'Li S. Single cell meta-analysis of EndMT and EMT state in COVID-19. ' 'Front Immunol. 2022;13:976512.', 'journal-title': 'Front Immunol'}, { 'key': '1665_CR17', 'doi-asserted-by': 'publisher', 'first-page': '905', 'DOI': '10.1007/s10096-020-04138-6', 'volume': '40', 'author': 'S Beyerstedt', 'year': '2021', 'unstructured': 'Beyerstedt S, Casaro EB, Rangel EB. COVID-19: angiotensin-converting ' 'enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 ' 'infection. Eur J Clin Microbiol Infect Dis. 2021;40:905–19.', 'journal-title': 'Eur J Clin Microbiol Infect Dis'}, { 'key': '1665_CR18', 'doi-asserted-by': 'publisher', 'first-page': '3', 'DOI': '10.1038/s41580-021-00418-x', 'volume': '23', 'author': 'CB Jackson', 'year': '2022', 'unstructured': 'Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry ' 'into cells. Nat Rev Mol Cell Biol. 2022;23:3–20.', 'journal-title': 'Nat Rev Mol Cell Biol'}, { 'key': '1665_CR19', 'doi-asserted-by': 'crossref', 'unstructured': 'Pardali E, Sanchez-Duffhues G, Gomez-Puerto MC, Ten Dijke P. ' 'TGF-beta-Induced endothelial-mesenchymal transition in Fibrotic ' 'diseases. Int J Mol Sci 2017, 18.', 'DOI': '10.3390/ijms18102157'}, { 'key': '1665_CR20', 'doi-asserted-by': 'publisher', 'first-page': '260', 'DOI': '10.3389/fcell.2020.00260', 'volume': '8', 'author': 'J Ma', 'year': '2020', 'unstructured': 'Ma J, Sanchez-Duffhues G, Goumans MJ, Ten Dijke P. TGF-beta-Induced ' 'endothelial to mesenchymal transition in Disease and tissue Engineering. ' 'Front Cell Dev Biol. 2020;8:260.', 'journal-title': 'Front Cell Dev Biol'}, { 'key': '1665_CR21', 'doi-asserted-by': 'publisher', 'first-page': 'e12327', 'DOI': '10.1016/j.heliyon.2022.e12327', 'volume': '8', 'author': 'P Yadav', 'year': '2022', 'unstructured': 'Yadav P, Chowdhury P. Effectivity of repurposed drugs against SARS-CoV-2 ' 'infections, a hope for COVID 19: inhibitor modelling studies by docking ' 'and molecular dynamics. Heliyon. 2022;8:e12327.', 'journal-title': 'Heliyon'}, { 'key': '1665_CR22', 'doi-asserted-by': 'publisher', 'first-page': '103385', 'DOI': '10.1016/j.arabjc.2021.103385', 'volume': '14', 'author': 'AS Ali', 'year': '2021', 'unstructured': 'Ali AS, Ibrahim IM, Burzangi AS, Ghoneim RH, Aljohani HS, Alsamhan HA, ' 'Barakat J. Scoping insight on antiviral drugs against COVID-19. Arab J ' 'Chem. 2021;14:103385.', 'journal-title': 'Arab J Chem'}, { 'key': '1665_CR23', 'doi-asserted-by': 'publisher', 'first-page': '2531', 'DOI': '10.1016/j.ajpath.2019.08.004', 'volume': '189', 'author': 'K Sobierajska', 'year': '2019', 'unstructured': 'Sobierajska K, Wawro ME, Ciszewski WM, Niewiarowska J. Transforming ' 'growth factor-beta receptor internalization via Caveolae is regulated by ' 'Tubulin-beta2 and Tubulin-beta3 during endothelial-mesenchymal ' 'transition. Am J Pathol. 2019;189:2531–46.', 'journal-title': 'Am J Pathol'}, { 'key': '1665_CR24', 'doi-asserted-by': 'crossref', 'unstructured': 'Sobierajska K, Ciszewski WM, Macierzynska-Piotrowska E, Klopocka W, ' 'Przygodzka P, Karakula M, Pestka K, Wawro ME, Niewiarowska J. The New ' 'Model of snail expression regulation: the role of MRTFs in fast and slow ' 'endothelial-mesenchymal transition. Int J Mol Sci 2020, 21.', 'DOI': '10.3390/ijms21165875'}, { 'key': '1665_CR25', 'doi-asserted-by': 'crossref', 'unstructured': 'Ciszewski WM, Chmielewska-Kassassir M, Wozniak LA, Sobierajska K. ' 'Thymidylate synthase overexpression drives the invasive phenotype in ' 'Colon cancer cells. Biomedicines 2022, 10.', 'DOI': '10.3390/biomedicines10061267'}, { 'key': '1665_CR26', 'doi-asserted-by': 'crossref', 'unstructured': 'Aboudounya MM, Heads RJ. COVID-19 and Toll-Like Receptor 4 (TLR4): ' 'SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, ' 'Facilitating Entry and Causing Hyperinflammation. Mediators Inflamm ' '2021, 2021:8874339.', 'DOI': '10.1155/2021/8874339'}, { 'key': '1665_CR27', 'doi-asserted-by': 'publisher', 'first-page': '14', 'DOI': '10.1016/j.fct.2014.01.018', 'volume': '66', 'author': 'Q Yu', 'year': '2014', 'unstructured': 'Yu Q, Nie SP, Wang JQ, Yin PF, Huang DF, Li WJ, Xie MY. Toll-like ' 'receptor 4-mediated ROS signaling pathway involved in Ganoderma Atrum ' 'polysaccharide-induced tumor necrosis factor-alpha secretion during ' 'macrophage activation. Food Chem Toxicol. 2014;66:14–22.', 'journal-title': 'Food Chem Toxicol'}, { 'key': '1665_CR28', 'doi-asserted-by': 'crossref', 'unstructured': 'Ciszewski WM, Wawro ME, Sacewicz-Hofman I, Sobierajska K. Cytoskeleton ' 'reorganization in EndMT-The role in Cancer and Fibrotic diseases. Int J ' 'Mol Sci 2021, 22.', 'DOI': '10.3390/ijms222111607'}, { 'key': '1665_CR29', 'doi-asserted-by': 'crossref', 'unstructured': 'Wawro ME, Sobierajska K, Ciszewski WM, Niewiarowska J. Nonsteroidal ' 'anti-inflammatory drugs prevent Vincristine-Dependent Cancer-Associated ' 'fibroblasts formation. Int J Mol Sci 2019, 20.', 'DOI': '10.3390/ijms20081941'}, { 'key': '1665_CR30', 'doi-asserted-by': 'publisher', 'first-page': '2132', 'DOI': '10.3389/fimmu.2020.02132', 'volume': '11', 'author': 'V Castelli', 'year': '2020', 'unstructured': 'Castelli V, Cimini A, Ferri C. Cytokine storm in COVID-19: when you come ' 'out of the storm, you won’t be the same person who walked in. Front ' 'Immunol. 2020;11:2132.', 'journal-title': 'Front Immunol'}, { 'key': '1665_CR31', 'doi-asserted-by': 'publisher', 'first-page': '807', 'DOI': '10.1016/S2213-2600(20)30225-3', 'volume': '8', 'author': 'PM George', 'year': '2020', 'unstructured': 'George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the ' 'potential role for antifibrotic therapy. Lancet Respir Med. ' '2020;8:807–15.', 'journal-title': 'Lancet Respir Med'}, { 'key': '1665_CR32', 'doi-asserted-by': 'publisher', 'first-page': '217', 'DOI': '10.1016/j.stem.2021.12.010', 'volume': '29', 'author': 'J Jansen', 'year': '2022', 'unstructured': 'Jansen J, Reimer KC, Nagai JS, Varghese FS, Overheul GJ, de Beer M, ' 'Roverts R, Daviran D, Fermin LAS, Willemsen B, et al. SARS-CoV-2 infects ' 'the human kidney and drives fibrosis in kidney organoids. Cell Stem ' 'Cell. 2022;29:217–e231218.', 'journal-title': 'Cell Stem Cell'}, { 'key': '1665_CR33', 'doi-asserted-by': 'publisher', 'first-page': '740260', 'DOI': '10.3389/fimmu.2021.740260', 'volume': '12', 'author': 'J Mustroph', 'year': '2021', 'unstructured': 'Mustroph J, Hupf J, Baier MJ, Evert K, Brochhausen C, Broeker K, Meindl ' 'C, Seither B, Jungbauer C, Evert M, et al. Cardiac Fibrosis is a risk ' 'factor for severe COVID-19. Front Immunol. 2021;12:740260.', 'journal-title': 'Front Immunol'}, { 'key': '1665_CR34', 'doi-asserted-by': 'publisher', 'first-page': '370', 'DOI': '10.1186/s12876-021-01939-7', 'volume': '21', 'author': 'O Kolesova', 'year': '2021', 'unstructured': 'Kolesova O, Vanaga I, Laivacuma S, Derovs A, Kolesovs A, Radzina M, ' 'Platkajis A, Eglite J, Hagina E, Arutjunana S, et al. Intriguing ' 'findings of liver fibrosis following COVID-19. BMC Gastroenterol. ' '2021;21:370.', 'journal-title': 'BMC Gastroenterol'}, { 'key': '1665_CR35', 'doi-asserted-by': 'publisher', 'first-page': '555', 'DOI': '10.1038/s41586-020-2938-9', 'volume': '587', 'author': 'NC Henderson', 'year': '2020', 'unstructured': 'Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. ' 'Nature. 2020;587:555–66.', 'journal-title': 'Nature'}, { 'key': '1665_CR36', 'doi-asserted-by': 'publisher', 'first-page': '271', 'DOI': '10.1016/j.cell.2020.02.052', 'volume': '181', 'author': 'M Hoffmann', 'year': '2020', 'unstructured': 'Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen ' 'S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al. SARS-CoV-2 cell ' 'entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven ' 'protease inhibitor. Cell. 2020;181:271–e280278.', 'journal-title': 'Cell'}, { 'key': '1665_CR37', 'doi-asserted-by': 'publisher', 'first-page': '1141', 'DOI': '10.1038/s41401-020-0485-4', 'volume': '41', 'author': 'Y Huang', 'year': '2020', 'unstructured': 'Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional ' 'properties of SARS-CoV-2 spike protein: potential antivirus drug ' 'development for COVID-19. Acta Pharmacol Sin. 2020;41:1141–9.', 'journal-title': 'Acta Pharmacol Sin'}, { 'key': '1665_CR38', 'doi-asserted-by': 'publisher', 'first-page': '6', 'DOI': '10.1186/s12985-023-01968-6', 'volume': '20', 'author': 'W Wu', 'year': '2023', 'unstructured': 'Wu W, Cheng Y, Zhou H, Sun C, Zhang S. The SARS-CoV-2 nucleocapsid ' 'protein: its role in the viral life cycle, structure and functions, and ' 'use as a potential target in the development of vaccines and ' 'diagnostics. Virol J. 2023;20:6.', 'journal-title': 'Virol J'}, { 'key': '1665_CR39', 'doi-asserted-by': 'crossref', 'unstructured': 'Khan S, Shafiei MS, Longoria C, Schoggins JW, Savani RC, Zaki H. ' 'SARS-CoV-2 spike protein induces inflammation via TLR2-dependent ' 'activation of the NF-kappaB pathway. Elife 2021, 10.', 'DOI': '10.7554/eLife.68563'}, { 'key': '1665_CR40', 'doi-asserted-by': 'publisher', 'first-page': '431', 'DOI': '10.1042/CS20220028', 'volume': '136', 'author': 'JD Imig', 'year': '2022', 'unstructured': 'Imig JD. SARS-CoV-2 spike protein causes cardiovascular disease ' 'independent of viral infection. Clin Sci (Lond). 2022;136:431–4.', 'journal-title': 'Clin Sci (Lond)'}, { 'key': '1665_CR41', 'doi-asserted-by': 'publisher', 'first-page': '240', 'DOI': '10.1093/clinchem/hvab148', 'volume': '68', 'author': 'Y Zhang', 'year': '2021', 'unstructured': 'Zhang Y, Ong CM, Yun C, Mo W, Whitman JD, Lynch KL, Wu AHB. Diagnostic ' 'Value of Nucleocapsid Protein in blood for SARS-CoV-2 infection. Clin ' 'Chem. 2021;68:240–8.', 'journal-title': 'Clin Chem'}, { 'key': '1665_CR42', 'doi-asserted-by': 'publisher', 'first-page': '791', 'DOI': '10.1038/s41467-023-36333-2', 'volume': '14', 'author': 'R Mothes', 'year': '2023', 'unstructured': 'Mothes R, Pascual-Reguant A, Koehler R, Liebeskind J, Liebheit A, ' 'Bauherr S, Philipsen L, Dittmayer C, Laue M, von Manitius R, et al. ' 'Distinct tissue niches direct lung immunopathology via CCL18 and CCL21 ' 'in severe COVID-19. Nat Commun. 2023;14:791.', 'journal-title': 'Nat Commun'}, { 'key': '1665_CR43', 'doi-asserted-by': 'publisher', 'first-page': '120', 'DOI': '10.1056/NEJMoa2015432', 'volume': '383', 'author': 'M Ackermann', 'year': '2020', 'unstructured': 'Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, ' 'Vanstapel A, Werlein C, Stark H, Tzankov A, et al. Pulmonary vascular ' 'endothelialitis, thrombosis, and Angiogenesis in Covid-19. N Engl J Med. ' '2020;383:120–8.', 'journal-title': 'N Engl J Med'}, { 'key': '1665_CR44', 'doi-asserted-by': 'publisher', 'first-page': '1417', 'DOI': '10.1016/S0140-6736(20)30937-5', 'volume': '395', 'author': 'Z Varga', 'year': '2020', 'unstructured': 'Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel ' 'AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Endothelial cell ' 'infection and endotheliitis in COVID-19. Lancet. 2020;395:1417–8.', 'journal-title': 'Lancet'}, { 'key': '1665_CR45', 'doi-asserted-by': 'crossref', 'unstructured': 'Bai Z, Cao Y, Liu W, Li J. The SARS-CoV-2 nucleocapsid protein and its ' 'role in viral structure, Biological functions, and a potential target ' 'for drug or vaccine mitigation. Viruses 2021, 13.', 'DOI': '10.3390/v13061115'}, { 'key': '1665_CR46', 'doi-asserted-by': 'crossref', 'unstructured': 'Ferreira-Gomes M, Kruglov A, Durek P, Heinrich F, Tizian C, Heinz GA, ' 'Pascual-Reguant A, Du W, Mothes R, Fan C et al. SARS-CoV-2 in severe ' 'COVID-19 induces a TGF-beta-dominated chronic immune response that does ' 'not target itself. Nat Commun 2021, 12:1961.', 'DOI': '10.1038/s41467-021-22210-3'}, { 'key': '1665_CR47', 'doi-asserted-by': 'publisher', 'first-page': '671788', 'DOI': '10.3389/fpubh.2021.671788', 'volume': '9', 'author': 'WX Shen', 'year': '2021', 'unstructured': 'Shen WX, Luo RC, Wang JQ, Chen ZS. Features of Cytokine Storm identified ' 'by distinguishing clinical manifestations in COVID-19. Front Public ' 'Health. 2021;9:671788.', 'journal-title': 'Front Public Health'}, { 'key': '1665_CR48', 'doi-asserted-by': 'publisher', 'first-page': '119541', 'DOI': '10.1016/j.bbamcr.2023.119541', 'volume': '1870', 'author': 'WM Ciszewski', 'year': '2023', 'unstructured': 'Ciszewski WM, Wozniak LA, Sobierajska K. SARS-CoV-2 S and N protein ' 'peptides drive invasion abilities of colon cancer cells through ' 'TGF-beta1 regulation. Biochim Biophys Acta Mol Cell Res. ' '2023;1870:119541.', 'journal-title': 'Biochim Biophys Acta Mol Cell Res'}, { 'key': '1665_CR49', 'doi-asserted-by': 'publisher', 'first-page': '631', 'DOI': '10.1002/path.1570', 'volume': '203', 'author': 'I Hamming', 'year': '2004', 'unstructured': 'Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue ' 'distribution of ACE2 protein, the functional receptor for SARS ' 'coronavirus. A first step in understanding SARS pathogenesis. J Pathol. ' '2004;203:631–7.', 'journal-title': 'J Pathol'}, { 'key': '1665_CR50', 'doi-asserted-by': 'publisher', 'first-page': '1323', 'DOI': '10.1161/CIRCRESAHA.121.318902', 'volume': '128', 'author': 'Y Lei', 'year': '2021', 'unstructured': 'Lei Y, Zhang J, Schiavon CR, He M, Chen L, Shen H, Zhang Y, Yin Q, Cho ' 'Y, Andrade L, et al. SARS-CoV-2 spike protein impairs endothelial ' 'function via downregulation of ACE 2. Circ Res. 2021;128:1323–6.', 'journal-title': 'Circ Res'}, { 'key': '1665_CR51', 'doi-asserted-by': 'publisher', 'first-page': '650', 'DOI': '10.1038/labinvest.2012.2', 'volume': '92', 'author': 'Z Liu', 'year': '2012', 'unstructured': 'Liu Z, Huang XR, Chen HY, Penninger JM, Lan HY. Loss of ' 'angiotensin-converting enzyme 2 enhances TGF-beta/Smad-mediated renal ' 'fibrosis and NF-kappaB-driven renal inflammation in a mouse model of ' 'obstructive nephropathy. Lab Invest. 2012;92:650–61.', 'journal-title': 'Lab Invest'}, { 'key': '1665_CR52', 'doi-asserted-by': 'publisher', 'first-page': '21', 'DOI': '10.1016/j.mce.2012.11.004', 'volume': '366', 'author': 'CH Chou', 'year': '2013', 'unstructured': 'Chou CH, Chuang LY, Lu CY, Guh JY. Interaction between TGF-beta and ' 'ACE2-Ang-(1–7)-Mas pathway in high glucose-cultured NRK-52E cells. Mol ' 'Cell Endocrinol. 2013;366:21–30.', 'journal-title': 'Mol Cell Endocrinol'}, { 'key': '1665_CR53', 'doi-asserted-by': 'publisher', 'first-page': '2735', 'DOI': '10.1002/jmv.26826', 'volume': '93', 'author': 'S Khanmohammadi', 'year': '2021', 'unstructured': 'Khanmohammadi S, Rezaei N. Role of toll-like receptors in the ' 'pathogenesis of COVID-19. J Med Virol. 2021;93:2735–9.', 'journal-title': 'J Med Virol'}, { 'key': '1665_CR54', 'doi-asserted-by': 'publisher', 'first-page': '307', 'DOI': '10.31083/j.fbl2811307', 'volume': '28', 'author': 'N Lee', 'year': '2023', 'unstructured': 'Lee N, Ko R, Lee SY. Differential expression patterns of toll-like ' 'receptors in COVID-19 patients. Front Biosci (Landmark Ed). 2023;28:307.', 'journal-title': 'Front Biosci (Landmark Ed)'}, { 'key': '1665_CR55', 'doi-asserted-by': 'publisher', 'first-page': '880', 'DOI': '10.1038/labinvest.2013.79', 'volume': '93', 'author': 'Y Pi', 'year': '2013', 'unstructured': 'Pi Y, Zhang LL, Li BH, Guo L, Cao XJ, Gao CY, Li JC. Inhibition of ' 'reactive oxygen species generation attenuates TLR4-mediated ' 'proinflammatory and proliferative phenotype of vascular smooth muscle ' 'cells. Lab Invest. 2013;93:880–7.', 'journal-title': 'Lab Invest'}, { 'key': '1665_CR56', 'doi-asserted-by': 'publisher', 'first-page': '104587', 'DOI': '10.1016/j.meegid.2020.104587', 'volume': '85', 'author': 'M Bhattacharya', 'year': '2020', 'unstructured': 'Bhattacharya M, Sharma AR, Mallick B, Sharma G, Lee SS, Chakraborty C. ' 'Immunoinformatics approach to understand molecular interaction between ' 'multi-epitopic regions of SARS-CoV-2 spike-protein with TLR4/MD-2 ' 'complex. Infect Genet Evol. 2020;85:104587.', 'journal-title': 'Infect Genet Evol'}, { 'key': '1665_CR57', 'doi-asserted-by': 'publisher', 'first-page': '818', 'DOI': '10.1038/s41422-021-00495-9', 'volume': '31', 'author': 'Y Zhao', 'year': '2021', 'unstructured': 'Zhao Y, Kuang M, Li J, Zhu L, Jia Z, Guo X, Hu Y, Kong J, Yin H, Wang X, ' 'You F. SARS-CoV-2 spike protein interacts with and activates TLR41. Cell ' 'Res. 2021;31:818–20.', 'journal-title': 'Cell Res'}, { 'key': '1665_CR58', 'doi-asserted-by': 'publisher', 'first-page': 'e0139621', 'DOI': '10.1128/JVI.01396-21', 'volume': '95', 'author': 'Y Qian', 'year': '2021', 'unstructured': 'Qian Y, Lei T, Patel PS, Lee CH, Monaghan-Nichols P, Xin HB, Qiu J, Fu ' 'M. Direct activation of endothelial cells by SARS-CoV-2 nucleocapsid ' 'protein is blocked by Simvastatin. J Virol. 2021;95:e0139621.', 'journal-title': 'J Virol'}, { 'key': '1665_CR59', 'doi-asserted-by': 'publisher', 'first-page': '157', 'DOI': '10.1097/SHK.0000000000000392', 'volume': '44', 'author': 'PS Tawadros', 'year': '2015', 'unstructured': 'Tawadros PS, Powers KA, Ailenberg M, Birch SE, Marshall JC, Szaszi K, ' 'Kapus A, Rotstein OD. Oxidative stress increases Surface Toll-Like ' 'receptor 4 expression in Murine macrophages Via Ceramide Generation. ' 'Shock. 2015;44:157–65.', 'journal-title': 'Shock'}, { 'key': '1665_CR60', 'doi-asserted-by': 'publisher', 'first-page': '255', 'DOI': '10.1038/s41392-022-01048-1', 'volume': '7', 'author': 'L Chen', 'year': '2022', 'unstructured': 'Chen L, Guan WJ, Qiu ZE, Xu JB, Bai X, Hou XC, Sun J, Qu S, Huang ZX, ' 'Lei TL, et al. SARS-CoV-2 nucleocapsid protein triggers ' 'hyperinflammation via protein-protein interaction-mediated intracellular ' 'Cl(-) accumulation in respiratory epithelium. Signal Transduct Target ' 'Ther. 2022;7:255.', 'journal-title': 'Signal Transduct Target Ther'}, { 'key': '1665_CR61', 'doi-asserted-by': 'publisher', 'first-page': '14530', 'DOI': '10.1038/s41598-017-11978-4', 'volume': '7', 'author': 'H Tang', 'year': '2017', 'unstructured': 'Tang H, C LK, Lee M, Gao Y, Xia H, Olguin F, Fraga DA, Ayers K, Choi S, ' 'Kim M, et al. Smad3 initiates oxidative stress and proteolysis that ' 'underlies diaphragm dysfunction during mechanical ventilation. Sci Rep. ' '2017;7:14530.', 'journal-title': 'Sci Rep'}, { 'key': '1665_CR62', 'doi-asserted-by': 'crossref', 'unstructured': 'Sobierajska K, Wawro ME, Niewiarowska J. Oxidative stress enhances the ' 'TGF-beta2-RhoA-MRTF-A/B Axis in cells entering endothelial-mesenchymal ' 'transition. Int J Mol Sci 2022, 23.', 'DOI': '10.3390/ijms23042062'}, { 'key': '1665_CR63', 'doi-asserted-by': 'publisher', 'first-page': '470', 'DOI': '10.3389/fcimb.2020.00470', 'volume': '10', 'author': 'T Li', 'year': '2020', 'unstructured': 'Li T, Wang L, Wang H, Li X, Zhang S, Xu Y, Wei W. Serum SARS-COV-2 ' 'nucleocapsid protein: a sensitivity and specificity early diagnostic ' 'marker for SARS-COV-2 infection. Front Cell Infect Microbiol. ' '2020;10:470.', 'journal-title': 'Front Cell Infect Microbiol'}, { 'key': '1665_CR64', 'doi-asserted-by': 'publisher', 'first-page': '3455', 'DOI': '10.1038/s41598-021-83108-0', 'volume': '11', 'author': 'M Batra', 'year': '2021', 'unstructured': 'Batra M, Tian R, Zhang C, Clarence E, Sacher CS, Miranda JN, De La ' 'Fuente JRO, Mathew M, Green D, Patel S, et al. Role of IgG against ' 'N-protein of SARS-CoV2 in COVID19 clinical outcomes. Sci Rep. ' '2021;11:3455.', 'journal-title': 'Sci Rep'}, { 'key': '1665_CR65', 'doi-asserted-by': 'publisher', 'first-page': '108720', 'DOI': '10.1016/j.clim.2021.108720', 'volume': '226', 'author': 'F Perna', 'year': '2021', 'unstructured': 'Perna F, Bruzzaniti S, Piemonte E, Maddaloni V, Atripaldi L, Sale S, ' 'Sanduzzi A, Nicastro C, Pepe N, Bifulco M, et al. Serum levels of ' 'SARS-CoV-2 nucleocapsid antigen associate with inflammatory status and ' 'disease severity in COVID-19 patients. Clin Immunol. 2021;226:108720.', 'journal-title': 'Clin Immunol'}, { 'key': '1665_CR66', 'doi-asserted-by': 'publisher', 'first-page': '254', 'DOI': '10.1089/vim.2021.0168', 'volume': '35', 'author': 'A Takamatsu', 'year': '2022', 'unstructured': 'Takamatsu A, Oshiro S, Mizutani N, Tada T, Tabe Y, Miida T, Kirikae T, ' 'Tagashira Y. Correlation of COVID-19 Severity and Immunoglobulin ' 'Presence against Spike and Nucleocapsid Proteins in SARS-CoV-2. Viral ' 'Immunol. 2022;35:254–8.', 'journal-title': 'Viral Immunol'}, { 'key': '1665_CR67', 'doi-asserted-by': 'publisher', 'first-page': '35', 'DOI': '10.1038/s41533-022-00300-z', 'volume': '32', 'author': 'P Kushner', 'year': '2022', 'unstructured': 'Kushner P, McCarberg BH, Grange L, Kolosov A, Haveric AL, Zucal V, ' 'Petruschke R, Bissonnette S. The use of non-steroidal anti-inflammatory ' 'drugs (NSAIDs) in COVID-19. NPJ Prim Care Respir Med. 2022;32:35.', 'journal-title': 'NPJ Prim Care Respir Med'}, { 'key': '1665_CR68', 'doi-asserted-by': 'publisher', 'first-page': '4899', 'DOI': '10.1111/bph.15206', 'volume': '177', 'author': 'CT Robb', 'year': '2020', 'unstructured': 'Robb CT, Goepp M, Rossi AG, Yao C. Non-steroidal anti-inflammatory ' 'drugs, prostaglandins, and COVID-19. Br J Pharmacol. 2020;177:4899–920.', 'journal-title': 'Br J Pharmacol'}, { 'key': '1665_CR69', 'doi-asserted-by': 'publisher', 'first-page': 'e0246825', 'DOI': '10.1371/journal.pone.0246825', 'volume': '16', 'author': 'TF Osborne', 'year': '2021', 'unstructured': 'Osborne TF, Veigulis ZP, Arreola DM, Mahajan SM, Roosli E, Curtin CM. ' 'Association of mortality and aspirin prescription for COVID-19 patients ' 'at the Veterans Health Administration. PLoS ONE. 2021;16:e0246825.', 'journal-title': 'PLoS ONE'}, { 'key': '1665_CR70', 'doi-asserted-by': 'publisher', 'first-page': '124', 'DOI': '10.1007/s11239-021-02436-0', 'volume': '52', 'author': 'CS Kow', 'year': '2021', 'unstructured': 'Kow CS, Hasan SS. Use of antiplatelet drugs and the risk of mortality in ' 'patients with COVID-19: a meta-analysis. J Thromb Thrombolysis. ' '2021;52:124–9.', 'journal-title': 'J Thromb Thrombolysis'}, { 'key': '1665_CR71', 'doi-asserted-by': 'crossref', 'unstructured': 'Russell B, Moss C, Rigg A, Van Hemelrijck M. COVID-19 and treatment with ' 'NSAIDs and corticosteroids: should we be limiting their use in the ' 'clinical setting? Ecancermedicalscience 2020, 14:1023.', 'DOI': '10.3332/ecancer.2020.1023'}, { 'key': '1665_CR72', 'first-page': '1351', 'volume': '45', 'author': 'Z Zhang', 'year': '2020', 'unstructured': 'Zhang Z, Li S, Deng J, Yang S, Xiang Z, Guo H, Xi H, Sang M, Zhang W. ' 'Aspirin inhibits endometrial fibrosis by suppressing the ' 'TGF–beta1–Smad2/Smad3 pathway in intrauterine adhesions. Int J Mol Med. ' '2020;45:1351–60.', 'journal-title': 'Int J Mol Med'}, { 'key': '1665_CR73', 'doi-asserted-by': 'crossref', 'unstructured': 'Sun Y, Liu B, Xie J, Jiang X, Xiao B, Hu X, Xiang J. Aspirin attenuates ' 'liver fibrosis by suppressing TGF–beta1/Smad signaling. Mol Med Rep ' '2022, 25.', 'DOI': '10.3892/mmr.2022.12697'}], 'container-title': 'Cell Communication and Signaling', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://link.springer.com/content/pdf/10.1186/s12964-024-01665-z.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/article/10.1186/s12964-024-01665-z/fulltext.html', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/content/pdf/10.1186/s12964-024-01665-z.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 5, 28]], 'date-time': '2024-05-28T15:09:37Z', 'timestamp': 1716908977000}, 'score': 1, 'resource': { 'primary': { 'URL': 'https://biosignaling.biomedcentral.com/articles/10.1186/s12964-024-01665-z'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 5, 28]]}, 'references-count': 73, 'journal-issue': {'issue': '1', 'published-online': {'date-parts': [[2024, 12]]}}, 'alternative-id': ['1665'], 'URL': 'http://dx.doi.org/10.1186/s12964-024-01665-z', 'relation': {}, 'ISSN': ['1478-811X'], 'subject': [], 'container-title-short': 'Cell Commun Signal', 'published': {'date-parts': [[2024, 5, 28]]}, 'assertion': [ { 'value': '11 March 2024', 'order': 1, 'name': 'received', 'label': 'Received', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '15 May 2024', 'order': 2, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '28 May 2024', 'order': 3, 'name': 'first_online', 'label': 'First Online', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, {'order': 1, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Declarations'}}, { 'value': 'The authors declare no competing interests.', 'order': 2, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Competing interests'}}], 'article-number': '296'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit