Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Hyperoside for COVID-19

Hyperoside has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Benouchenne et al., The First Records of the In Silico Antiviral and Antibacterial Actions of Molecules Detected in Extracts of Algerian Fir (Abies numidica De Lannoy) Using LC-MS/MS Analysis, Plants, doi:10.3390/plants13091246
(1) Background: Due to the wide application in medicinal and pharmaceutical chemistry of flavonoid molecules, which are one of the most famous types of secondary plant metabolites, our work has come within the framework of bio-consulting to help in the identification of the molecule(s) responsible for the antibacterial effect which will be the active principle of a natural antibiotic developed from Algerian fir using bioinformatics tools. (2) Methods: The docking method was used to test the antiviral activity on SARS-CoV-2 virus and the antibacterial activity on Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli of 12 polyphenolic molecules present in the ethyl acetate and n-butanol extracts of Numidian fir leaves, and identify the molecules responsible for these specific biological activities. (3) Results: The findings revealed that it is possible that two molecules, hyperoside and quercitrin, have a high capacity to inhibit SARS-CoV-2, and it is important to mention that they are the most quantitatively abundant molecules in the extract. The molecule luteolin-7-glucoside is probably responsible for the antibacterial activity in the extract against Gram-negative bacteria such as Escherichia coli, and the molecule hesperidin is responsible for the antibacterial activity in the extract against Gram-positive bacteria such as Staphylococcus aureus.
Szabó et al., Natural products as a source of Coronavirus entry inhibitors, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2024.1353971
The COVID-19 pandemic has had a significant and lasting impact on the world. Four years on, despite the existence of effective vaccines, the continuous emergence of new SARS-CoV-2 variants remains a challenge for long-term immunity. Additionally, there remain few purpose-built antivirals to protect individuals at risk of severe disease in the event of future coronavirus outbreaks. A promising mechanism of action for novel coronavirus antivirals is the inhibition of viral entry. To facilitate entry, the coronavirus spike glycoprotein interacts with angiotensin converting enzyme 2 (ACE2) on respiratory epithelial cells. Blocking this interaction and consequently viral replication may be an effective strategy for treating infection, however further research is needed to better characterize candidate molecules with antiviral activity before progressing to animal studies and clinical trials. In general, antiviral drugs are developed from purely synthetic compounds or synthetic derivatives of natural products such as plant secondary metabolites. While the former is often favored due to the higher specificity afforded by rational drug design, natural products offer several unique advantages that make them worthy of further study including diverse bioactivity and the ability to work synergistically with other drugs. Accordingly, there has recently been a renewed interest in natural product-derived antivirals in the wake of the COVID-19 pandemic. This review provides a summary of recent research into coronavirus entry inhibitors, with a focus on natural compounds derived from plants, honey, and marine sponges.
Abarova et al., Emerging Therapeutic Potential of Polyphenols from Geranium sanguineum L. in Viral Infections, Including SARS-CoV-2, Biomolecules, doi:10.3390/biom14010130
The existing literature supports the anti-inflammatory, antioxidant, and antiviral capacities of the polyphenol extracts derived from Geranium sanguineum L. These extracts exhibit potential in hindering viral replication by inhibiting enzymes like DNA polymerase and reverse transcriptase. The antiviral properties of G. sanguineum L. seem to complement its immunomodulatory effects, contributing to infection resolution. While preclinical studies on G. sanguineum L. suggest its potential effectiveness against COVID-19, there is still a lack of clinical evidence. Therefore, the polyphenols extracted from this herb warrant further investigation as a potential alternative for preventing and treating COVID-19 infections.
Peralta-Moreno et al., Autochthonous Peruvian Natural Plants as Potential SARS-CoV-2 Mpro Main Protease Inhibitors, Pharmaceuticals, doi:10.3390/ph16040585
Over 750 million cases of COVID-19, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), have been reported since the onset of the global outbreak. The need for effective treatments has spurred intensive research for therapeutic agents based on pharmaceutical repositioning or natural products. In light of prior studies asserting the bioactivity of natural compounds of the autochthonous Peruvian flora, the present study focuses on the identification SARS-CoV-2 Mpro main protease dimer inhibitors. To this end, a target-based virtual screening was performed over a representative set of Peruvian flora-derived natural compounds. The best poses obtained from the ensemble molecular docking process were selected. These structures were subjected to extensive molecular dynamics steps for the computation of binding free energies along the trajectory and evaluation of the stability of the complexes. The compounds exhibiting the best free energy behaviors were selected for in vitro testing, confirming the inhibitory activity of Hyperoside against Mpro, with a Ki value lower than 20 µM, presumably through allosteric modulation.
Zhang et al., Discovery of Potential Inhibitors of SARS-CoV-2 Main Protease by a Transfer Learning Method, Viruses, doi:10.3390/v15040891
The COVID-19 pandemic caused by SARS-CoV-2 remains a global public health threat and has prompted the development of antiviral therapies. Artificial intelligence may be one of the strategies to facilitate drug development for emerging and re-emerging diseases. The main protease (Mpro) of SARS-CoV-2 is an attractive drug target due to its essential role in the virus life cycle and high conservation among SARS-CoVs. In this study, we used a data augmentation method to boost transfer learning model performance in screening for potential inhibitors of SARS-CoV-2 Mpro. This method appeared to outperform graph convolution neural network, random forest and Chemprop on an external test set. The fine-tuned model was used to screen for a natural compound library and a de novo generated compound library. By combination with other in silico analysis methods, a total of 27 compounds were selected for experimental validation of anti-Mpro activities. Among all the selected hits, two compounds (gyssypol acetic acid and hyperoside) displayed inhibitory effects against Mpro with IC50 values of 67.6 μM and 235.8 μM, respectively. The results obtained in this study may suggest an effective strategy of discovering potential therapeutic leads for SARS-CoV-2 and other coronaviruses.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit