Analgesics
Antiandrogens
Antihistamines
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchEnsitrelvirEnsitrelvir (more..)
Metformin Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta Thermotherapy Meta
Melatonin Meta

All Studies   Meta Analysis       

Rapid resistance profiling of SARS-CoV-2 protease inhibitors

Moghadasi et al., npj Antimicrobials and Resistance, doi:10.1038/s44259-023-00009-0
Aug 2023  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
In Vitro study of SARS-CoV-2 main protease (Mpro) variants showing distinct resistance profiles for the Mpro inhibitors nirmatrelvir, ensitrelvir, and FB2001. Results show significant resistance for multiple variants for nirmatrelvir and ensitrelvir, with the lowest resistance concerns for FB2001.
4 preclinical studies support the efficacy of ensitrelvir for COVID-19:
In Vitro studies demonstrate efficacy in VeroE6/TMPRSS2A,2, HEK293T/ACE2-TMPRSS2B,2, and MucilAirC,2 cells. Animal studies demonstrate efficacy in BALB/c miceD,2,3 and Syrian hamstersE,2. Preclinical studies demonstrate efficacy for the ancestralF,2, deltaG,2, and omicronH,2 variants.
Study covers paxlovid and ensitrelvir.
a. VeroE6/TMPRSS2 is a Vero E6 cell line engineered to express the human serine protease TMPRSS2, enabling SARS-CoV-2 S protein priming and entry.
b. HEK293T/ACE2-TMPRSS2 is a human embryonic kidney cell line engineered to express human ACE2 and TMPRSS2, making it highly susceptible to SARS-CoV-2 infection.
c. MucilAir cells are primary human nasal epithelial cells that mimic the structure and physiology of the human airway epithelium.
d. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
e. A rodent model used in SARS-CoV-2 research that replicates key aspects of human infection including efficient replication in the upper and lower respiratory tract.
f. The original SARS-CoV-2 strain that emerged in Wuhan, China in late 2019. Also referred to as wild-type.
g. A variant of concern first identified in India in late 2020, delta (B.1.617.2) transmitted more efficiently than previous variants. It contains spike mutations including L452R which increases binding to the ACE2 receptor.
h. A highly transmissible variant of concern first detected in South Africa in late 2021. Omicron possesses many spike mutations which confer partial immune evasion, including deletions near the furin cleavage site.
Moghadasi et al., 20 Aug 2023, peer-reviewed, 4 authors. Contact: rsh@uthscsa.edu.
This PaperEnsitrelvirAll
Rapid resistance profiling of SARS-CoV-2 protease inhibitors
Seyed Arad Moghadasi, Rayhan G Biswas, Daniel A Harki, Reuben S Harris
npj Antimicrobials and Resistance, doi:10.1038/s44259-023-00009-0
Resistance to nirmatrelvir (Paxlovid) has been shown by multiple groups and may already exist in clinical SARS-CoV-2 isolates. Here a robust cell-based assay is used to determine the relative potencies of nirmatrelvir, ensitrelvir, and FB2001 against a panel of SARS-CoV-2 main protease (M pro ) variants. The results reveal that these three drugs have at least partly distinct resistance mutation profiles and raise the possibility that the latter compounds may be effective in some instances of Paxlovid resistance and vice versa.
Reporting summary Further information on research design is available in the Nature Research Reporting Summary linked to this article. AUTHOR CONTRIBUTIONS COMPETING INTERESTS The M pro gain-of-signal system is the subject of U.S. Provisional Application Serial No. 63/108,611, filed on November 2, 2020, with R.S.H. and S.A.M. as inventors. The authors declare no additional competing interests. ETHICS ADDITIONAL INFORMATION Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s44259-023-00009-0 . Correspondence and requests for materials should be addressed to Reuben S. Harris. Reprints and permission information is available at http://www.nature.com/ reprints Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
Dai, Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease, Science
Gordon, A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature
Heilmann, SARS-CoV-2 3CL(pro) mutations selected in a VSV-based system confer resistance to nirmatrelvir, ensitrelvir, and GC376, Sci. Transl. Med
Iketani, Functional map of SARS-CoV-2 3CL protease reveals tolerant and immutable sites, Cell Host Microbe
Iketani, Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir, Nature
Jochmans, The substitutions L50F, E166A, and L167F in SARS-CoV-2 3CLpro are selected by a protease inhibitor in vitro and confer resistance to nirmatrelvir, mBio
Lan, Nirmatrelvir resistance in SARS-CoV-2 Omicron_BA.1 and WA1 replicons and escape strategies, BioRxiv, doi:10.1101/2022.12.31.522389
Majerova, Konvalinka, Viral proteases as therapeutic targets, Mol. Aspects Med
Meyers, The proximal proteome of 17 SARS-CoV-2 proteins links to disrupted antiviral signaling and host translation, PLoS Pathog
Moghadasi, Gain-of-signal assays for probing inhibition of SARS-CoV-2 M(pro)/3CL(pro) in living cells, mBio
Moghadasi, Transmissible SARS-CoV-2 variants with resistance to clinical protease inhibitors, Sci. Adv
Noske, Structural basis of nirmatrelvir and ensitrelvir activity against naturally occurring polymorphisms of the SARS-CoV-2 Main Protease, J. Biol. Chem
Unoh, Discovery of S-217622, a noncovalent oral SARS-CoV-2 3CL protease inhibitor clinical candidate for treating COVID-19, J. Med. Chem
Zhou, Nirmatrelvir-resistant SARS-CoV-2 variants with high fitness in an infectious cell culture system, Sci. Adv
DOI record: { "DOI": "10.1038/s44259-023-00009-0", "ISSN": [ "2731-8745" ], "URL": "http://dx.doi.org/10.1038/s44259-023-00009-0", "abstract": "<jats:title>Abstract</jats:title><jats:p>Resistance to nirmatrelvir (Paxlovid) has been shown by multiple groups and may already exist in clinical SARS-CoV-2 isolates. Here a robust cell-based assay is used to determine the relative potencies of nirmatrelvir, ensitrelvir, and FB2001 against a panel of SARS-CoV-2 main protease (M<jats:sup>pro</jats:sup>) variants. The results reveal that these three drugs have at least partly distinct resistance mutation profiles and raise the possibility that the latter compounds may be effective in some instances of Paxlovid resistance and <jats:italic>vice versa</jats:italic>.</jats:p>", "alternative-id": [ "9" ], "article-number": "9", "assertion": [ { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "Received", "name": "received", "order": 1, "value": "25 February 2023" }, { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "Accepted", "name": "accepted", "order": 2, "value": "23 June 2023" }, { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "First Online", "name": "first_online", "order": 3, "value": "20 August 2023" }, { "group": { "label": "Competing interests", "name": "EthicsHeading" }, "name": "Ethics", "order": 1, "value": "The M<sup>pro</sup> gain-of-signal system is the subject of U.S. Provisional Application Serial No. 63/108,611, filed on November 2, 2020, with R.S.H. and S.A.M. as inventors. The authors declare no additional competing interests." }, { "group": { "label": "Ethics", "name": "EthicsHeading" }, "name": "Ethics", "order": 2, "value": "Studies here were performed under University of Minnesota IBC protocol 1902-36822H to R.S.H., University of Minnesota IBC protocol 2111-39591H to D.A.H., and University of Texas Health. San Antonio IBC B-00000013853 to R.S.H." } ], "author": [ { "affiliation": [], "family": "Moghadasi", "given": "Seyed Arad", "sequence": "first" }, { "ORCID": "http://orcid.org/0000-0002-9656-9175", "affiliation": [], "authenticated-orcid": false, "family": "Biswas", "given": "Rayhan G.", "sequence": "additional" }, { "ORCID": "http://orcid.org/0000-0001-5950-931X", "affiliation": [], "authenticated-orcid": false, "family": "Harki", "given": "Daniel A.", "sequence": "additional" }, { "ORCID": "http://orcid.org/0000-0002-9034-9112", "affiliation": [], "authenticated-orcid": false, "family": "Harris", "given": "Reuben S.", "sequence": "additional" } ], "container-title": "npj Antimicrobials and Resistance", "container-title-short": "npj Antimicrob Resist", "content-domain": { "crossmark-restriction": false, "domain": [ "link.springer.com" ] }, "created": { "date-parts": [ [ 2023, 8, 20 ] ], "date-time": "2023-08-20T22:01:44Z", "timestamp": 1692568904000 }, "deposited": { "date-parts": [ [ 2023, 8, 20 ] ], "date-time": "2023-08-20T22:01:46Z", "timestamp": 1692568906000 }, "funder": [ { "DOI": "10.13039/100000060", "award": [ "U19-AI171954" ], "doi-asserted-by": "publisher", "id": [ { "asserted-by": "publisher", "id": "10.13039/100000060", "id-type": "DOI" } ], "name": "U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases" } ], "indexed": { "date-parts": [ [ 2024, 9, 14 ] ], "date-time": "2024-09-14T15:13:36Z", "timestamp": 1726326816818 }, "is-referenced-by-count": 18, "issue": "1", "issued": { "date-parts": [ [ 2023, 8, 20 ] ] }, "journal-issue": { "issue": "1", "published-online": { "date-parts": [ [ 2023, 12 ] ] } }, "language": "en", "license": [ { "URL": "https://creativecommons.org/licenses/by/4.0", "content-version": "tdm", "delay-in-days": 0, "start": { "date-parts": [ [ 2023, 8, 20 ] ], "date-time": "2023-08-20T00:00:00Z", "timestamp": 1692489600000 } }, { "URL": "https://creativecommons.org/licenses/by/4.0", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2023, 8, 20 ] ], "date-time": "2023-08-20T00:00:00Z", "timestamp": 1692489600000 } } ], "link": [ { "URL": "https://www.nature.com/articles/s44259-023-00009-0.pdf", "content-type": "application/pdf", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://www.nature.com/articles/s44259-023-00009-0", "content-type": "text/html", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://www.nature.com/articles/s44259-023-00009-0.pdf", "content-type": "application/pdf", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "297", "original-title": [], "prefix": "10.1038", "published": { "date-parts": [ [ 2023, 8, 20 ] ] }, "published-online": { "date-parts": [ [ 2023, 8, 20 ] ] }, "publisher": "Springer Science and Business Media LLC", "reference": [ { "DOI": "10.1016/j.mam.2022.101159", "author": "T Majerova", "doi-asserted-by": "publisher", "first-page": "101159", "journal-title": "Mol. Aspects Med.", "key": "9_CR1", "unstructured": "Majerova, T. & Konvalinka, J. Viral proteases as therapeutic targets. Mol. Aspects Med. 88, 101159 (2022).", "volume": "88", "year": "2022" }, { "DOI": "10.1126/sciadv.ade8778", "author": "SA Moghadasi", "doi-asserted-by": "publisher", "first-page": "eade8778", "journal-title": "Sci. Adv.", "key": "9_CR2", "unstructured": "Moghadasi, S. A. et al. Transmissible SARS-CoV-2 variants with resistance to clinical protease inhibitors. Sci. Adv. 9, eade8778 (2023).", "volume": "9", "year": "2023" }, { "DOI": "10.1126/sciadv.add7197", "author": "Y Zhou", "doi-asserted-by": "publisher", "first-page": "eadd7197", "journal-title": "Sci. Adv.", "key": "9_CR3", "unstructured": "Zhou, Y. et al. Nirmatrelvir-resistant SARS-CoV-2 variants with high fitness in an infectious cell culture system. Sci. Adv. 8, eadd7197 (2022).", "volume": "8", "year": "2022" }, { "DOI": "10.1016/j.chom.2022.08.003", "author": "S Iketani", "doi-asserted-by": "publisher", "first-page": "1354", "journal-title": "Cell Host Microbe", "key": "9_CR4", "unstructured": "Iketani, S. et al. Functional map of SARS-CoV-2 3CL protease reveals tolerant and immutable sites. Cell Host Microbe 30, 1354–1362.e1356 (2022).", "volume": "30", "year": "2022" }, { "DOI": "10.1038/s41586-022-05514-2", "author": "S Iketani", "doi-asserted-by": "publisher", "first-page": "558", "journal-title": "Nature", "key": "9_CR5", "unstructured": "Iketani, S. et al. Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir. Nature 613, 558–564 (2023).", "volume": "613", "year": "2023" }, { "DOI": "10.1128/mbio.02815-22", "author": "D Jochmans", "doi-asserted-by": "publisher", "first-page": "e0281522", "journal-title": "mBio", "key": "9_CR6", "unstructured": "Jochmans, D. et al. The substitutions L50F, E166A, and L167F in SARS-CoV-2 3CLpro are selected by a protease inhibitor in vitro and confer resistance to nirmatrelvir. mBio 14, e0281522 (2023).", "volume": "14", "year": "2023" }, { "DOI": "10.1126/scitranslmed.abq7360", "author": "E Heilmann", "doi-asserted-by": "publisher", "first-page": "eabq7360", "journal-title": "Sci. Transl. Med.", "key": "9_CR7", "unstructured": "Heilmann, E. et al. SARS-CoV-2 3CL(pro) mutations selected in a VSV-based system confer resistance to nirmatrelvir, ensitrelvir, and GC376. Sci. Transl. Med. 15, eabq7360 (2023).", "volume": "15", "year": "2023" }, { "DOI": "10.1016/j.jbc.2023.103004", "author": "GD Noske", "doi-asserted-by": "publisher", "first-page": "103004", "journal-title": "J. Biol. Chem.", "key": "9_CR8", "unstructured": "Noske, G. D. et al. Structural basis of nirmatrelvir and ensitrelvir activity against naturally occurring polymorphisms of the SARS-CoV-2 Main Protease. J. Biol. Chem. 299, 103004 (2023).", "volume": "299", "year": "2023" }, { "DOI": "10.1101/2022.12.31.522389", "doi-asserted-by": "publisher", "key": "9_CR9", "unstructured": "Lan, S. et al. Nirmatrelvir resistance in SARS-CoV-2 Omicron_BA.1 and WA1 replicons and escape strategies. BioRxiv https://doi.org/10.1101/2022.12.31.522389 (2023)." }, { "DOI": "10.1126/science.abb4489", "author": "W Dai", "doi-asserted-by": "publisher", "first-page": "1331", "journal-title": "Science", "key": "9_CR10", "unstructured": "Dai, W. et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 368, 1331–1335 (2020).", "volume": "368", "year": "2020" }, { "DOI": "10.1021/acs.jmedchem.2c00117", "author": "Y Unoh", "doi-asserted-by": "publisher", "first-page": "6499", "journal-title": "J. Med. Chem.", "key": "9_CR11", "unstructured": "Unoh, Y. et al. Discovery of S-217622, a noncovalent oral SARS-CoV-2 3CL protease inhibitor clinical candidate for treating COVID-19. J. Med. Chem. 65, 6499–6512 (2022).", "volume": "65", "year": "2022" }, { "DOI": "10.1128/mbio.00784-22", "author": "SA Moghadasi", "doi-asserted-by": "publisher", "first-page": "e0078422", "journal-title": "mBio", "key": "9_CR12", "unstructured": "Moghadasi, S. A. et al. Gain-of-signal assays for probing inhibition of SARS-CoV-2 M(pro)/3CL(pro) in living cells. mBio 13, e0078422 (2022).", "volume": "13", "year": "2022" }, { "DOI": "10.1371/journal.ppat.1009412", "author": "JM Meyers", "doi-asserted-by": "publisher", "first-page": "e1009412", "journal-title": "PLoS Pathog.", "key": "9_CR13", "unstructured": "Meyers, J. M. et al. The proximal proteome of 17 SARS-CoV-2 proteins links to disrupted antiviral signaling and host translation. PLoS Pathog. 17, e1009412 (2021).", "volume": "17", "year": "2021" }, { "DOI": "10.1038/s41586-020-2286-9", "author": "DE Gordon", "doi-asserted-by": "publisher", "first-page": "459", "journal-title": "Nature", "key": "9_CR14", "unstructured": "Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468 (2020).", "volume": "583", "year": "2020" } ], "reference-count": 14, "references-count": 14, "relation": { "has-preprint": [ { "asserted-by": "object", "id": "10.1101/2023.02.25.530000", "id-type": "doi" } ] }, "resource": { "primary": { "URL": "https://www.nature.com/articles/s44259-023-00009-0" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "Rapid resistance profiling of SARS-CoV-2 protease inhibitors", "type": "journal-article", "update-policy": "http://dx.doi.org/10.1007/springer_crossmark_policy", "volume": "1" }
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit