Mebendazol for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Mebendazol may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed mebendazol in detail.
, Identification of FDA Approved Drugs Targeting COVID-19 Virus by Structure-Based Drug Repositioning, American Chemical Society (ACS), doi:10.26434/chemrxiv.12003930.v1
The new strain of Coronaviruses (SARS-CoV-2), and the resulting Covid-19 disease has spread swiftly across the globe after its initial detection in late December 2019 in Wuhan, China, resulting in a pandemic status declaration by WHO within 3 months. Given the heavy toll of this pandemic, researchers are actively testing various strategies including new and repurposed drugs as well as vaccines. In the current brief report, we adopted a repositioning approach using insilico molecular modeling screening using FDA approved drugs with established safety profiles for potential inhibitory effects on Covid-19 virus. We started with structure based drug design by screening more than 2000 FDA approved drugsagainst Covid-19 virus main protease enzyme (Mpro) substrate-binding pocket to identify potential hits based on their binding energies, binding modes, interacting amino acids, and therapeutic indications. In addition, we elucidate preliminary pharmacophore features for candidates bound to Covid-19 virus Mpro substratebinding pocket. The top hits include anti-viral drugs such as Darunavir, Nelfinavirand Saquinavir, some of which are already being tested in Covid-19 patients. Interestingly, one of the most promising hits in our screen is the hypercholesterolemia drug Rosuvastatin. These results certainly do not confirm or indicate antiviral activity, but can rather be used as a starting point for further in vitro and in vivo testing, either individually or in combination.