Analgesics..
Antiandrogens..
Bromhexine
Budesonide
Cannabidiol
Colchicine
Conv. Plasma
Curcumin
Ensovibep
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Iota-carragee..
Ivermectin
Lactoferrin
Lifestyle..
Melatonin
Metformin
Molnupiravir
Monoclonals..
Nigella Sativa
Nitazoxanide
Nitric Oxide
Paxlovid
Peg.. Lambda
Povidone-Iod..
Quercetin
Remdesivir
Vitamins..
Zinc

Other
Feedback
Home
Home   COVID-19 treatment studies for Exercise  COVID-19 treatment studies for Exercise  C19 studies: Exercise  Exercise   Select treatmentSelect treatmentTreatmentsTreatments
Melatonin Meta
Bromhexine Meta Metformin Meta
Budesonide Meta Molnupiravir Meta
Cannabidiol Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta Nitric Oxide Meta
Ensovibep Meta Paxlovid Meta
Famotidine Meta Peg.. Lambda Meta
Favipiravir Meta Povidone-Iod.. Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta Remdesivir Meta
Iota-carragee.. Meta
Ivermectin Meta Zinc Meta
Lactoferrin Meta

Other Treatments Global Adoption
All Studies   Meta Analysis   Recent:  
0 0.5 1 1.5 2+ Mortality 74% Improvement Relative Risk Mortality (b) 65% Mortality (c) 48% Mortality (d) 35% Hospitalization 48% Hospitalization (b) 42% Hospitalization (c) 30% Hospitalization (d) 20% c19early.org/ex Young et al. Exercise for COVID-19 Prophylaxis Favors exercise Favors inactivity
Associations of Physical Inactivity and COVID-19 Outcomes Among Subgroups
Young et al., American Journal of Preventive Medicine, doi:10.1016/j.amepre.2022.10.007
Young et al., Associations of Physical Inactivity and COVID-19 Outcomes Among Subgroups, American Journal of Preventive Medicine, doi:10.1016/j.amepre.2022.10.007
Dec 2022   Source   PDF  
  Twitter
  Facebook
Share
  All Studies   Meta
Retrospective 194,191 COVID-19 patients in the USA, showing lower risk of hospitalization and mortality with physical activity, with a dose response relationship.
risk of death, 74.4% lower, OR 0.26, p < 0.001, high activity levels 11,279, low activity levels 29,099, inverted to make OR<1 favor high activity levels, always active vs. always inactive, RR approximated with OR.
risk of death, 65.3% lower, OR 0.35, p < 0.001, high activity levels 11,279, low activity levels 83,452, inverted to make OR<1 favor high activity levels, always active vs. mostly inactive, RR approximated with OR.
risk of death, 47.9% lower, OR 0.52, p < 0.001, high activity levels 11,279, low activity levels 42,490, inverted to make OR<1 favor high activity levels, always active vs. some activity, RR approximated with OR.
risk of death, 35.5% lower, OR 0.65, p = 0.002, high activity levels 11,279, low activity levels 27,871, inverted to make OR<1 favor high activity levels, always active vs. consistently active, RR approximated with OR.
risk of hospitalization, 47.6% lower, OR 0.52, p < 0.001, high activity levels 11,279, low activity levels 29,099, inverted to make OR<1 favor high activity levels, always active vs. always inactive, RR approximated with OR.
risk of hospitalization, 41.9% lower, OR 0.58, p < 0.001, high activity levels 11,279, low activity levels 83,452, inverted to make OR<1 favor high activity levels, always active vs. mostly inactive, RR approximated with OR.
risk of hospitalization, 30.1% lower, OR 0.70, p < 0.001, high activity levels 11,279, low activity levels 42,490, inverted to make OR<1 favor high activity levels, always active vs. some activity, RR approximated with OR.
risk of hospitalization, 20.0% lower, OR 0.80, p < 0.001, high activity levels 11,279, low activity levels 27,871, inverted to make OR<1 favor high activity levels, always active vs. consistently active, RR approximated with OR.
Effect extraction follows pre-specified rules prioritizing more serious outcomes. Submit updates
Young et al., 14 Dec 2022, retrospective, USA, peer-reviewed, 7 authors, study period 1 January, 2020 - 31 May, 2021.
Contact: young@kp.org.
All Studies   Meta Analysis   Submit Updates or Corrections
This PaperExerciseAll
Abstract: ARTICLE IN PRESS RESEARCH ARTICLE Associations of Physical Inactivity and COVID-19 Outcomes Among Subgroups Deborah Rohm Young, PhD,1 James F. Sallis, PhD,2,3 Aileen Baecker, PhD,1 Deborah A. Cohen, MD, MPH,1 Claudia L. Nau, PhD,1 Gary N. Smith, PhD,4 Robert E. Sallis, MD5 Introduction: Physical activity before COVID-19 infection is associated with less severe outcomes. The study determined whether a dose‒response association was observed and whether the associations were consistent across demographic subgroups and chronic conditions. Methods: A retrospective cohort study of Kaiser Permanente Southern California adult patients who had a positive COVID-19 diagnosis between January 1, 2020 and May 31, 2021 was created. The exposure was the median of at least 3 physical activity self-reports before diagnosis. Patients were categorized as follows: always inactive, all assessments at 10 minutes/week or less; mostly inactive, median of 0−60 minutes per week; some activity, median of 60−150 minutes per week; consistently active, median>150 minutes per week; and always active, all assessments>150 minutes per week. Outcomes were hospitalization, deterioration event, or death 90 days after a COVID-19 diagnosis. Data were analyzed in 2022. Results: Of 194,191 adults with COVID-19 infection, 6.3% were hospitalized, 3.1% experienced a deterioration event, and 2.8% died within 90 days. Dose‒response effects were strong; for example, patients in the some activity category had higher odds of hospitalization (OR=1.43; 95% CI=1.26, 1.63), deterioration (OR=1.83; 95% CI=1.49, 2.25), and death (OR=1.92; 95% CI=1.48, 2.49) than those in the always active category. Results were generally consistent across sex, race and ethnicity, age, and BMI categories and for patients with cardiovascular disease or hypertension. Conclusions: There were protective associations of physical activity for adverse COVID-19 outcomes across demographic and clinical characteristics. Public health leaders should add physical activity to pandemic control strategies. Am J Prev Med 2022;000(000):1−11. © 2022 American Journal of Preventive Medicine. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Loading..
Please send us corrections, updates, or comments. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit