Analgesics
Antiandrogens
Bromhexine
Budesonide
Cannabidiol
Colchicine
Conv. Plasma
Curcumin
Ensovibep
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lactoferrin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Peg.. Lambda
Quercetin
Remdesivir
Vitamins

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Bromhexine Meta Metformin Meta
Budesonide Meta
Cannabidiol Meta Molnupiravir Meta
Colchicine Meta
Conv. Plasma Meta
Curcumin Meta Nigella Sativa Meta
Ensovibep Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Peg.. Lambda Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta Remdesivir Meta
Ivermectin Meta
Lactoferrin Meta

Oleuropein for COVID-19

Oleuropein has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Fan et al., Pharmaceutical approaches for COVID-19: An update on current therapeutic opportunities, Acta Pharmaceutica, doi:10.2478/acph-2023-0014
Abstract SARS-CoV-2, a newly discovered coronavirus, has been linked to the COVID-19 pandemic and is currently an important public health issue. Despite all the work done to date around the world, there is still no viable treatment for COVID-19. This study examined the most recent evidence on the efficacy and safety of several therapeutic options available including natural substances, synthetic drugs and vaccines in the treatment of COVID-19. Various natural compounds such as sarsapogenin, lycorine, biscoclaurine, vitamin B12, glycyrrhizic acid, riboflavin, resveratrol and kaempferol, various vaccines and drugs such as AZD1222, mRNA-1273, BNT162b2, Sputnik V, and remdesivir, lopinavir, favipiravir, darunavir, oseltamivir, and umifenovir, resp., have been discussed comprehensively. We attempted to provide exhaustive information regarding the various prospective therapeutic approaches available in order to assist researchers and physicians in treating COVID-19 patients.
Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, Interdisciplinary Perspectives on Infectious Diseases, doi:10.1155/2023/7598307
COVID-19 pandemic caused by the novel SARS-CoV-2 has impacted human livelihood globally. Strenuous efforts have been employed for its control and prevention; however, with recent reports on mutated strains with much higher infectivity, transmissibility, and ability to evade immunity developed from previous SARS-CoV-2 infections, prevention alternatives must be prepared beforehand in case. We have perused over 128 recent works (found on Google Scholar, PubMed, and ScienceDirect as of February 2023) on medicinal plants and their compounds for anti-SARS-CoV-2 activity and eventually reviewed 102 of them. The clinical application and the curative effect were reported high in China and in India. Accordingly, this review highlights the unprecedented opportunities offered by medicinal plants and their compounds, candidates as the therapeutic agent, against COVID-19 by acting as viral protein inhibitors and immunomodulator in (32 clinical trials and hundreds of in silico experiments) conjecture with modern science. Moreover, the associated foreseeable challenges for their viral outbreak management were discussed in comparison to synthetic drugs.
Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, Molecules, doi:10.3390/molecules28062470
Natural products and plant extracts exhibit many biological activities, including that related to the defense mechanisms against parasites. Many studies have investigated the biological functions of secondary metabolites and reported evidence of antiviral activities. The pandemic emergencies have further increased the interest in finding antiviral agents, and efforts are oriented to investigate possible activities of secondary plant metabolites against human viruses and their potential application in treating or preventing SARS-CoV-2 infection. In this review, we performed a comprehensive analysis of studies through in silico and in vitro investigations, also including in vivo applications and clinical trials, to evaluate the state of knowledge on the antiviral activities of secondary metabolites against human viruses and their potential application in treating or preventing SARS-CoV-2 infection, with a particular focus on natural compounds present in food plants. Although some of the food plant secondary metabolites seem to be useful in the prevention and as a possible therapeutic management against SARS-CoV-2, up to now, no molecules can be used as a potential treatment for COVID-19; however, more research is needed.
Khaerunnisa et al., Potential Inhibitor of COVID-19 Main Protease (M<sup>pro</sup>) From Several Medicinal Plant Compounds by Molecular Docking Study, MDPI AG, doi:10.20944/preprints202003.0226.v1
COVID-19, a new strain of coronavirus (CoV), was identified in Wuhan, China, in 2019. No specific therapies are available and investigations regarding COVID-19 treatment are lacking. Liu et al. (2020) successfully crystallised the COVID-19 main protease (Mpro), which is a potential drug target. The present study aimed to assess bioactive compounds found in medicinal plants as potential COVID-19 Mpro inhibitors, using a molecular docking study. Molecular docking was performed using Autodock 4.2, with the Lamarckian Genetic Algorithm, to analyse the probability of docking. COVID-19 Mpro was docked with several compounds, and docking was analysed by Autodock 4.2, Pymol version 1.7.4.5 Edu, and Biovia Discovery Studio 4.5. Nelfinavir and lopinavir were used as standards for comparison. The binding energies obtained from the docking of 6LU7 with native ligand, nelfinavir, lopinavir, kaempferol, quercetin, luteolin-7-glucoside, demethoxycurcumin, naringenin, apigenin-7-glucoside, oleuropein, curcumin, catechin, epicatechin-gallate, zingerol, gingerol, and allicin were -8.37, -10.72, -9.41, -8.58, -8.47, -8.17, -7.99, -7.89, -7.83, -7.31, -7.05, -7.24, -6.67, -5.40, -5.38, and -4.03 kcal/mol, respectively. Therefore, nelfinavir and lopinavir may represent potential treatment options, and kaempferol, quercetin, luteolin-7-glucoside, demethoxycurcumin, naringenin, apigenin-7-glucoside, oleuropein, curcumin, catechin, and epicatechin-gallate appeared to have the best potential to act as COVID-19 Mpro inhibitors. However, further research is necessary to investigate their potential medicinal use.
Please send us corrections, updates, or comments. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit