STF-62247 for COVID-19
COVID-19 involves the interplay of 350+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 10,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed STF-62247 in detail.
, Screening of FDA-approved drugs using a MERS-CoV clinical isolate from South Korea identifies potential therapeutic options for COVID-19, bioRxiv, doi:10.1101/2020.02.25.965582
AbstractTherapeutic options for coronavirus remain limited. To address this unmet medical need, we screened 5,406 compounds, including United States Food and Drug Administration (FDA)- approved drugs and bioactives, for activity against a South Korean Middle East respiratory syndrome coronavirus (MERS-CoV) clinical isolate. Among 221 identified hits, 54 had therapeutic indexes (TI) greater than 6. Time-of-addition studies with selected drugs demonstrated eight and four FDA-approved drugs acted on the early and late stages of the viral life cycle, respectively. Confirmed hits included several cardiotonic agents (TI>100), atovaquone, an anti-malarial (TI>34), and ciclosonide, an inhalable corticosteroid (TI>6). Furthermore, utilizing the severe acute respiratory syndrome CoV-2 (SARS-CoV-2), combinations of remedesivir with selected dugs were evaluated, which identified ciclosonide and nelfinavir to be additive and synergistic drugs in vitro, respectively. Together, we screened FDA-approved drugs using patient-derived MERS-CoV, triaged hits to discriminate between early and late viral life cycle inhibitors, confirmed selected drugs using SARS-CoV-2, and demonstrated the added value of selected medications in combination with remedesivir. Our results identify potential therapeutic options for MERS-CoV infections, and provide a basis to treat coronavirus disease 2019 (COVID-19) and other coronavirus-related illnesses.
, Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, bioRxiv, doi:10.1101/2020.08.18.255877
AbstractDrug repurposing is a rapid approach to identifying therapeutics for the treatment of emerging infectious diseases such as COVID-19. To address the urgent need for treatment options, we carried out a quantitative high-throughput screen using a SARS-CoV-2 cytopathic assay with a compound collection of 8,810 approved and investigational drugs, mechanism-based bioactive compounds, and natural products. Three hundred and nineteen compounds with anti-SARS-CoV-2 activities were identified and confirmed, including 91 approved drug and 49 investigational drugs. Among these confirmed compounds, the anti-SARS-CoV-2 activities of 230 compounds, including 38 approved drugs, have not been previously reported. Chlorprothixene, methotrimeprazine, and piperacetazine were the three most potent FDA approved drugs with anti-SARS-CoV-2 activities. These three compounds have not been previously reported to have anti-SARS-CoV-2 activities, although their antiviral activities against SARS-CoV and Ebola virus have been reported. These results demonstrate that this comprehensive data set of drug repurposing screen for SARS-CoV-2 is useful for drug repurposing efforts including design of new drug combinations for clinical trials.